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Abstract
Raman spectroscopy is a key tool for material analysis, but its accuracy is often hindered by noise and baseline distortions.
This paper presents a robust denoising method using a parallel deep residual neural network architecture based on DnCNN,
designed for one-dimensional spectral data. The model learns noise patterns through multiple convolutional branches,
enabling effective denoising without assumptions about the signal origin. We evaluate several pre-processing techniques,
with minimum-shift normalization proving most effective in preserving spectral features. Trained on datasets with varying
noise levels, the network achieves high peak detection accuracy and low error rates, outperforming traditional and recent
methods. This approach enhances the reliability of Raman analysis and demonstrates the potential of AI-driven models in
spectroscopy and time-series signal processing.
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1. Introduction
Denoising methods are fundamental across numerous
scientific disciplines. Their purpose is to eliminate noise
introduced during the acquisition of a signal, image,
or other data. In this project, the focus is on one-
dimensional signals obtained from Raman spectroscopy,
a non-destructive material analysis technique based on
the scattering of monochromatic electromagnetic radia-
tion by a sample.

Raman spectroscopy is crucial for studying materials
in solid, liquid, or gaseous states, particularly carbon-
based materials such as graphite and graphene. It also
finds applications in geological research, industrial pro-
cess control, planetary exploration, internal security, and
even medical diagnostics when combined with artificial
intelligence to analyze cancer cells and melanomas.

The key strength of Raman spectroscopy lies in its abil-
ity to detect subtle molecular vibrations that are specific
to the chemical bonds within the sample. This makes
it extremely valuable for both qualitative and quanti-
tative analyses. However, the full potential of Raman
spectroscopy can only be realized if the acquired signals
are clear, stable, and free of noise. Unfortunately, this
is rarely the case in practical applications. Raman sig-
nals are often weak, and their acquisition is sensitive to
many external factors such as temperature, laser fluctu-
ations, photobleaching, sample heterogeneity, or even
instrument drift.

Obtaining a clean, accurate signal is critical for reliable
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material characterization. However, Raman signals often
suffer from noise that obscures peaks and non-uniform
baselines, complicating interpretation. Among the vari-
ous types of signal corruption [1], baseline distortion and
high peak noise are the most problematic [2], as the anal-
ysis heavily relies on peak characteristics [3]. These peak
characteristics, such as position, intensity, width, and
shape, are used to identify substances and measure their
concentrations. When noise is too strong, even expert
analysts may misinterpret spectra, leading to incorrect
conclusions.

To address these issues, the scientific community has
developed numerous denoising techniques. Traditional
signal processing methods such as Empirical Mode De-
composition (EMD) [4] and wavelet analysis have been
widely applied. EMD is attractive because it does not
require any prior knowledge of the signal or noise struc-
ture, but it is often unstable and sensitive to noise itself.
Wavelet transforms, on the other hand, allow localized
analysis in both time and frequency domains, but they
require careful selection of wavelet families and thresh-
olds.

Wiener filtering is another classical method that per-
forms well under certain assumptions about signal sta-
tionarity and noise properties. It can produce satisfactory
results, especially in laboratory settings, but its perfor-
mance decreases significantly in more dynamic or uncon-
trolled environments [5, 6, 7, 8, 9, 10].

In recent years, attention has turned toward machine
learning and, in particular, deep learning, for denoising
tasks. These approaches do not rely on handcrafted rules
but instead learn directly from examples. This ability to
capture complex, non-linear patterns from data has led to
performance levels that surpass those of classical meth-
ods in many domains. In particular, convolutional neural
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networks (CNNs) have proven effective for processing
structured data like time series and spectra.

Recent contributions in this area have applied deep
residual learning to denoising problems with encourag-
ing results. Residual networks learn to estimate the noise
component instead of reconstructing the entire signal,
simplifying the learning task and improving convergence.
One of the most successful architectures in this field is the
DnCNN model, originally developed for image denois-
ing. Adaptations of this architecture to one-dimensional
signals have been proposed, including in biomedical and
physical measurement contexts [11, 12, 13, 14, 15, 16].

