
Robust Curvature-Based Feature Descriptors for Noisy Point
Cloud Registration
Giorgio De Magistris1, Mattia Pannone1

1Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy

Abstract
This paper presents an improved methodology for point cloud registration using curvature-based feature descriptors. The
core contribution is the adoption of the Umbrella Curvature method for curvature estimation, evaluated against the standard
Surface Variance approach under various noise conditions. To enhance robustness, local variance features are introduced
alongside curvature, forming a composite descriptor for more reliable point matching. Registration is performed using a
modified Iterative Closest Point (ICP) algorithm leveraging these features. Extensive experiments demonstrate that Umbrella
Curvature significantly improves alignment accuracy, particularly under high noise, and that the proposed feature aggregation
further enhances robustness. Some limitations in specific geometric configurations are discussed.

1. Introduction
Point cloud processing has become increasingly critical
in various fields, including computer vision, robotics, and
3D modeling. Point clouds are typically generated by 3D
scanners, representing objects or scenes as discrete sets
of spatial points. In many applications, multiple point
clouds must be aligned or merged into a coherent global
model, a process known as registration.

In the 2D image domain, local feature descriptors such
as SIFT [1], HOG [2], and LBP [3] are widely used for
matching and alignment tasks [4, 5, 6] and in the field of
robotics [7, 8]. Analogously, in 3D space, feature descrip-
tors that capture local geometric properties are crucial
for establishing correspondences between points across
different scans.

Among various geometric features, curvature plays a
particularly important role due to its invariance under
rigid transformations (translations and rotations). Cur-
vature characterizes the local shape of a surface, offering
discriminative information that is stable across different
poses of the same object.

In this work, we explore curvature-based registration
of point clouds using the Umbrella Curvature [9] method,
a recently proposed technique that computes curvature
based on the homogeneous distribution of neighboring
points, mimicking the structure of an umbrella. This
method is compared against the classical Surface Vari-
ance approach [10, 11], which estimates curvature from
the eigenvalues of the local covariance matrix.

Beyond curvature alone, we introduce local vari-
ance—the statistical dispersion of neighboring points—as
an additional feature to improve matching reliability.
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Combining curvature and variance provides a richer de-
scriptor that helps distinguish between points with simi-
lar curvature values but differing local geometries.

A major focus of this study is the robustness of curva-
ture estimation in the presence of noise. Noise is common
in real-world scans due to sensor imperfections and envi-
ronmental factors, and it can significantly degrade feature
reliability. To address this, we propose two median-based
strategies to enhance the stability of curvature estimation
without resorting to traditional denoising techniques.

Finally, we integrate these feature descriptors into a
customized version of the Iterative Closest Point (ICP)
algorithm [12, 13, 14], aligning point clouds based on
feature similarity rather than pure spatial proximity. Ex-
tensive experiments are conducted on publicly available
datasets, evaluating accuracy under various conditions
including high noise levels.

The remainder of this paper is organized as follows:
Section 2 reviews related work; Section 3 details the
methodology; Section 4 presents experimental results
and analysis; Section 5 concludes with key findings and
future directions.

2. Related Works
Feature-based registration of point clouds is a well-
established research area with significant attention in
recent years. Several approaches have been proposed
for extracting geometric descriptors, estimating curva-
ture, selecting neighboring points, and performing robust
registration.

Curvature Estimation. Foorginejad and Aghbari [9]
introduced the Umbrella Curvature method, which em-
ploys homogeneously distributed neighbors to improve
the robustness of curvature estimation. The method cal-
culates the local normal and curvature of a point using an
umbrella-like arrangement of neighbors, providing better
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performance compared to traditional eigenvalue-based
techniques.

Earlier, Pauly et al. [10] proposed the widely-used Sur-
face Variation descriptor, estimating curvature as the
ratio between the smallest eigenvalue and the sum of
all eigenvalues of the covariance matrix built from local
neighborhoods. This approach is simpler and computa-
tionally efficient, but can be less robust in regions with
uneven point distributions.

Alternative curvature estimation strategies include fit-
ting local surfaces to point sets. Zhang et al. [15] pro-
posed estimating curvature by fitting normal sections in
multiple directions, offering improved stability compared
to direct covariance analysis. Such methods, however,
typically incur higher computational costs.

