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Abstract
Anomaly detection is essential in various domains, including healthcare, where early identification of irregular patterns in data
can significantly impact patient outcomes. This paper presents a novel approach to unsupervised anomaly detection using
the ECG5000 dataset, focusing on electrocardiogram (ECG) data. We introduce multiple autoencoder architectures—linear,
convolutional, and LSTM-based—reframing the traditionally supervised classification task as an unsupervised anomaly
detection problem. By disregarding original labels, we emphasize the models’ ability to generalize across different ECG
abnormalities. Our extensive experiments reveal that a denoising linear autoencoder outperforms more complex architectures,
achieving an accuracy of 97.73%, within 0.7% of the current state-of-the-art. Furthermore, we conduct a comprehensive
analysis of the latent space representations, providing insights into the models’ feature extraction capabilities. These findings
suggest that our approach not only reduces model complexity but also maintains high accuracy, offering a viable solution for
real-time anomaly detection in medical settings.
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1. Introduction
Anomaly detection is a crucial task in data science and
machine learning[1], involving the identification of pat-
terns in data that do not conform to expected behavior[2].
Its applications span a wide range of fields, including
finance, cybersecurity, healthcare [3], and manufactur-
ing, where the detection of anomalies can prevent catas-
trophic failures[4, 5], secure systems against breaches,
and identify early signs of disease[6, 7, 8]. In health-
care, particularly in cardiology, the timely detection of
anomalies[9] in electrocardiogram (ECG) is vital for di-
agnosing potentially life-threatening conditions such as
arrhythmias[10, 11, 12, 13]. Traditional methods for ECG
analysis rely heavily on labeled data for supervised learn-
ing; however, obtaining labeled data can be challenging
and expensive[14, 15]. This limitation has driven the need
for effective unsupervised anomaly detection methods
that can operate reliably without labeled data[16, 17].

Recent advancements in anomaly detection within
healthcare have progressed from traditional statisti-
cal methods, such as Z-Score and Interquartile Range
(IQR)[18], to more sophisticated machine learning and
deep learning approaches[19, 20], capable of handling
complex, high-dimensional data like ECG signals[21,
22, 23, 24]. Traditional methods often struggle with
such intricate temporal patterns, while density-based[25]
(e.g., LOF, DBSCAN) and distance-based techniques (e.g.,
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k-NN) have shown improved efficacy but tend to be
computationally intensive and less scalable for large
datasets[26, 27, 28].

In contrast, deep learning methods, particularly au-
toencoders, offer significant advantages by learning com-
pressed representations that capture the underlying struc-
ture of high-dimensional data[29, 30, 31]. Variants such
as denoising, contractive, and variational autoencoders
have been explored extensively for their robustness
across diverse anomaly types[32, 33, 34, 35]. Building
on these developments, our work applies autoencoder
architectures to the ECG5000 dataset, a benchmark in
ECG analysis, reframing the anomaly detection task as
an unsupervised learning problem to enhance model gen-
eralizability across various ECG abnormalities without
relying on labeled data[10, 36, 37].

This study addresses this need by reframing the
ECG5000 dataset[38, 39], typically used for classification,
as a benchmark for unsupervised anomaly detection. We
explore a variety of autoencoder architectures—linear,
convolutional, and LSTM-based—to evaluate their effec-
tiveness in identifying anomalies without the guidance of
labels[40]. The research focuses on two main variations
of autoencoders: denoising and contractive. Our objec-
tive is to identify an architecture that balances model
complexity with performance, making it suitable for real-
time medical applications where computational resources
may be limited.

Through rigorous experimentation, we demonstrate
that a denoising linear autoencoder achieves near state-
of-the-art performance with significantly reduced com-
plexity. Additionally, we perform an in-depth analysis of
the latent space representations generated by our mod-
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els, offering insights into how these architectures capture
essential features for anomaly detection in ECG data.

2. Methodology
In this section, we outline the methodologies employed
to explore the effectiveness of various autoencoder ar-
chitectures for unsupervised anomaly detection in ECG
data. The methodology encompasses the design and test-
ing of multiple autoencoder variants, the evaluation of
their performance, and the analysis of the latent space
representations.

2.1. Autoencoder Architectures
We investigated three different autoencoder archi-
tectures: Linear, Convolutional, and LSTM-based
autoencoders[41]. These architectures were selected
based on their ability to capture different characteristics
of the ECG data—spatial hierarchies in the case of con-
volutional layers and temporal dependencies for LSTM
layers.