In this project, a discriminative learning model based
on the DnCNN structure is implemented. It uses parallel
convolutional branches to better learn noise characteris-
tics without assuming any specific origin or structure of
the signal. This makes the model suitable for a wide range
of applications, including Raman spectroscopy. Special
emphasis is placed on ensuring that the model remains
lightweight, which is important for future integration
into embedded systems or portable spectrometers used
in field operations.

By focusing on generalization, efficiency, and minimal
assumptions, this study aims to contribute to the growing
field of AI-assisted spectroscopy, where deep learning is
rapidly becoming a standard tool for signal interpretation
and preprocessing.

2. Related Work
Earlier attempts to denoise Raman spectra primarily re-
lied on wavelet-based methods [17, 18], but these were
quickly surpassed by techniques better suited to non-
linear, non-stationary signals, such as EMD [19]. Al-
though EMD decomposes signals into intrinsic mode
functions (IMFs) without prior signal characterization,
its performance is limited by requirements such as sym-
metry in the upper and lower signal envelopes, which
are not always met in Raman data.

Raman spectroscopy, due to its sensitivity and speci-
ficity, has long been used as a key method for material
identification. However, the presence of noise and base-
line fluctuations strongly limits its reliability. The scien-
tific community has proposed many denoising techniques
to overcome this challenge, starting from classical sig-
nal processing methods and gradually moving towards
machine learning and deep learning approaches.

One of the most traditional approaches to Raman sig-
nal denoising has been based on wavelet transforms.
These methods decompose the signal into multiple fre-
quency components, allowing selective suppression of
noise at various scales. For instance, Kumar et al. [17]
and Chen et al. [18] used discrete wavelet transforms to
smooth Raman signals while preserving spectral peaks.

However, these methods depend on the choice of the
wavelet basis and thresholding strategy, which often
needs manual tuning.

Other researchers adopted Empirical Mode Decom-
position (EMD), which is a fully data-driven technique
suitable for non-linear and non-stationary data [19]. The
main advantage of EMD is its capacity to adaptively sepa-
rate noise from signal through decomposition into Intrin-
sic Mode Functions (IMFs). Nevertheless, its results can
suffer from mode mixing, and the quality of denoising is
not always guaranteed, especially in cases where noise
is not additive or where the signal does not meet the
envelope symmetry conditions.

Wiener filtering has also been considered an effective
solution for Raman signal denoising. For example, Bai et
al. [20] applied a modified Wiener filter to improve Ra-
man signal quality in conditions with low signal-to-noise
ratio. This technique does not require prior experimental
data, which is an advantage, but its performance degrades
in the presence of non-Gaussian noise, which is common
in real-world spectroscopic data.

In the last few years, the research community has
shifted toward deep learning techniques due to their abil-
ity to automatically learn representations from raw data.
The most basic models used convolutional neural net-
works (CNNs) trained on labeled spectral datasets. For
example, Pan et al. [21] proposed a dual-path CNN that
processes the signal in parallel branches, each specialized
in detecting different noise features. This architecture
improves robustness against baseline shifts and peak dis-
tortion, but it increases the computational cost.

More advanced models such as UHRED (Unsupervised
Hyperspectral Residual Encoder-Decoder) introduced by
Abdolghader et al. [22] combined denoising and seg-
mentation in an unsupervised pipeline, demonstrating
promising results for hyperspectral data. However, these
models are often tailored for imaging applications and
may not directly generalize to one-dimensional Raman
spectra without significant adaptation.

A separate line of work has explored residual learning
for signal restoration. One of the most well-known archi-
tectures is the DnCNN [23], originally developed for im-
age denoising but recently adapted for one-dimensional
signals as well [24]. The residual learning principle al-
lows the model to focus on learning only the noise com-
ponent, which simplifies training and improves conver-
gence. This approach has been particularly successful
in biomedical signals and time-series applications where
precise peak localization is required.