Neighbor Selection. Accurate curvature estimation
strongly depends on the choice of neighboring points.
Park et al. [16] introduced the Elliptic Gabriel Graph
(EGG) for selecting neighbors that better capture local
geometric relationships. Friedman et al. [17] proposed
the KD-Tree data structure, which remains a standard
for efficiently querying nearest neighbors, though it does
not guarantee uniform angular distribution. To overcome
this, homogeneous neighborhood selection—favoring an-
gularly well-distributed points—has been proposed, es-
pecially for methods like Umbrella Curvature.

Point Cloud Feature Extraction. Beyond hand-crafted
features, learning-based methods such as Xiang et al. [18]
used multilayer perceptrons to directly learn point de-
scriptors from local neighborhoods reordered via space-
filling curves. Although effective, such approaches are
typically more complex and suited to large-scale datasets.

Registration Algorithms. The Iterative Closest Point
(ICP) algorithm [12] remains the foundational method for
rigid point cloud registration, minimizing point-wise dis-
tances iteratively. Variants such as He et al. [19] have in-
corporated geometric features, including curvature, nor-
mals, and density, to improve matching accuracy. Yao et
al. [20] introduced a similarity measure based on local
curvature variations, demonstrating enhanced robust-
ness compared to purely geometric methods.

Other works, like Bae and Lichti [21], proposed effi-
cient feature-based registration pipelines that account for
noise and missing data. Belton and Lichti [22] explored
local variance as a metric for classifying and segmenting
point clouds, an idea that inspires the use of variance as
an auxiliary descriptor in the current work.

Summary. Overall, while many approaches leverage
curvature and variance for analysis, the combination
of umbrella curvature estimation, local variance filter-
ing, and noise-robust feature aggregation within an ICP
framework remains relatively unexplored. This paper
aims to systematically study and validate these contribu-
tions under noisy conditions.

3. Implementation
This section outlines the full pipeline developed for fea-
ture extraction, curvature estimation, and point cloud
registration. The process includes data acquisition, neigh-
borhood selection, curvature and variance computation,
noise robustness strategies, and an Iterative Closest Point
(ICP) algorithm enhanced with geometric features.

All components were implemented in Python and
tested on Google Colab, with the code structured into
modular functions to ensure clarity and reproducibility.
Public datasets and annotated notebooks were used to
facilitate consistent experimentation.

3.1. Data Acquisition
The datasets were sourced from the Stanford 3D Scanning
Repository1, a well-known benchmark containing high-
resolution 3D scans. Three objects were selected—Bunny,
Armadillo, and Dragon—and for each, four different scans
were used. One scan served as the target, while the re-
maining three were used as sources.

The point clouds, stored in .ply format, consist of
(𝑥, 𝑦, 𝑧) coordinates. Unless otherwise stated (e.g., in
downsampling experiments), raw data was used to pre-
serve geometric detail. Figure ?? shows visualizations of
the selected objects.

3.2. Neighbor Selection
Curvature and variance estimation rely on meaningful
neighborhood selection. We employed two strategies: a
KD-Tree-based search for retrieving the 𝑘 nearest neigh-
bors by Euclidean distance, and a refined selection based
on spatial distribution for the Umbrella method.

In the latter, neighbors were filtered by cosine similar-
ity to ensure even angular distribution around the query
point. A threshold of 0.8 was used to retain only those
neighbors well-distributed relative to the mean direc-
tion vector. Figure ?? illustrates the difference between
standard and homogeneous neighborhoods.

PCA was then applied to each neighborhood: points
were centered, the covariance matrix was computed, and
eigenvalues and eigenvectors extracted. The eigenvector
corresponding to the smallest eigenvalue was taken as
the estimated surface normal, while the eigenvalues were
used in curvature and variance computation.

3.3. Curvature Estimation
We implemented and compared two curvature estima-
tion methods: Surface Variance Curvature and Umbrella
Curvature.

1http://graphics.stanford.edu/data/3Dscanrep/
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Surface Variance Curvature [10] is computed from
PCA eigenvalues:

𝑘SV =
𝜆min∑︀3
𝑖=1 𝜆𝑖

(1)

Umbrella Curvature [9] instead computes directional
deviation along the surface normal:

𝑘UM =

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
𝑁𝑖 − 𝑝

‖𝑁𝑖 − 𝑝‖ · 𝑛
⃒⃒⃒⃒

(2)

Here, 𝑝 is the query point, 𝑁𝑖 are neighboring points,
and 𝑛 is the surface normal. The normalized displace-
ment vectors are projected onto the normal vector, and
their absolute projections are summed to obtain the cur-
vature value.

