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Abstract
This paper presents the design of a kinematic controller for coordinating a team of mobile robots into specified formation
configurations using the leader-follower framework. First, the leader-follower strategy is reformulated as a trajectory tracking
problem. Then, a discrete model predictive control (DMPC) is integrated with a discrete sliding mode (DSM) control to guide
the follower robots in tracking the leader’s trajectory while preserving the required formation geometric configuration. The
suggested control scheme ensures precise trajectory tracking and a robust formation maintenance with a constrained and
chattering free control inputs. Simulation results demonstrate the effectiveness, efficiency, and practicality of the proposed
control strategy for real-world scenarios.
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1. Introduction
Formation control is a fundamental aspect of multi-robot
systems, it allows for the robots to operate cohesively
by regulating states like position and orientation to
achieve specific geometric configurations. Its broad
applicability spans various domains such as exploration,
rescue missions, surveillance, and transportation, which
make it a critical focus in robotics research. Recent
developments in the field have led to the exploration of
various control methodologies, including behavior-based
[1, 2], leader-follower[3, 4] and virtual structure [5, 6, 7]
approaches. In the existing literature, researchers have
applied a range of control techniques to implement
formation control in wheeled nonholonomic mobile
robots, leveraging the leader-follower framework.
These techniques include graph theory approaches
[8, 9, 10], consensus algorithms [11, 12, 13], SMC sliding
mode control [14, 15], MPC model predictive control
[16, 17, 18, 19], PID control [20, 21] and reinforcement
learning [22, 23, 24, 25].
Among this control schemes, sliding mode control (SMC)
approaches have been widely adopted in formation
control of mobile robots. primarily due to its appealing
attributes, such as finite-time convergence and resilience
against perturbations and uncertainties. However, the
chattering phenomenon resulting from the reaching
law, and its corresponding high control effort, stands as
its primary limitation, which have inspired substantial
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research to address these issue. For example, authors in
[26] addressed the formation control of nonholonomic
mobile robots. a globally finite-time stable sliding
mode controller has been designed. Then, a continuous
reaching law has been derived to mitigate the chattering
caused by control limitations and computation time
delays. In [27] a second order sliding mode controller
has been developed , based on the relative motion
states and without the leader velocity measurement, to
stabilize the robots towards the required time-varying
formation and to avoid the the chattering phenomena.
The authors in [28] design a sliding mode formation
controller for differential drive robots. They used a novel
approach inspired by immune regulation mechanisms,
coupled with fuzzy boundary layer method. To reduce
the chattering and to compensate uncertainty without
requiring prior knowledge of its boundaries. In [29]
a tracking control method for multiple robots has
been presented. A sliding mode controller has been
introduced to asymptotically stabilize the robots into the
required formation. To address the velocity jump issue,
authors incorporates a novel sliding mode approach
based on the neural dynamic model[30, 31, 32].

On the other hand, employing model predictive
control MPC for the formation control of nonholonomic
mobile robots can effectively account for physical
limits of the robots, making it capable for yielding
an optimal formation tracking and maintenance. The
authors in [33] used a virtual robot as a leader, then an
MPC method is applied to the followers to accomplish
the leader-follower formation objective based on two
models. Novel terminal state regions and controllers
are developed to assure the stability of the controller.

26

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:damaniallaeddine@univ-blida.dz
mailto:b.nail@univ-djelfa.dz
https://creativecommons.org/licenses/by/4.0


Damani Allaeddine Yahia et al. CEUR Workshop Proceedings 26–34

In [34] a multi-robot systems was controlled using a
cooperative CCEA coevolutionary algorithm based
MPC approach. To predict the future states, they
utilized the past state values of the robots, rather than
their current values. And the asymptotic stability
has been guaranteed, by tuning the sampling period
and choosing suitable constraints of the states and
inputs[35, 36, 37]. The authors in [38] suggested an
MPC controller for a leader follower formation based
on the separation-bearing-orientation scheme. the
particle swarm algorithm is employed for solving the
optimization problem, where the global solution is
considered as the control input.

The key contribution of this paper lies in the develop-
ment of a controller that combines discrete model pre-
dictive control MPC and discrete sliding mode control to
achieve a robust and accurate formation control of non-
holonomic wheeled mobile robots. The integration of
MPC allows for optimal formation producing and track-
ing with constrained states and inputs, while the sliding
mode control ensures robustness against kinematic per-
turbations subjected to the robots model in practice. By
leveraging the strengths of both control techniques, the
proposed method aims to improve the overall formation
control performances. To evaluate the effectiveness of
suggested control method, simulation examples are con-
ducted. Where a comparison is made between the per-
formance of the proposed method and conventional dis-
crete sliding mode control technique. The results clearly
demonstrate the superior performance of the proposed
method.