In addition, some authors have explored hybrid meth-
ods, combining classical signal processing techniques
with deep learning to balance interpretability and perfor-
mance. For example, Zhou et al. [25] designed a model
that applies adaptive baseline correction before feeding
the signal into a neural network. These hybrid systems
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often achieve good results, but they can be sensitive to
errors in the preprocessing stage.

To summarize, although many strategies have been
proposed, there is still no universally accepted solution
for Raman signal denoising. Classical methods often fail
to generalize across different noise types and signal con-
ditions. Deep learning models show great promise but
sometimes require large labeled datasets and careful tun-
ing. In this context, our work proposes a lightweight
parallel residual CNN, trained on synthetically noised
spectra, capable of generalizing across varying noise pat-
terns and maintaining high peak fidelity even in distorted
baselines. This contributes to improving the practical
usability of Raman spectroscopy in both research and
applied contexts.

3. Dataset and Pre-Processing
The performance of any deep learning model for signal
denoising strongly depends on the quality and diversity
of the training data. In this project, we worked with four
synthetic datasets, each composed of one-dimensional
Raman-like spectra. Each sample has 801 time steps,
corresponding to a realistic spectral resolution often used
in practical Raman analysis. The datasets were designed
to cover a wide range of noise conditions and allow the
model to learn robust denoising strategies that generalize
well across various scenarios.

The first three datasets were created to represent dis-
tinct noise environments: low-noise, high-noise, and
mixed-noise settings. Each of these contains 5000 ex-
amples. The low-noise dataset includes signals with mi-
nor Gaussian noise, mimicking laboratory conditions
where samples are well-prepared, and the spectrome-
ter operates in ideal calibration. The high-noise dataset
simulates challenging measurement conditions, such as
field experiments or low-light environments, where the
signal-to-noise ratio is heavily degraded. The mixed-
noise dataset contains a random combination of both
low- and high-noise patterns, and helps the model learn
noise characteristics in a more varied context.

In addition to these, a fourth and larger dataset was cre-
ated, containing 15000 samples with mixed noise levels.
This extended dataset was specifically used for training
and testing the final version of our deep learning model.
The larger sample size allows the network to generalize
better, while the mixed noise ensures that it learns to
handle diverse real-world signal conditions. Each signal
in the datasets is paired with a clean ground truth version,
allowing supervised training through direct comparison.

Pre-processing plays a crucial role in any machine
learning pipeline, especially when dealing with spectral
data. Different strategies were tested to prepare the data
before feeding it into the network. We experimented with

several normalization and baseline correction techniques,
including Z-score normalization, max scaling, baseline
subtraction using polynomial fitting, and wavelet-based
background removal. While some of these methods pro-
duced visually appealing results, they often introduced
small distortions in peak shapes or amplitudes, which
could negatively affect the learning process.

Among all tested methods, the most effective and ro-
bust was a simple transformation: shifting the minimum
value of each spectrum to zero. This method ensures that
the entire signal lies in the positive domain and removes
negative values, which are not expected in Raman inten-
sity data. More importantly, this approach preserves the
relative intensity of peaks, avoids rescaling artifacts, and
maintains the original structure of the noise. This makes
it easier for the neural network to distinguish noise from
real spectral features. For this reason, minimum-shift
normalization was selected as the default pre-processing
step for all experiments.

Finally, in order to make the data compatible with con-
volutional neural network layers, each input signal was
reshaped into a three-dimensional tensor with the shape
(samples, timesteps, 1). This format treats the
Raman signal as a one-dimensional image with a single
channel, allowing the model to apply 1D convolutions
and learn local noise patterns effectively. This reshap-
ing is a standard procedure when working with convo-
lutional architectures in time-series or spectral signal
processing tasks.

Figure 1: Signal normalization between 0 and 1

Three pre-processing methods were evaluated:

• Normalization: Scaling signals between 0 and 1
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Figure 2: Shift the noisy signal so that the minimum value is
zero

Figure 3: Application of airPLS algorithm on noisy signal

(Figure 1).
• Minimum Shift: Shifting each signal so its min-

imum value is zero (Figure 2), which preserves
the signal’s shape.