Figure ?? shows that Umbrella Curvature provides
sharper contrast in areas with high geometric detail, mak-
ing it more suitable for feature-based registration.

3.4. Robustness to Noise
To assess robustness, Gaussian noise was synthetically
added to point clouds. Two noise-resilient curvature
methods were developed.

The first, Umbrella-2, replaces the mean center with
the median of the neighborhood:

new_points = neighbors−median(neighbors)

The second, Umbrella-3, applies a sliding window me-
dian filter to the neighborhood:

1: 𝑝𝑜𝑖𝑛𝑡𝑠← neighbors of 𝑝
2: Initialize 𝑤𝑖𝑛𝑑𝑜𝑤
3: Initialize 𝑝𝑜𝑖𝑛𝑡𝑠filtered

4: for 𝑖 in range of neighbors do
5: Update 𝑤𝑖𝑛𝑑𝑜𝑤 with 𝑝𝑜𝑖𝑛𝑡𝑠[𝑖]
6: 𝑝𝑜𝑖𝑛𝑡𝑠filtered[𝑖]← median(𝑤𝑖𝑛𝑑𝑜𝑤)
7: end for
These methods leverage the statistical robustness of

the median to suppress noise while preserving geometric
features.

3.5. Registration Algorithm
Point cloud alignment was performed using a modified
version of ICP. Traditional ICP uses proximity-based cor-
respondence; we instead introduced feature-based match-
ing using curvature and local variance.

In the first variant (ICP-Curvature), for each source
point 𝑝𝑠, 𝑘 nearest target neighbors are found. The neigh-
bor 𝑝𝑡 with the most similar curvature is selected if the
difference is below a threshold 𝜏1.

In the second variant (ICP-Curvature + Local Variance),
after curvature-based selection, local variance is also
compared. The match is accepted only if the variance
difference is below a second threshold 𝜏2.

The two algorithms are summarized below:
Rigid transformations were computed using Singu-

lar Value Decomposition (SVD). After computing and
centering the centroids of the correspondence pairs, the
covariance matrix was formed, and SVD was applied:

𝑇 =

[︂
𝑅 𝑡
0𝑇 1

]︂
Convergence was reached when the registration error,

defined as the mean Euclidean distance between matched
pairs, stabilized or when a maximum number of iterations
was exceeded.

3.6. Parameter Selection
To balance accuracy, robustness, and speed, parameters
were chosen based on prior work and empirical tuning.
For curvature estimation, 𝑘 = 8 neighbors were used.
In the Umbrella method, cosine similarity ensured even
distribution. ICP correspondence search used 𝑘 = 50
neighbors, while local variance was computed using 1000
points.

Thresholds for feature matching were set to 𝜏1 = 𝜏2 =
0.0001, based on analysis of feature value distributions.
The median filter window for Umbrella-3 was set to size
5. ICP typically ran for 50–100 iterations, with early
stopping if no improvement was observed. Some tests
downsampled 50% of the points to study efficiency.

In summary, the implementation emphasized modular-
ity, geometric fidelity, and resilience to noisy conditions
while remaining efficient and reproducible.

4. Experimental Results
To validate the effectiveness of the proposed methods, we
conducted a series of experiments on several real-world
point clouds. These experiments used both clean and syn-
thetically noised data, enabling evaluation under diverse
conditions. We focused on quantitative comparisons and
visual inspections to assess registration quality.

We used the Stanford 3D Scanning Repository [23], se-
lecting four scans per object (Bunny, Armadillo, Dragon).
One scan was chosen as the target, while the other
three served as sources. Registration performance was
measured using the mean Euclidean distance between
matched point pairs (registration error) and visual over-
lap of aligned scans.

A key comparison was made between two curvature
estimation strategies: Umbrella Curvature and Surface
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Algorithm 1 ICP using Curvature Feature

1: Initialize empty correspondence sets.
2: for each point 𝑝𝑠 in source point cloud do
3: Find 𝑘 nearest neighbors of 𝑝𝑠 in target point cloud.
4: For each neighbor, compute curvature difference.
5: Select neighbor 𝑝𝑡 with minimum curvature difference.
6: if curvature difference ≤ 𝜏1 then
7: Add (𝑝𝑠, 𝑝𝑡) to correspondence set.
8: end if
9: end for

10: Estimate optimal transformation from correspondences.
11: Apply transformation to source cloud.
12: Repeat until convergence.