• Linear Autoencoder: A fully connected (linear)
architecture with two layers in both the encoder
and decoder. The encoder transforms the input
data from 140 to 32 features, and subsequently to
an 8-dimensional latent space using ReLU activa-
tion. The decoder mirrors this process to recon-
struct the original input.

• Convolutional Autoencoder: The encoder con-
sists of two convolutional layers with a 1x9 ker-
nel, reducing the input to an 8-dimensional latent
space, followed by a dropout layer to prevent
overfitting. The decoder uses transposed convo-
lutions to reconstruct the input.

• LSTM Autoencoder: This architecture employs
three unidirectional LSTM layers in both the en-
coder and decoder, with the final hidden state
forming an 8-dimensional latent vector. This la-
tent vector is then replicated across the sequence
length to reconstruct the ECG signal.

2.2. Model Variants
Each of the aforementioned architectures was further de-
veloped into different variants to assess their robustness
and effectiveness:

• Contractive Autoencoders: These models in-
troduce a regularization term based on the Frobe-
nius norm of the Jacobian matrix, which encour-
ages the model to learn stable latent representa-
tions that are less sensitive to small input pertur-
bations.

• Denoising Autoencoders: Here, Gaussian noise
is added to the input data during training. The
model is trained to reconstruct the clean input
from the noisy version, enhancing its ability to
filter out noise and focus on the underlying signal
structure.

• Mixed Models: Combining both contractive and
denoising strategies, these models aim to leverage
the strengths of both approaches, though they re-
quire careful tuning of hyperparameters to avoid
over-regularization.

2.3. Training Pipeline
The training process for these models is illustrated in
Figure 1. The autoencoders were trained on normal ECG
samples, allowing them to learn the distribution of non-
anomalous data. The training involved minimizing the
mean squared error (MSE) between the input and re-
constructed output. The training process was optimized
using the Adam optimizer, with the best model perfor-
mance achieved using early stopping criteria to prevent
overfitting.

Post-training, the models were evaluated using a
threshold-based classification approach. The MSE distri-
bution of normal and abnormal samples was analyzed to
set a threshold that distinguishes between the two. Specif-
ically, the threshold was calculated by interpolating the
MSE distributions of normal and abnormal samples, with
one standard deviation added to the mean of the normal
sample distribution and subtracted from the mean of the
abnormal sample distribution.

During inference, an ambiguous ECG sample is passed
through the autoencoder, and its MSE is calculated. This
MSE is then compared to the threshold: if the MSE is
below the threshold, the sample is classified as normal;
otherwise, it is classified as anomalous.

2.4. Latent Space Analysis
A key aspect of our methodology was the analysis of
the latent space produced by the autoencoders. Princi-
pal Component Analysis (PCA) was applied to reduce
the dimensionality of the latent space and visualize the
separation between normal and abnormal samples. Addi-
tionally, a simple logistic regression discriminator was
trained on the latent representations to assess their ability
to distinguish between normal and anomalous data.

The effectiveness of the latent space was quantified
by measuring the accuracy of the discriminator, with
higher accuracy indicating a more distinct and informa-
tive latent representation. This analysis was crucial in
understanding the models’ capacity to encode meaning-
ful features in the latent space, which directly impacts
the anomaly detection performance.
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Figure 1: Model pipeline for both anomaly detection and latent space analysis. This pipeline integrates the training, evaluation,
and post-processing steps used to assess model performance.

Figure 2: Latent space with true labels of the denoising linear
model. The separation between normal and abnormal samples
is clearly visible.

For comparison, Figures 4 and 5 illustrate the latent
space and decision boundary for the denoising LSTM
model, which shows less distinct separation, leading to
lower classification accuracy.

Figures 6 and 7 present the latent space and decision
boundary for the contractive linear model, which also
demonstrated lower effectiveness in distinguishing be-
tween normal and abnormal samples compared to the
denoising linear model.

Further analysis was conducted on the mixed linear
model (Figures 8 and 9), and the denoising convolutional
model (Figures 10 and 11). These results highlighted the
strengths and limitations of combining contractive and
denoising approaches in the same architecture.

Figure 3: Decision boundary computed by the discriminator
of the denoising linear model.

2.5. Training
The training process was repeated multiple times to
optimize the hyperparameters for each model variant.
The final training was conducted over 15 epochs, with
a learning rate of 0.01 using the Adam optimizer, which
proved more stable and faster than stochastic gradient de-
scent (SGD). The denoising linear autoencoder achieved
the best performance, with training early-stopped at 11
epochs based on validation performance.