• airPLS Algorithm: Adaptive baseline correction
(Figure 3) [26, 27].

4. Model
The proposed denoising model is a parallel deep resid-
ual neural network architecture based on the DnCNN
framework, specifically adapted for one-dimensional Ra-
man spectral data. The core idea is to employ multiple
independent branches, each learning to capture distinct
noise patterns present in the input signal. This parallel
configuration improves the model’s robustness and gen-
eralization, especially across datasets with different noise
characteristics.

Each branch of the network processes the same input
signal in parallel, applying a series of 1D convolutional
layers with varying kernel sizes and dilation rates. This
allows each branch to extract features at different tem-
poral scales. The layers use LeakyReLU activation func-
tions to maintain gradient flow and allow for learning
non-linear transformations. Batch Normalization is in-
cluded as an optional component to stabilize and speed
up training, although experiments indicate that omitting
it can sometimes yield better performance in this context.

To encourage generalization and reduce overfitting, L2
regularization is applied to the convolutional layers, with
regularization strengths fine-tuned in the range of 1𝑒−5

to 1𝑒−6. Each branch outputs an intermediate estimate
of the noise, and these outputs are averaged to form a
combined noise prediction.

The final denoised signal is obtained by subtracting
this aggregated noise estimate from the original input.
This residual learning formulation focuses the model’s
capacity on learning the noise component rather than re-
constructing the full signal, which simplifies the learning
task and improves convergence.

The model is compiled using the Adam optimizer, cho-
sen for its efficiency and adaptability. The loss function
is the Residual Sum of Squares (RSS), which emphasizes
penalizing large errors in noise estimation. Additionally,
Mean Squared Error (MSE) and Mean Absolute Error
(MAE) are used as evaluation metrics during training and
validation.

The training process is supported by a suite of call-
backs, including:

• ReduceLROnPlateau: Dynamically reduces the
learning rate when performance plateaus.

• EarlyStopping: Prevents overfitting by halting
training when validation performance stops im-
proving.

• ModelCheckpoint: Saves the best-performing
model during training.

• TensorBoard: Provides real-time visualization
of training metrics.

Overall, this architecture is designed to be lightweight,
modular, and efficient, making it suitable not only for
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Table 1
Quantitative results of model trainings with pre-processing shift to zero

Type of Num. of Peak Peak not Peak Accuracy Accuracy RMSE MAPE
dataset real peak correctly predicted incorrectly peak peak

predicted predicted intensity intensity
(added) THR 10%-20% THR 15%-30%

Low Noise 3244 2754 490 89 83.51% 92.05% 1.15e-2 4.14
(84.90%) (15.10%)

Mixed Noise 3278 2775 503 100 78.99% 89.23% 1.32e-2 9.13
(84.66%) (15.34%)

High Noise 3222 2627 595 125 78.72% 90.67% 1.30e-2 17.82
(81.53%) (18.47%)

Mixed Noise 9219 7719 1500 1070 83.61% 92.54% 1.55e-2 4.72
(17 Aug) (83.72%) (16.27%)

Figure 4: Minimum of signal
to zero on sample 1

Raman spectroscopy but also for other one-dimensional
denoising tasks in time-series analysis.

5. Experiments and Results
The model was optimized through extensive testing. The
best-performing configuration includes depth settings
of [17, 12, 7, 3], corresponding filter counts of [96, 64,
32, 96], kernel sizes of [5, 15, 30, 7], dilation rates of 5,
no Batch Normalization, and L2 regularization between
1𝑒−5 and 1𝑒−6.

Among pre-processing strategies, shifting the mini-
mum to zero led to the best results, achieving excellent

Figure 5: Minimum of signal
to zero on sample 2

denoising without signal distortion (Figures 4 and 5).
Quantitative evaluations involved peak detection ac-

curacy and intensity prediction, as shown in Table 1.
Peak localization accuracy consistently exceeded 81%,
and peak intensity accuracy ranged from 78% to 92%
depending on noise level.