Algorithm 2 ICP using Curvature and Local Variance

1: Initialize empty correspondence sets.
2: for each point 𝑝𝑠 in source point cloud do
3: Find 𝑘 nearest neighbors of 𝑝𝑠 in target point cloud.
4: For each neighbor, compute curvature difference.
5: Select neighbor 𝑝𝑡 with minimum curvature difference.
6: if curvature difference ≤ 𝜏1 then
7: Compute local variance at 𝑝𝑠 and 𝑝𝑡.
8: if variance difference ≤ 𝜏2 then
9: Add (𝑝𝑠, 𝑝𝑡) to correspondence set.

10: end if
11: end if
12: end for
13: Estimate optimal transformation from correspondences.
14: Apply transformation to source cloud.
15: Repeat until convergence.

Variation. As summarized in Tables 1 to 3, Umbrella Cur-
vature generally produced lower registration errors and
required fewer ICP iterations. Visualizations in Figures 1
to 9 confirm that this method better preserves geometric
details during alignment. Nonetheless, failure cases oc-
curred when the initial misalignment was large or when
different regions of the object had similar curvature char-
acteristics—such as the Bunny’s head and back.

To evaluate computational efficiency, we downsam-
pled the point clouds to 50% of their original size. As
shown in Table 4, this introduced only a small increase
in error, suggesting that downsampling offers a practical
trade-off between speed and accuracy.

We also explored enhancements to the base curvature
descriptor. Adding a local variance feature improved reg-
istration accuracy in most cases, particularly in regions
with ambiguous curvature but differing point dispersion
(see Tables 5 to 7). For the Dragon model, however, the
effect was inconsistent, indicating that the benefit may
be data-dependent.

Another important factor was the choice of neighbor-

hood size in the curvature computation. Experiments
using 𝑘 = 8 and 𝑘 = 100 neighbors (Tables 8 to 10)
showed that while a larger neighborhood occasionally
led to faster convergence, it also risked oversmoothing
the geometry. We therefore adopted 𝑘 = 8 as the default
to maintain local detail.

Finally, we tested robustness to noise by adding Gaus-
sian perturbations to the source point clouds. Variants
of the Umbrella curvature method—including median
centering (Umbrella2), local filtering (Umbrella3), and
the combination of Umbrella3 with local variance—were
compared. Results, shown in Tables 11 to 13 and Fig-
ures 10 to 12, indicate that both Umbrella2 and Umbrella3
improve noise resilience. The most robust variant, Um-
brella3 with local variance, achieved very low registration
errors in several cases, although some visually incorrect
alignments occurred under heavy noise—highlighting
the limits of local variance in such conditions.

In summary, the experiments demonstrate that Um-
brella curvature outperforms Surface Variation for point
cloud registration, particularly when combined with lo-
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cal variance or median filtering. These improvements
remain effective across clean, downsampled, and noisy
data, confirming the proposed method’s robustness and
accuracy.

5. Conclusions
This work investigated the use of curvature-based fea-
tures to enhance point cloud registration, particularly un-
der challenging conditions such as noise and partial data.
The proposed approach combined Umbrella Curvature
estimation with local variance filtering, and extended the
traditional ICP algorithm using feature-driven matching
strategies.

The experimental results highlighted several key find-
ings. Umbrella Curvature consistently outperformed Sur-
face Variation in providing reliable and discriminative ge-
ometric descriptors, leading to lower registration errors
and faster convergence. The addition of local variance
proved useful in distinguishing between regions with
similar curvature, especially when those regions origi-
nated from different parts of the object. Moreover, the
robustness of the method was significantly improved by
incorporating median-based centering and local filtering
prior to curvature estimation. Even when point clouds
were downsampled to half their original size, the regis-
tration remained accurate and efficient, demonstrating
the method’s scalability.

Despite these promising results, some limitations were
observed. A low numerical registration error did not
always imply correct alignment, particularly in cases
involving large initial misalignments or symmetric ge-
ometries. Additionally, while local variance was helpful
in clean data scenarios, its effectiveness diminished under
strong noise. The method also encountered difficulties
when dealing with large flat surfaces or repeated struc-
tures that exhibit similar curvature patterns.