The optimal hyperparameters included a contractive
lambda of 0.0001 and a noise level of 0.05 (represent-
ing the maximum absolute value for the Gaussian noise
added to the input). Notably, the contractive variants
took approximately 10 to 15 times longer to train than
their denoising counterparts, without yielding superior
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Figure 4: Latent space with true labels of the denoising LSTM
model.

Figure 5: Decision boundary computed by the discriminator
of the denoising LSTM model.

results.

3. Experimental Setup
In this section, we detail the experimental setup used
to evaluate the performance of the various autoencoder
architectures on the ECG5000 dataset. This includes a de-
scription of the dataset, data preprocessing steps, model
training configurations, and evaluation metrics.

3.1. Dataset Description
The ECG5000 dataset is a well-known benchmark for
anomaly detection tasks involving electrocardiogram
(ECG) signals. The dataset consists of 5000 one-
dimensional ECG recordings, each containing 140 time
steps. The dataset is divided into five classes, with one

Figure 6: Latent space with true labels of the contractive
linear model.

Figure 7: Decision boundary computed by the discriminator
of the contractive linear model.

representing normal heartbeats and the remaining four
representing various types of anomalies, including:

• Class 1: Normal beats.
• Class 2: Premature ventricular contractions.
• Class 3: Fusion beats.
• Class 4: Unclassifiable beats.
• Class 5: Anomalous beats.

For the purposes of unsupervised anomaly detection,
the original labels are disregarded during training. Only
samples from the normal class (Class 1) are used to train
the autoencoders, with the goal of identifying anomalies
based on reconstruction error during testing.

3.2. Data Preprocessing
The ECG signals were normalized to have zero mean and
unit variance. This step ensures that the models focus on
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Figure 8: Latent space with true labels of the mixed linear
model.

Figure 9: Decision boundary computed by the discriminator
of the mixed linear model.

the shape of the signal rather than its absolute amplitude,
which is crucial for the generalization of the anomaly
detection task.

Given the nature of the dataset, no further data aug-
mentation techniques were applied, as the goal was to
evaluate the autoencoders’ performance on raw, unal-
tered ECG signals. The dataset was split into training,
validation, and test sets with the following proportions:

• Training Set: 60% of the normal samples.
• Validation Set: 20% of the normal samples.
• Test Set: 20% of the normal samples, along with

all abnormal samples.

The validation set was used for hyperparameter tuning
and early stopping, while the test set was used for final
performance evaluation.

Figure 10: Latent space with true labels of the denoising
convolutional model.

Figure 11: Decision boundary computed by the discriminator
of the denoising convolutional model.

3.3. Model Training Configuration
The models were trained using the Adam optimizer with
a learning rate of 0.01. The training process was con-
ducted over 15 epochs, with early stopping applied if
the validation loss did not improve for three consecutive
epochs. The batch size was set to 64, which provided a
balance between computational efficiency and gradient
estimation accuracy.

• Contractive Autoencoders: A contractive loss
term with a regularization coefficient (𝜆) of 0.0001
was added to the standard reconstruction loss.
This encouraged the model to learn more stable
representations.

• Denoising Autoencoders: Gaussian noise with
a standard deviation of 0.05 was added to the
input during training. The model was trained to
reconstruct the original, clean ECG signal from
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the noisy input.
• MixedModels: Both contractive loss and denois-

ing noise were applied. These models required
careful tuning of the regularization coefficient
and noise level to avoid over-regularization.

All models were implemented using PyTorch, lever-
aging GPU acceleration to expedite the training process.
The best-performing model, based on validation perfor-
mance, was selected for final testing.

3.4. Threshold Selection
The selection of the decision threshold for anomaly de-
tection was a critical aspect of the experimental setup.
The threshold was determined by analyzing the MSE dis-
tribution for normal and anomalous samples. The final
threshold was set as the midpoint between one standard
deviation above the mean MSE of the normal samples
and one standard deviation below the mean MSE of the
anomalous samples.

This approach ensured that the threshold was not
overly conservative, allowing the models to generalize
better to unseen data, especially in scenarios where the
separation between normal and anomalous samples was
subtle.

3.5. Computational Resources
All experiments were conducted on a high-performance
computing cluster equipped with NVIDIA GPUs. The
use of GPU acceleration significantly reduced training
times, particularly for the more complex models like the
LSTM-based autoencoder and the contractive autoen-
coders, which require extensive matrix computations.