Comparative results with prior work [21] (Table 2)
demonstrate that our model achieves substantially lower
RMSE and MAPE values, outperforming state-of-the-art
methods even under high-noise conditions.
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Table 2
Quantitative results of papers [21]

Models RMSE MAPE

CNN 183.75 13.79
parallelCNNs 129.96 9.50
Empirical Bayes 422.59 27.07
Block James-Stein 489.30 27.57
False Discovery Rate 467.36 27.79
Minimax Estimation 512.98 28.15
Stein’s Unbiased Risk Estimate 416.64 34.80
Universal Threshold G 674.92 29.48

6. Conclusion
This paper proposes a parallel convolutional neural
network model for denoising highly variable one-
dimensional signals, such as those encountered in Raman
spectroscopy. Each network branch independently learns
noise characteristics, and the final model combines these
learnings for superior results. Pre-processing via mini-
mum shifting, which preserves signal integrity, further
enhances performance.

Experimental results demonstrate excellent qualitative
and quantitative denoising performance across datasets,
establishing the proposed method as a significant ad-
vancement over previous techniques.

7. Declaration on Generative AI
During the preparation of this work, the authors
used ChatGPT, Grammarly in order to: Grammar and
spelling check, Paraphrase and reword. After using this
tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the publication’s
content.

References
[1] S. Russo, S. Ahmed, I. E. Tibermacine, C. Napoli, En-

hancing eeg signal reconstruction in cross-domain
adaptation using cyclegan, in: Proceedings - 2024
International Conference on Telecommunications
and Intelligent Systems, ICTIS 2024, 2024. doi:10.
1109/ICTIS62692.2024.10894543.

[2] C. Randieri, V. F. Puglisi, Design of a software
defined radio using soc builder, in: CEUR Workshop
Proceedings, volume 3398, 2022, p. 73 – 77.

[3] S. Russo, F. Fiani, C. Napoli, Remote eye movement
desensitization and reprocessing treatment of long-
covid- and post-covid-related traumatic disorders:
An innovative approach, Brain Sciences 14 (2024).
doi:10.3390/brainsci14121212.

[4] L. Max, E. Andrew, D. Matt, B. Ben, Empirical mode
decomposition, https://www.clear.rice.edu/elec301/
Projects02/empiricalMode/index.html, 2018.

[5] F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli,
G. Pappalardo, E. Tramontana, A cascade neural
network architecture investigating surface plasmon
polaritons propagation for thin metals in openmp,
in: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol-
ume 8467 LNAI, 2014, p. 22 – 33. doi:10.1007/
978-3-319-07173-2_3.

[6] F. Bonanno, G. Capizzi, S. Coco, C. Napoli, A. Lau-
dani, G. L. Sciuto, Optimal thicknesses determina-
tion in a multilayer structure to improve the spp ef-
ficiency for photovoltaic devices by an hybrid fem -
cascade neural network based approach, in: 2014 In-
ternational Symposium on Power Electronics, Elec-
trical Drives, Automation and Motion, SPEEDAM
2014, 2014, p. 355 – 362. doi:10.1109/SPEEDAM.
2014.6872103.

[7] F. Bonanno, G. Capizzi, A. Gagliano, C. Napoli, Op-
timal management of various renewable energy
sources by a new forecasting method, in: SPEEDAM
2012 - 21st International Symposium on Power Elec-
tronics, Electrical Drives, Automation and Motion,
2012, p. 934 – 940. doi:10.1109/SPEEDAM.2012.
6264603.

[8] G. Capizzi, F. Bonanno, C. Napoli, A wavelet
based prediction of wind and solar energy for long-
term simulation of integrated generation systems,
2010, p. 586 – 592. doi:10.1109/SPEEDAM.2010.
5542259.