Looking ahead, future work will explore the integra-
tion of global geometric descriptors or semantic seg-
mentation to improve performance in ambiguous re-
gions. Adaptive strategies for selecting neighborhood
sizes based on local point density and noise characteris-
tics may also enhance accuracy. Furthermore, extending
the method to non-rigid registration tasks—where lo-
cal deformations occur—presents an exciting direction.
Finally, learning-based curvature estimation could be in-
vestigated as a means to further improve robustness and
generalization.

In conclusion, the results confirm that combining well-
designed curvature descriptors with local statistical fea-
tures can lead to substantial improvements in point cloud
registration, even under noisy and incomplete conditions.

6. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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Iterations Registration Error
Test 1 Umbrella Method 19 0.0025711

Surface Variance 47 0.0027847
Test 2 Umbrella Method 13 0.0082389

Surface Variance 15 0.0093368
Test 3 Umbrella Method 21 0.0079683

Surface Variance 47 0.0093608

Table 1
This table shows the execution of the ICP algorithm on 3 different models of the Bunny object, you can see the comparison
between the use of the Surface Variance method and that of the Umbrella Curvature.

Iterations Registration Error
Test 1 Umbrella Method 35 0.0039208

Surface Variance 40 0.0037737
Test 2 Umbrella Method 17 0.009969

Surface Variance 56 0.0122429
Test 3 Umbrella Method 21 0.0093331

Surface Variance 29 0.0134528

Table 2
This table shows the execution of the ICP algorithm on 3 different models of the Armadillo object, you can see the comparison
between the use of the Surface Variance method and that of the Umbrella Curvature.

Iterations Registration Error
Test 1 Umbrella Method 38 0.0022854

Surface Variance 43 0.0022744
Test 2 Umbrella Method 33 0.0035608

Surface Variance 36 0.0042893
Test 3 Umbrella Method 18 0.0068711

Surface Variance 43 0.0061069

Table 3
This table shows the execution of the ICP algorithm on 3 different models of the Dragon object, you can see the comparison
between the use of the Surface Variance method and that of the Umbrella Curvature.

Iterations Registration Error
Bunny Umbrella Method 19 0.003647

Surface Variance 39 0.0036281
Armadillo Umbrella Method 13 0.0096267

Surface Variance 41 0.0049265
Dragon Umbrella Method 48 0.0029148

Surface Variance 36 0.0031384

Table 4
This table shows the execution of the ICP algorithm on all 3 objects (with only 2 point clouds for each object) using reduced
size point clouds, i.e. randomly deleting some points (in order to reduce the execution time).

Iterations Registration Error
Test 1 Umbrella Method 19 0.0025711

Umbrella + Local Variance 32 0.0018554
Test 2 Umbrella Method 13 0.0082389

Umbrella + Local Variance 14 0.0044293
Test 3 Umbrella Method 21 0.0079683

Umbrella + Local Variance 18 0.0043945

Table 5
This table shows the execution of the ICP algorithm on 3 different tests of the Bunny object and compares the results achieved
with only the use of the curve as a feature Algorithm [??]] and that with the addition of the local variance Algorithm [??].
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Iterations Registration Error
Test 1 Umbrella Method 35 0.0039208

Umbrella + Local Variance 10 0.0024387
Test 2 Umbrella Method 17 0.009969

Umbrella + Local Variance 23 0.0032814
Test 3 Umbrella Method 21 0.0093331

Umbrella + Local Variance 14 0.0024006

Table 6
This table shows the execution of the ICP algorithm on 3 different tests of the Armadillo object and compares the results
achieved with only the use of the curve as a feature Algorithm [??] and that with the addition of the local variance Algorithm
[??]].

Iterations Registration Error
Test 1 Umbrella Method 38 0.0022854

Umbrella + Local Variance 12 0.0059879
Test 2 Umbrella Method 33 0.0035608

Umbrella + Local Variance 16 0.0060449
Test 3 Umbrella Method 18 0.0068711

Umbrella + Local Variance 20 0.0061974

Table 7
This table shows the execution of the ICP algorithm on 3 different tests of the Dragon object and compares the results achieved
with only the use of the curve as a feature Algorithm [??] and that with the addition of the local variance Algorithm [??]].