2. Problem Formulation

2.1. Nonholonomic mobile robot
kinematic model

Consider the differential-drive wheeled mobile robot
shown in Figure 1. Let 𝑞 = [𝑥 𝑦 𝜃]𝑇 be the robot center
of mass posture, where (𝑥, 𝑦) denotes the position of the
robot in the global Cartesian frame (𝑂𝑋𝑌 ) and 𝜃 is the
orientation angle.

This robot satisfy the following pure rolling and non-
slipping nonholonomic constraints given by:

�̇� cos 𝜃 − �̇� sin 𝜃 = 0 (1)

By using the nonholonomic constraints in (1), the kine-
matic model of the robot can be described as follow:

�̇� =

⎡⎣ cos 𝜃 0
sin 𝜃 0
0 1

⎤⎦[︂
𝜈
𝜔

]︂
= 𝐽(𝑞)𝑢 (2)

Figure 1: Differential-drive wheeled mobile robot.

Where 𝜔 is the robot angular velocity and 𝜈 is the
robot linear velocity.

In practice, the robot model is subjected to kinematic
uncertainty and input disturbances. Hence, a more real-
istic model of the robot can be expressed as follow [39]:

�̇� = 𝐽(𝑞)(𝑢+∆) (3)

Where ∆ = [𝛿𝜈 𝛿𝜔]
𝑇 denotes the unknown input distur-

bances, and its assumed to be upper bounded by [39]:

|∆| ≤ 𝛾

where 𝛾 is a positive constant.

2.2. Leader follower formation model
Figure 2 show the basic architecture of the leader-
follower formation approach. Where the posture of the
leader robot 𝑅𝑙 is 𝑞𝑙 = [𝑥𝑙 𝑦𝑙 𝜃𝑙]

𝑇 and the posture of
the follower robot 𝑅𝑓 is given by 𝑞𝑓 = [𝑥𝑓 𝑦𝑓 𝜃𝑓 ]

𝑇 and
the desired posture for the follower robot is given by
𝑞𝑑 = [𝑥𝑑 𝑦𝑑 𝜃𝑑]

𝑇 .
The leader-follower approach can be seen as a trajectory

tracking problem where the follower robot must track
the trajectories generated by the leader robot in-order to
preserve the required separation distance𝐿𝑑 and heading
angle Φ𝑑, and to form the predefined formation shape.
Hence the desired posture 𝑞𝑑 can be given as [40]:

𝑞𝑑 =

⎡⎣ 𝑥𝑑

𝑦𝑑
𝜃𝑑

⎤⎦ =

⎡⎣ 𝑥𝑙 + 𝐿𝑑 cos (Φ𝑑 + 𝜃𝑙)
𝑦𝑙 + 𝐿𝑑 sin (Φ𝑑 + 𝜃𝑙)
atan2 (�̇�𝑑, �̇�𝑑 + 𝜅𝜋)

⎤⎦ (4)

Where 𝑘 = 0, 1 is the driving direction ( 0 for the
forward motion and 1 for reverse) and 𝑎𝑡𝑎𝑛2 is the four-
quadrant inverse tangent function. To accomplish the
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Figure 2: Leader-Follower Formation Structure.

formation objective, the follower robot need to follow
the reference trajectory consist of the set of the desired
postures 𝑞𝑑, which implies that the following must sat-
isfy:

lim
𝑡→∞

(𝑞𝑑 − 𝑞𝑓 ) = 0 (5)

2.3. Leader follower formation error
dynamics

Since the leader-follower formation is converted to a
trajectory tracking problem, the tracking error model of
the formation can be written as:

𝑒 =

⎡⎣ 𝑥𝑒

𝑦𝑒
𝜃𝑒

⎤⎦ =

⎡⎣ cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎦⎡⎣ 𝑥𝑑 − 𝑥𝑓

𝑦𝑑 − 𝑦𝑓
𝜃𝑑 − 𝜃𝑓

⎤⎦
(6)

The tracking error dynamics of the formation can be
obtained by taking the time derivative of (6) and by using
equations (3) and (1) as follow [41]:

�̇� =

⎡⎣ cos 𝜃𝑓 0
sin 𝜃𝑓 0
0 1

⎤⎦[︂
𝑣𝑑
𝜔𝑑

]︂
+

⎡⎣ −1 𝑦𝑒
0 −𝑥𝑒

0 −1

⎤⎦ [︀
𝑢+∆

]︀
(7)

Where 𝑣𝑑 and 𝜔𝑑 are the linear and angular feedfor-
ward control input defined as:{︃

𝑣𝑑 = ±
√︀

�̇�2
𝑑 + �̇�2

𝑑

𝜔𝑑 = �̇�𝑑𝑦𝑑−�̇�𝑑�̈�𝑑

�̇�2
𝑑
+�̇�2

𝑑

(8)

Where (+) for the forward motion and (−) for back-
ward motion . By neglecting the input disturbance
∆ =

[︀
𝛿𝜈𝑓 𝛿𝜔𝑓

]︀𝑇 , then defining the control input
vector of the follower robot 𝑢 as the sum of the feedfor-
ward and feedback control action:

𝑢 = 𝑢𝑑 + 𝑢𝑐 (9)

Where 𝑢𝑑 =
[︀
𝑣𝑑 cos 𝜃𝑒 𝜔𝑑

]︀𝑇 is the feedforward

control vector and 𝑢𝑐 =
[︀
𝑢𝑐1 𝑢𝑐2

]︀𝑇 is the feedback
vector input.
Assuming ∆ = 0 and substituting (9) into equation (7),
gives the following tracking error dynamics :

�̇�𝑒 = 𝜔𝑑𝑦𝑒 − 𝑢𝑐1 + 𝑢𝑐2𝑦𝑒

�̇�𝑒 = 𝑣𝑑 sin 𝜃𝑒 − 𝜔𝑑𝑥𝑒 − 𝑢𝑐2𝑥𝑒

�̇�𝑒 = −𝑢𝑐2

(10)

Using (9) and linearizing (10) around (𝑥𝑒 = 𝑦𝑒 = 𝜃𝑒 =
0 and 𝑢𝑐1 = 𝑢𝑐2 = 0 ) results the following linear model
[42] :

�̇� =

⎡⎣ 0 𝜔𝑑 0
−𝜔𝑑 0 𝑣𝑑
0 0 0

⎤⎦ 𝑒+

⎡⎣ −1 0
0 0
0 −1

⎤⎦𝑢𝑐 (11)

Which can be written in a state-space form as:

�̇�(𝑡) = 𝐴𝑐(𝑡)𝑒(𝑡) +𝐵𝑐𝑢𝑐(𝑡) (12)

3. Discrete predictive sliding mode
control

3.1. Discrete sliding mode control design
The linearized model of the tracking error dynamics (12)
can be written in discrete form as :

𝑒(𝑘 + 1) = 𝐴(𝑘)𝑒(𝑘) +𝐵𝑢𝑐(𝑘) (13)

Where:
𝐴 = 𝐼 +𝐴𝑐(𝑡)𝑇𝑠, 𝐵 = 𝐵𝑐𝑇𝑠

And 𝐴 ∈ R𝑛×𝑛, 𝑛: number of states variable,
𝐵 ∈ R𝑛×𝑚 m : number of input variable and 𝑇𝑠 : is the
sampling time.

Consider the discrete-time system (13), then the fol-
lowing sliding mode function is defined:

𝑆(𝑘) = 𝐶𝑒(𝑘) (14)

Where 𝐶 ∈ R𝑚×𝑛 Is the gain matrix. For a discrete-time
system (13), a quasi-sliding mode reaching law is given
as in [43]:

𝑆(𝑘+1)−𝑆(𝑘) = −𝑞𝑠𝑇𝑠𝑆(𝑘)−𝜀𝑇𝑠 sign(𝑆(𝑘)) (15)

With : 𝜀 > 0, qs > 0 and 1 − qs𝑇𝑠 > 0. The control
law for the discrete-time system (13) can be derived by
comparing (15) with (16) :

28



Damani Allaeddine Yahia et al. CEUR Workshop Proceedings 26–34

𝑆(𝑘 + 1)− 𝑆(𝑘) = 𝐶𝑒(𝑘 + 1) + 𝐶𝑒(𝑘)

= 𝐶𝐴(𝑘)𝑒(𝑘) + 𝐶𝐵𝑢𝑐(𝑘)− 𝐶𝑒(𝑘)
(16)

Then, solving for 𝑢𝑐(𝑘) gives the following control input:

𝑢𝑐(𝑘) = −(𝐶𝐵)−1[𝐶𝐴(𝑘)𝑒(𝑘)− 𝐶𝑒(𝑘)

+ 𝑞𝑠𝑇𝑠𝑆(𝑘) + 𝜀𝑇𝑠 sign(𝑆(𝑘))]
(17)

3.2. Discrete predictive sliding mode
control design

The main idea of predictive sliding mode control is
to find a control law 𝑢𝑐(𝑘) that drive the predictive
sliding function vector 𝑆𝑝(𝑘 + 1) to a reference sliding
function vector 𝑆𝑟(𝑘 + 1), by minimizing a quadratic
cost function 𝐽𝐷𝑀𝑃𝐶 (𝑢𝑐(𝑘), 𝑁𝑝, 𝑁𝑐).

Consider the discrete sliding mode problem for the
system (13), taking the reaching law (15) as a reference
sliding surface results the following :

⎧⎨⎩
𝑆𝑟(𝑘 + p) = (1− qs𝑇𝑠)𝑆𝑟(𝑘 + 𝑝− 1)

− 𝜀𝑇𝑠 sign (𝑆𝑟(𝑘 + 𝑝− 1))
𝑆𝑟(𝑘) = 𝑆(𝑘)

(18)

The value of the sliding function vector (14) at time in-
stant 𝑝 can be obtained as:

𝑆(𝑘 + 𝑝) = 𝐶

𝑝−1∏︁
𝑗=1

𝐴(𝑘 + 𝑗)𝑒(𝑘) +

𝑝∑︁
𝑖=1

(︁
𝐶

𝑝−1∏︁
𝑗=1

𝐴(𝑘 + 𝑗)
)︁

×𝐵𝑈𝑐(𝑘 + 𝑖− 1) + 𝐶 𝐵 𝑈𝑐(𝑘 + 𝑝− 1)
By defining the predictive sliding function 𝑆𝑝 as fol-

low:

𝑆𝑝(𝑘 + 1) = [𝑆(𝑘 + 1), 𝑆(𝑘 + 2), . . . , 𝑆 (𝑘 +𝑁𝑝)]
𝑇

(19)
Where 𝑁𝑝 is the prediction horizon, then 𝑆𝑝(𝑘 + 1) can
be described as:

𝑆𝑝(𝑘 + 1) = 𝐹 (𝑘)𝑒(𝑘) +𝐻(𝑘)𝑈𝑐(𝑘) (20)

Where:
𝐹 (𝑘) = [𝐶 𝐴(𝑘), 𝐶 𝐴(𝑘 + 1)𝐴(𝑘), . . . , 𝐶 �̃�(𝑘, 0)]𝑇

𝐻(𝑘) =

⎡⎢⎢⎢⎢⎣
𝐶𝐵 0 · · · 0

𝐶𝐴(𝑘 + 1)𝐵 𝐶𝐵 · · ·
...

...
...

. . .
...

𝐶�̃�(𝑘, 1) 𝐶�̃�(𝑘, 2)𝐵(𝑘 + 1) · · · 𝐶𝐵

⎤⎥⎥⎥⎥⎦
And:

𝐶�̃�(𝑘, i) = 𝐶

𝑝−1∏︁
𝑗=i

𝐴(𝑘 + 𝑗)

𝑈𝑐(𝑘) = [𝑢𝑐(𝑘), 𝑢𝑐(𝑘 + 1), . . . , 𝑢𝑐(𝑘 + 𝑝)]𝑇

Then, we introduce the following cost function:

𝐽𝐷𝑃𝑆𝑀 =

𝑁𝑝∑︁
𝑗=1

𝑞𝑗 (𝑆𝑝(𝑘 + 1)− 𝑆𝑟(𝑘 + 𝑗))2

+

𝑁𝑐∑︁
𝑖=1

𝑟𝑖 (𝑈𝑐(𝑘)− 𝑈𝑒𝑞(𝑘))
2

(21)

Where 𝑈𝑒𝑞(𝑘) is the discrete sliding mode equivalent
control given by:

𝑈𝑒𝑞(𝑘) = (𝐶𝐵)−1[𝐶𝐴(𝑘)𝑒(𝑘)] (22)

The cost function in (21) can be described in quadratic
form as:

𝐽𝐷𝑃𝑆𝑀 (𝑈𝑐(𝑘), 𝑁𝑝, 𝑁𝑐) = ‖(𝑆𝑝(𝑘 + 1)− 𝑆𝑟(𝑘 + 1))‖2𝑄
+ ‖(𝑈𝑐(𝑘)− 𝑈𝑒𝑞(𝑘))‖2𝑅

(23)
Hence, the optimal control law input 𝑈𝑐(𝑘) can be ob-
tained by 𝑑𝐽𝐷𝑃𝑆𝑀

𝑑𝑈𝑐
= 0 as:

𝑈𝑐(𝑘) = −
(︁
𝐻𝑇𝑄𝐻 +𝑅

)︁−1 [︁
𝐻𝑇 (𝐹𝑒(𝑘) −𝑆𝑟(𝑘 + 1))−𝑅𝑈𝑒𝑞]

(24)
Where 𝑄 and 𝑅 are weighting matrices given as:

𝑄 =

⎡⎢⎢⎢⎣
𝑞1 0 . . . 0
0 𝑞2 . . . 0
...

...
. . .

...
0 0 . . . 𝑞𝑁𝑝

⎤⎥⎥⎥⎦

𝑅 =

⎡⎢⎢⎢⎣
𝑟1 0 . . . 0
0 𝑟2 . . . 0
...

...
. . .

...
0 0 . . . 𝑟𝑁𝑐

⎤⎥⎥⎥⎦
4. Simulation results
In this section, Two simulation examples are presented,
a leader-follower formation control of two nonolonomic
wheeled mobile robots is considered, where the first
robot is assigned as a leader and the second robot is
acting as follower.

The control parameters for the DSM and PDSM meth-
ods were determined by trial and error as follow : 𝑞𝑠 =
diag[3, 0, 0, 6], 𝜀 = 0.001 × 𝐼2×2, 𝑁𝑝 = 4, 𝑁𝑐 =
3, 𝑅 = 10−3 × 𝐼2×2, 𝑄 = diag[5, 0, 0, 5] and the gain
matrix 𝐶 is chosen as follow:

𝐶 =

[︂
1.0 1.4 0
0 2.4 1.0

]︂
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{︂
𝑥𝑟 = 1.5 sin(2𝜋𝑡/50)
𝑦𝑟 = 0.5 sin(4𝜋𝑡/50)

(25)

For the PDSM control, the limits of the velocities com-
mands of the follower robot are given as follow:{︂

𝜈𝑓,𝑚𝑎𝑥 = −𝜈𝑓,𝑚𝑖𝑛 = 0.4𝑚/𝑠
𝜔𝑓,𝑚𝑎𝑥 = −𝜔𝑓,𝑚𝑖𝑛 = 1.8𝑅𝑎𝑑/𝑠

(26)

While the kinematic input disturbances defined in (3) is
selected as follow:

∆ =

[︂
𝛿𝜈
𝛿𝜔

]︂
=

[︂
.01𝑠𝑖𝑛(𝑡)
.01𝑐𝑜𝑠(𝑡)

]︂
(27)

4.1. Formation control using the DSM
control

In this simulation example, the discrete predictive
sliding mode controller (24) is used to control the
formation, the leader robot is assumed to be moving
in a 8-shape trajectory produced by (25). The required
separation distance is chosen as 𝐿𝑑 = 0.15 m and
the bearing angle is selected as 𝜑𝑑 = 3𝜋/2, while the
initial robots posture are given as: 𝑞𝑙 = [0 0 𝜋/4]𝑇 and
𝑞𝑓 = [0.25 1.5 − 𝜋/4]𝑇 .

The real-time trajectories for both robots are shown
in Figure 3 . The follower robot tracking errors and its
velocities commands are shown in Figure 4 and Figure 5,
respectively.

Figure 3: Two robot leader follower formation, based on the
discrete predictive sliding mode DPSM control.

4.2. Comparison between DSM and DPSM
control methods

This section presents a comparison between the discrete
sliding mode DSM control in (17) and the discrete pre-
dictive sliding mode DPSM control in (24). In this ex-
ample, the leader robot is following a circular trajec-
tory given by equation (28) with a constant angular

Figure 4: Formation tracking error for the follower using the
discrete predictive sliding mode DPSM control controller.