4. Results
In this section, we present the performance results of the
different autoencoder models evaluated on the ECG5000
dataset. The results are organized to highlight the effec-
tiveness of each model in detecting anomalies based on
the various metrics discussed in the experimental setup.

4.1. Model Performance
Table 1 summarizes the accuracy of the various autoen-
coder model configurations. The results show that the
denoising linear autoencoder outperformed the other
models, achieving the highest accuracy.

4.2. Training and Evaluation Losses
Figures 12-17 provide a visual representation of the train-
ing and evaluation losses, as well as the MSE scores for

Table 1
Accuracy of the Various Autoencoder Models

Accuracy (%)
Denoising Contractive Mixed

Linear 97.73 95.69 95.50
Convolutional 94.94 94.51 -

LSTM 93.60 - -

each model. The denoising linear autoencoder demon-
strated consistent and stable training, with the lowest
overall loss and a clear separation between the recon-
struction errors of normal and anomalous samples.

(a) Train and eval losses (b) MSE score

Figure 12: Training graphs for the denoising linear autoen-
coder

(a) Train and eval losses (b) MSE score

Figure 13: Training graphs for the contractive linear autoen-
coder

(a) Train and eval losses (b) MSE score

Figure 14: Training graphs for the mixed linear autoencoder
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(a) Train and eval losses (b) MSE score

Figure 15: Training graphs for the denoising convolutional
autoencoder

(a) Train and eval losses (b) MSE score

Figure 16: Training graphs for the contractive convolutional
autoencoder

(a) Train and eval losses (b) MSE score

Figure 17: Training graphs for the denoising LSTM autoen-
coder

4.3. Latent Space Analysis
The latent space analysis revealed significant differences
in the representation quality of each model. The denois-
ing linear autoencoder produced a well-separated latent
space, allowing for clear discrimination between normal
and anomalous samples. This is reflected in the high
accuracy of the discriminator applied to the latent space,
as shown in Table 2.

Table 2
Discriminator Accuracy for Each Model

Discriminator Accuracy (%)
Denoising Contractive Mixed

Linear 93.10 87.40 87.60
Convolutional 91.00 58.00 -

LSTM 54.90 - -

Figures 18-21 illustrate the latent spaces and corre-
sponding decision boundaries for the best-performing
models. The denoising linear model shows clear clusters
for normal and anomalous data, whereas the contrac-
tive and mixed models exhibit more overlapping clusters,
indicating less effective separation in the latent space.

Figure 18: Latent space with true labels of the denoising
linear model

Figure 19: Decision boundary computed by the discriminator
of the denoising linear model

The performance of the LSTM-based model was no-
tably lower, as evidenced by the near-random discrimina-
tor accuracy and the poor separation in the latent space
(Figures 20 and 21). This suggests that the LSTM model
struggled to capture relevant features in the latent space
for effective anomaly detection.

4.4. Summary of Results
The results demonstrate that the denoising linear autoen-
coder was the most effective model for anomaly detection
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Figure 20: Latent space with true labels of the denoising
LSTM model

Figure 21: Decision boundary computed by the discriminator
of the denoising LSTM model

on the ECG5000 dataset. It achieved the highest accuracy,
the most distinct latent space separation, and outper-
formed the contractive and LSTM-based models. The
success of the denoising approach highlights the impor-
tance of handling noise in ECG signals and suggests that
simpler models with well-tuned noise management can
outperform more complex architectures in this context.

5. Discussion
In this section, we discuss the implications of the results
obtained from the various autoencoder models tested
on the ECG5000 dataset, with a particular focus on the
insights gained from the latent space analysis.

5.1. Model Performance
The performance results indicate that the denoising lin-
ear autoencoder outperformed other models in terms of
accuracy and robustness in anomaly detection. This sug-
gests that for the task of unsupervised anomaly detection
on ECG data, simpler models with well-managed noise
handling capabilities can provide superior performance
compared to more complex architectures such as LSTM
or convolutional models.

The denoising approach effectively enhances the au-
toencoder’s ability to learn meaningful representations
by forcing the network to reconstruct clean data from
noisy inputs. This technique seems to be particularly
well-suited for ECG data, where noise is prevalent due to
various sources of interference during signal acquisition.
The success of the denoising linear autoencoder demon-
strates that the simplicity of the architecture, combined
with an effective noise reduction strategy, can lead to
robust performance in anomaly detection tasks.