Iterations Registration Error
Test 1 Umbrella with 8 neighbors 19 0.0025711

Umbrella with 100 neighbors 18 0.0025364
Test 2 Umbrella with 8 neighbors 13 0.0082389

Umbrella with 100 neighbors 15 0.0090874
Test 3 Umbrella with 8 neighbors 21 0.0079683

Umbrella with 100 neighbors 10 0.0051346

Table 8
This table shows the execution of the ICP algorithm on 3 different tests of the Bunny object and compares the results achieved
with the calculation of the Umbrella curvature with 8 neighbors and the calculation of the same with 100 neighbors.

Iterations Registration Error
Test 1 Umbrella with 8 neighbors 35 0.0039208

Umbrella with 100 neighbors 15 0.0076229
Test 2 Umbrella with 8 neighbors 17 0.009969

Umbrella with 100 neighbors 11 0.0056058
Test 3 Umbrella with 8 neighbors 21 0.0093331

Umbrella with 100 neighbors 8 0.0130134

Table 9
This table shows the execution of the ICP algorithm on 3 different tests of the Armadillo object and compares the results
achieved with the calculation of the Umbrella curvature with 8 neighbors and the calculation of the same with 100 neighbors.

Iterations Registration Error
Test 1 Umbrella with 8 neighbors 38 0.0022854

Umbrella with 100 neighbors 20 0.0033579
Test 2 Umbrella with 8 neighbors 33 0.0035608

Umbrella with 100 neighbors 12 0.0048088
Test 3 Umbrella with 8 neighbors 18 0.0068711

Umbrella with 100 neighbors 12 0.0047976

Table 10
This table shows the execution of the ICP algorithm on 3 different tests of the Dragon object and compares the results achieved
with the calculation of the Umbrella curvature with 8 neighbors and the calculation of the same with 100 neighbors.
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Iteration Registration error
Noise + Umbrella 15 0.0072602
Noise + Umbrella2 14 0.0048573
Noise + Umbrella3 13 0.0050148

Noise + Umbrella3 + local variance 9 0.0012773

Table 11
This table shows the execution of the ICP algorithm between two point clouds of the Bunny object where Guassian noise
has been added to one of them, the source point cloud. The results show the execution after calculating: in the first row the
curvature with the classic umbrella method; in the second by subtracting the median from the points (umbrella2); in the third
row by applying a small filter to the points (umbrella3); in the last one as in the previous one but adding the control on the
local variance (algorithm 2).

Iteration Registration error
Noise + Umbrella 25 0.0086797
Noise + Umbrella2 9 0.0098761
Noise + Umbrella3 21 0.0079397

Noise + Umbrella3 + local variance 2 0.0021998

Table 12
This table shows the execution of the ICP algorithm between two point clouds of the Armadillo object where Guassian noise
has been added to one of them, the source point cloud. The results show the execution after calculating: in the first row the
curvature with the classic umbrella method; in the second by subtracting the median from the points (umbrella2); in the third
row by applying a small filter to the points (umbrella3); in the last one as in the previous one but adding the control on the
local variance (algorithm 2).

Iteration Registration error
Noise + Umbrella 11 0.0100419
Noise + Umbrella2 27 0.0052735
Noise + Umbrella3 24 0.004230

Noise + Umbrella3 + local variance - -

Table 13
This table shows the execution of the ICP algorithm between two point clouds of the Dragon object where Guassian noise
has been added to one of them, the source point cloud. The results show the execution after calculating: in the first row the
curvature with the classic umbrella method; in the second by subtracting the median from the points (umbrella2); in the third
row by applying a small filter to the points (umbrella3); in the last one as in the previous one but adding the control on the
local variance (Algorithm 2).

Figure 1: Test 1 of Bunny registration.
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Figure 2: Test 2 of Bunny registration.

Figure 3: Test 3 of Bunny registration.

Figure 4: Test 1 of Armadillo registration.
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Figure 5: Test 2 of Armadillo registration.

Figure 6: Test 3 of Armadillo registration.

Figure 7: Test 1 of Dragon registration.
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Figure 8: Test 2 of Dragon registration.

Figure 9: Test 3 of Dragon registration.
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Figure 10: Test of Bunny registration on the point cloud with noise and the different methods to deal with it.
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Figure 11: Test of Armadillo registration on the point cloud with noise and the different methods to deal with it.
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Figure 12: Test of Dragon registration on the point cloud with noise and the different methods to deal with it.
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