Figure 5: Control inputs of the follower robot controlled by
the discrete predictive sliding mode DPSM method.

velocity 𝜔𝑙 = 1 Rad/s and a constant linear velocity
𝜈𝑙 = 1 m/s. The initial follower robot position is se-
lected as 𝑞𝑓 = [1.2 − 1.1 𝜋/4]𝑇 and the initial leader
posture is 𝑞𝑙 = [0 0 𝜋/2]𝑇 , while the required orienta-
tion angle and distance are chosen as 𝐿𝑑 = 1 m and
𝜑𝑑 = 4𝜋/3 Rad.{︂

𝑥𝑟 = −1 + cos(2𝜋𝑡/50)
𝑦𝑟 = sin(2𝜋𝑡/50)

(28)

Figure 6, shows the formation trajectories based on
both DSM and DPSM control schemes. While Figure
7 depict a comparison between the formation tracking
errors, and the control inputs of the follower robot using
the suggested control techniques are illustrated in Figure
8

To compare the formation tracking performances,
five error indexes are employed. Namely, mean square
error 𝑀𝑆𝐸 = 1

𝑇

∑︀𝑇
1 𝐸𝑓 (𝑡)

2, integral square er-
ror 𝐼𝑆𝐸 =

∫︀ 𝑇

0
𝐸𝑓 (𝑡)

2𝑑𝑡, integral time square error
𝐼𝑇𝑆𝐸 =

∫︀ 𝑇

0
𝑡𝐸𝑓 (𝑡)

2𝑑𝑡, integral time absolute error
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(a)

(b)

Figure 6: Comparison between the formation trajectories, (a)
using the discrete sliding mode DSM controller, (b) based on
the discrete predictive sliding mode PDSM controller.

𝐼𝑇𝐴𝐸 =
∫︀ 𝑇

0
𝑡|𝐸𝑓 (𝑡)|𝑑𝑡, and integral absolute error

𝐼𝐴𝐸 =
∫︀ 𝑇

0
|𝐸𝑓 (𝑡)|𝑑𝑡. Where 𝐸𝑓 (𝑡) is given in (29) and

𝑇 is the time of simulation.

𝐸𝑓 (𝑡) = 𝑥𝑒(𝑡)
2 + 𝑦𝑒(𝑡)

2 + 𝜃𝑒(𝑡)
2 (29)

The obtained results of the comparison between the
formation tracking performances are listed in Table 1.

In the first example, the simulation results of the
leader-follower formation in an 8-shape trajectory is
successfully performed. As shown in Figure 3, the
follower robot effectively follows the leader, maintaining
the required distance and keeping the desired heading
angle. The tracking errors of the follower robot steadily
decreases until it reaches zero in the presence of the
input disturbances, as seen in Figure 4. Additionally,
Figure 5 illustrate that the robot velocities adhere to the
imposed constraints without any chattering.

(a)

(b)

Figure 7: Comparison between the tracking errors of the
follower robot, (a) using the discrete sliding mode DSM con-
troller, (b) based on the discrete predictive sliding mode PDSM
controller.

The comparison between the formation trajectories in
Figure 6 shows that the formation problem is successfully
solved based on both proposed control strategies, where
the tracking errors gradually reach the origin over time
as depicted in Figure 7. However, from the control laws
of the follower robots illustrated in Figure 8, it can be
noted that the DPSM control scheme can generate a
chattering free control signals that respect the physical
input limits of the robot. Moreover, the analysis of
the tracking performances in Table 1 show that DPSM
control technique has a better formation tracking
accuracy when compared to the DSM control strategy.

To summarize, the above simulation outcomes indi-
cate that the proposed predictive sliding mode DPSM
controller can perform an accurate formation tracking
with a practical and chattering free control inputs.
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(a)

(b)

Figure 8: Comparison between the velocities signals of the
follower robots, (a) using the discrete sliding mode DSM con-
troller, (b) based on the discrete predictive sliding mode PDSM
controller.

Table 1
Comparison between the formation tracking performances .

MSE ISE ITSE IAE ITAE
DSM 0.0155 0.1211 0.0279 0.2548 0.0667
PDSM 0.0061 0.0463 0.0068 0.1528 0.0362

5. Conclusion
The leader-follower-based formation control for wheeled
nonholonomic mobile robots has been addressed in this
paper. Initially, the trajectory following problem was
expanded into a formation control problem. Then, by
the utilization of linear formation tracking error dynam-
ics, we have designed a discrete sliding mode controller
to guide the follower robots in maintaining their forma-
tion relative to the leader and achieving the desired spa-
tial geometric configuration. Furthermore, to optimize

control efforts and mitigate the challenging chattering
phenomenon, we integrated a discrete model predictive
control DMPC with the DSM approach. The suggested
method efficacy was demonstrated through simulation
results and comparative studies.

6. Declaration on Generative AI
During the preparation of this work, the authors used
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needed and take full responsibility for the publication’s
content.
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