[9] F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli,
Wavelet recurrent neural network with semi-
parametric input data preprocessing for micro-wind
power forecasting in integrated generation systems,
in: 5th International Conference on Clean Electrical
Power: Renewable Energy Resources Impact, IC-
CEP 2015, 2015, p. 602 – 609. doi:10.1109/ICCEP.
2015.7177554.

[10] F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli,
G. Pappalardo, E. Tramontana, A novel cloud-
distributed toolbox for optimal energy dispatch
management from renewables in igss by using wrnn
predictors and gpu parallel solutions, in: 2014 In-
ternational Symposium on Power Electronics, Elec-
trical Drives, Automation and Motion, SPEEDAM
2014, 2014, p. 1077 – 1084. doi:10.1109/SPEEDAM.
2014.6872127.

[11] N. Brandizzi, A. Fanti, R. Gallotta, S. Russo, L. Ioc-
chi, D. Nardi, C. Napoli, Unsupervised pose es-
timation by means of an innovative vision trans-
former, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial In-

40

http://dx.doi.org/10.1109/ICTIS62692.2024.10894543
http://dx.doi.org/10.1109/ICTIS62692.2024.10894543
http://dx.doi.org/10.3390/brainsci14121212
https://www.clear.rice.edu/elec301/Projects02/empiricalMode/index.html
https://www.clear.rice.edu/elec301/Projects02/empiricalMode/index.html
http://dx.doi.org/10.1007/978-3-319-07173-2_3
http://dx.doi.org/10.1007/978-3-319-07173-2_3
http://dx.doi.org/10.1109/SPEEDAM.2014.6872103
http://dx.doi.org/10.1109/SPEEDAM.2014.6872103
http://dx.doi.org/10.1109/SPEEDAM.2012.6264603
http://dx.doi.org/10.1109/SPEEDAM.2012.6264603
http://dx.doi.org/10.1109/SPEEDAM.2010.5542259
http://dx.doi.org/10.1109/SPEEDAM.2010.5542259
http://dx.doi.org/10.1109/ICCEP.2015.7177554
http://dx.doi.org/10.1109/ICCEP.2015.7177554
http://dx.doi.org/10.1109/SPEEDAM.2014.6872127
http://dx.doi.org/10.1109/SPEEDAM.2014.6872127


Matteo Matera et al. CEUR Workshop Proceedings 35–41

telligence and Lecture Notes in Bioinformatics), vol-
ume 13589 LNAI, 2023, p. 3 – 20. doi:10.1007/
978-3-031-23480-4_1.

[12] G. Zimatore, M. Cavagnaro, Recurrence anal-
ysis of otoacoustic emissions, Understanding
Complex Systems (2015) 253 – 278. doi:10.1007/
978-3-319-07155-8_8.

[13] M. C. Gallotta, V. Bonavolontà, G. Zimatore, S. Iaz-
zoni, L. Guidetti, C. Baldari, Effects of open (racket)
and closed (running) skill sports practice on chil-
dren’s attentional performance, Open Sports Sci-
ences Journal 13 (2020) 105 – 113. doi:10.2174/
1875399X02013010105.

[14] C. Randieri, A. Pollina, A. Puglisi, C. Napoli, Smart
glove: A cost-effective and intuitive interface for
advanced drone control, Drones 9 (2025). doi:10.
3390/drones9020109.

[15] M. C. Gallotta, G. Zimatore, L. Falcioni, S. Migli-
accio, M. Lanza, F. Schena, V. Biino, M. Giuriato,
M. Bellafiore, A. Palma, et al., Influence of geograph-
ical area and living setting on children’s weight
status, motor coordination, and physical activity,
Frontiers in pediatrics 9 (2022) 794284.

[16] N. Boutarfaia, S. Russo, A. Tibermacine, I. E. Tiber-
macine, Deep learning for eeg-based motor imagery
classification: Towards enhanced human-machine
interaction and assistive robotics, in: CEUR Work-
shop Proceedings, volume 3695, 2023, p. 68 – 74.