5.2. Contractive vs. Denoising
Autoencoders

The comparison between contractive and denoising au-
toencoders highlights distinct differences in how these
architectures manage latent space representations. While
contractive autoencoders aim to enforce robustness by
minimizing the sensitivity of the latent space to small
perturbations in the input, they tend to be more computa-
tionally expensive and, in this study, did not outperform
the denoising models. This suggests that, at least in the
context of ECG anomaly detection, denoising strategies
are more effective in maintaining the balance between
reconstruction accuracy and computational efficiency.

One notable observation is the performance of the
contractive convolutional autoencoder, which suffered
from latent space collapse—where all inputs were mapped
to nearly identical latent representations. This outcome
highlights the potential risks of over-regularization in
contractive models, particularly when the regularization
strength is not carefully tuned.

5.3. Latent Space Analysis
The latent space analysis provided valuable insights into
the internal workings of the different autoencoder mod-
els. The use of Principal Component Analysis (PCA)
and a simple discriminator allowed us to visualize and
quantify the quality of the latent space representations.

The denoising linear autoencoder produced a well-
separated latent space, as evidenced by the clear clusters
corresponding to normal and anomalous data. This well-
defined separation is crucial for effective anomaly detec-
tion, as it allows for the reliable identification of outliers
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based on the reconstruction error. The high discriminator
accuracy (93.10%) further confirms the effectiveness of
the latent space representation in distinguishing between
normal and anomalous samples.

In contrast, the latent space produced by the denoising
LSTM and contractive convolutional models exhibited
significant overlap between normal and anomalous data,
resulting in poor discriminator performance. The near-
random accuracy of the discriminator (around 50%) in
these cases indicates that the latent space failed to cap-
ture the essential features needed for effective anomaly
detection. This finding suggests that while LSTM-based
models are well-suited for capturing temporal dependen-
cies, they may struggle with unsupervised tasks where
the latent space must be highly informative for anomaly
detection.

The issues observed with the contractive convolutional
model, including the latent space collapse, underscore the
importance of balancing regularization strength to avoid
over-constraining the model. When the contractive loss
term is too strong, the model may prioritize minimizing
the latent space sensitivity to the extent that it disregards
the actual data structure, leading to poor performance.

5.4. Practical Implications
The findings from this study have several practical impli-
cations. First, the success of the denoising linear autoen-
coder suggests that for ECG anomaly detection, model
simplicity combined with effective noise management
can yield strong performance. This insight is particularly
relevant for deployment in resource-constrained envi-
ronments, where computational efficiency is paramount.

Second, the latent space analysis highlights the impor-
tance of selecting appropriate architectures and regular-
ization strategies to ensure that the latent space remains
informative and well-structured. The trade-offs between
model complexity, regularization strength, and perfor-
mance must be carefully considered when designing au-
toencoders for anomaly detection.

Finally, the limitations observed with LSTM-based
models in this study suggest that alternative strategies,
such as attention mechanisms or hybrid models, may be
needed to effectively capture temporal dependencies in
unsupervised anomaly detection tasks. Future research
could explore these alternatives to improve the perfor-
mance of sequential models in this context.

5.5. Limitations and Future Work
While the results of this study are promising, several lim-
itations should be noted. The models were tested on a
single dataset (ECG5000), and the findings may not gen-
eralize to other types of ECG data or different domains.
Additionally, the study focused on unsupervised anomaly

detection; future work could explore semi-supervised or
fully supervised approaches to leverage labeled data for
enhanced performance.

Furthermore, the contractive autoencoders showed po-
tential issues with over-regularization, which warrants
further investigation. Future work could explore adap-
tive regularization techniques or alternative forms of
regularization to address these challenges. Similarly, the
exploration of more sophisticated noise models for the de-
noising autoencoder could provide insights into further
improving robustness and accuracy.

Finally, expanding the latent space analysis to include
other dimensionality reduction techniques or incorpo-
rating more advanced discriminative models could pro-
vide deeper insights into the structure and utility of the
learned representations.

6. Conclusion
In conclusion, this study demonstrates that denoising
autoencoders, particularly those with simple linear archi-
tectures, are highly effective for unsupervised anomaly
detection in ECG signals. The ability of these models
to generate robust latent representations, coupled with
their computational efficiency, makes them strong can-
didates for deployment in clinical settings where rapid
and accurate detection of cardiac anomalies is crucial.
The findings also underscore the importance of careful
selection and tuning of regularization techniques, as inap-
propriate combinations can hinder rather than enhance
model performance. Future research should continue to
explore these themes, with a focus on generalizability,
interpretability, and computational efficiency.

7. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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