[17] N. Kumar, A. Siddiqi, K. Alam, Raman spec-
tral data de-noising based on wavelet analysis,
https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.662.4653&rep=rep1&type=pdf, 2014.

[18] C. Chen, F. Peng, Q. Cheng, D. Xu, Raman spectral
data denoising based on wavelet analysis, 2009.

[19] F. León-Bejarano, M. Ramírez-Elías, M. O. Mendez,
G. Dorantes-Méndez, M. d. C. Rodríguez-Aranda,
A. Alba, Denoising of raman spectroscopy for bio-
logical samples based on empirical mode decompo-
sition, https://www.worldscientific.com/doi/abs/10.
1142/S0129183117501169, 2017.

[20] C. Bai, H. Liu, Denoising of low-snr raman spectra
using wiener filter with improved noise estimation,
Applied Spectroscopy 74 (2020) 317–324.

[21] L. Pan, P. Pipitsunthonsan, P. Zhang,
C. Daengngam, A. Booranawong,
M. Chongcheawchamnan, Noise reduction
technique for raman spectrum using deep learning
network, https://ieeexplore.ieee.org/abstract/
document/9325766, 2020.

[22] P. Abdolghader, A. Ridsdale, T. Grammatikopou-
los, G. Resch, F. Légaré, A. Stolow, A. F. Pe-
goraro, I. Tamblyn, Unsupervised hyperspectral
stimulated raman microscopy image enhance-
ment: denoising and segmentation via one-shot
deep learning, https://opg.optica.org/oe/fulltext.

cfm?uri=oe-29-21-34205&id=460202, 2021.
[23] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang,

Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising, IEEE Transactions
on Image Processing 26 (2017) 3142–3155.

[24] F. Brandizzi, C. Napoli, G. Russo, Residual learn-
ing for time-series denoising using 1d dncnn: Ap-
plications in bio-signal processing, Computers in
Biology and Medicine 157 (2023) 106810.

[25] L. Zhou, Z. Zhang, Hybrid baseline correction and
deep learning for robust raman spectrum denoising,
Journal of Raman Spectroscopy 52 (2021) 45–55.

[26] Z.-M. Zhang, S. Chen, Y.-Z. Liang, Baseline correc-
tion using adaptive iteratively reweighted penal-
ized least squares, https://pubs.rsc.org/en/content/
articlelanding/2010/an/b922045c/unauth, 2010.

[27] S. C. Renato Lombardo, Zhi-Min Zhang, Y.-Z.
Liang, adaptive iteratively reweighted penalized
least squares (airpls), https://github.com/zmzhang/
airPLS, 2016. [Online; accessed November-2021].

41

http://dx.doi.org/10.1007/978-3-031-23480-4_1
http://dx.doi.org/10.1007/978-3-031-23480-4_1
http://dx.doi.org/10.1007/978-3-319-07155-8_8
http://dx.doi.org/10.1007/978-3-319-07155-8_8
http://dx.doi.org/10.2174/1875399X02013010105
http://dx.doi.org/10.2174/1875399X02013010105
http://dx.doi.org/10.3390/drones9020109
http://dx.doi.org/10.3390/drones9020109
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.4653&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.4653&rep=rep1&type=pdf
https://www.worldscientific.com/doi/abs/10.1142/S0129183117501169
https://www.worldscientific.com/doi/abs/10.1142/S0129183117501169
https://ieeexplore.ieee.org/abstract/document/9325766
https://ieeexplore.ieee.org/abstract/document/9325766
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-21-34205&id=460202
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-21-34205&id=460202
https://pubs.rsc.org/en/content/articlelanding/2010/an/b922045c/unauth
https://pubs.rsc.org/en/content/articlelanding/2010/an/b922045c/unauth
https://github.com/zmzhang/airPLS
https://github.com/zmzhang/airPLS

	1 Introduction
	2 Related Work
	3 Dataset and Pre-Processing
	4 Model
	5 Experiments and Results
	6 Conclusion
	7 Declaration on Generative AI

