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Abstract
Hand tracking has become a crucial topic in recent years due to the advancement in various applications of human-computer
interaction (HCI). The primary objective of this research is to investigate the capabilities and limitations of the Leap Motion
Controller in real-time hand tracking scenarios. We begin by providing an overview of the Leap Motion technology, its
hardware architecture, and the software stack used for hand tracking. We delve into the underlying algorithms and methods
employed by the controller to analyze and interpret hand and finger movements. Then, we propose several scenes to interact
with it real-hand through leap motion camera. Our experimental results demonstrate that our approach, relying on tracking
data from the Leap Motion Controller, accurately identifies hand gestures in the absence of any occlusion.
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1. Introduction
Within the realm of gesture recognition systems, tracking
stands out as a pivotal component. Over the course of the
past year, there has been a noteworthy surge in the devel-
opment of various techniques and methodologies aimed
at enhancing the overall performance of gesture recogni-
tion systems. These efforts have predominantly focused
on four key aspects: segmentation, tracking, modeling,
and recognition’. Tracking is an essential element in the
sequence as it involves monitoring and following the
movements of the segmented gestures over time. Achiev-
ing robust and accurate tracking is vital to ensure the
continuity and coherence of gesture recognition, espe-
cially in dynamic environments.

The progress in the development of cutting-edge ges-
ture recognition sensors has found common use in the
control of robotic hands. Robotics has increasingly be-
come a substitute for human labor across a broad spec-
trum of fields[1]. One noteworthy example is the Leap
Motion Controller, which generates a virtual screen for
visualizing hand gestures and subsequently transmits
this information to a robotic hand through wireless de-
vice support[2, 3]. Beyond gesture recognition, such
technology also finds applications in computer vision
tasks[4], robotic control[5, 6, 7, 8], and EEG-based BCI
systems[9, 10, 11]. These systems leverage data from
MEMS accelerometers, EMG sensors, gyroscopes, flex
sensors, and pressure sensors[12, 13], and other sen-
sorial devices [14, 15] enabling the accurate detection
and interpretation of human hand movements to facili-
tate seamless interaction between users and robotic sys-
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tems. The Leap Motion Controller (LMC) translates
human intentions into robotic interactions, excelling
at discerning human gestures through hand and finger
movements[16, 17, 18]. LMC supports diverse virtual
tasks, such as engaging in virtual games, making selec-
tions, exercising virtual control, and running applica-
tions in virtual environments[19, 20]. Its precision in
tracking intricate hand and finger movements within
three-dimensional space enhances user engagement and
immersion within augmented reality (AR) environments.
By enabling lifelike representations of user hands in AR,
Leap Motion technology facilitates intuitive interaction
with virtual elements. In this paper, we focus on real-time
hand tracking using a Leap Motion Controller. We used
the Leap Motion Unity Module, a software development
kit (SDK) provided by Leap Motion, to integrate hand
tracking and gesture recognition into Unity-based ap-
plications. We created multiple virtual scenes to enable
interactive and immersive real-time experiences. The
paper’s outline is as follows: Section 2 reviews recent
research on hand tracking using Leap Motion Controller
and its intersection with computer vision, robotic con-
trol, and EEG-based BCI systems. Section 3 describes our
proposed methodology for hand tracking across different
scenarios. Section 4 outlines the experimental setup and
presents results. Section 5 concludes the paper.

2. Related Work
Hand tracking using the Leap Motion Controller has been
extensively researched in virtual reality, augmented re-
ality, human-computer interaction, and adjacent fields.
For example, Shao et al.[21] leveraged Leap Motion’s
advanced hand-tracking and gesture-recognition capabil-
ities to enhance interactions within virtual environments.
Their study involved configuring hardware, developing
interfaces, implementing gesture recognition algorithms,

64

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:roumaissa.bekiri@univ-biskra.dz
mailto:mc.babahenini@univ-biskra.dz
https://creativecommons.org/licenses/by/4.0


Roumaissa Bekiri et al. CEUR Workshop Proceedings 64–69

Figure 1: Leap Motion internal structure.

and evaluating system performance through user test-
ing. Satheeshkumar et al.[22] introduced a touchless
communication system using Leap Motion, combining
virtual environments with real-time settings by interfac-
ing the device with a robotic arm through a microcon-
troller. Similarly, Sharma et al.[23] demonstrated Leap
Motion’s ability to track hand movements using infrared
LEDs and cameras, offering valuable support for tasks
like 3D modeling and animation. In another study, Marin
et al.[24] focused on static gesture recognition using Leap
Motion and Kinect devices. They designed custom fea-
tures based on fingertip positions and orientations and
utilized a multi-class SVM classifier for gesture classifi-
cation. Depth features from Kinect were combined with
Leap Motion data to improve recognition accuracy. How-
ever, their work excluded dynamic gestures. Cooper et
al.[25] employed a color-coded glove for hand tracking,
which, while effective, reduced user experience due to the
need for wearing gloves. In addition to Leap Motion appli-
cations, recent advancements in computer vision, such as
convolutional neural networks (CNNs)[26, 27, 28], have
significantly contributed to improving gesture recogni-
tion systems. These techniques are widely adopted in
robotic control[29, 30], enabling precise manipulation
tasks. Furthermore, EEG-based BCIs[31, 32, 33] have
opened new avenues for integrating brain activity signals
with gesture control systems, enhancing the interaction
between humans and machines. In this paper, we focus
on using the Leap Motion Controller for real-time hand
tracking and position monitoring, utilizing its SDK to
explore applications in dynamic scenarios.

3. System Overview
In our paper, we propose a method using a Leap motion
controller to detect and track the human hand using a
Software Development Kit(SDK) enabled by Unity 3D.
The following are the main steps of our proposed ap-
proach:

• A. Real Hand: In this initial step, the camera of
the Leap Motion Controller(LMC) captures real
hand and finger gestures. These captured ges-
tures are then transmitted to a laptop or PC for
processing and analysis.

• B. Virtual Hand: Subsequently, on the laptop
or PC, a 3D image, representing a virtual hand,
is generated. This virtual hand is accompanied
by relevant information and data associated with
its movements and positions. This visual and in-
formational representation of the virtual hand is
then wirelessly transmitted to another compo-
nent or device for further use.

• C. Interaction with the virtual hand: In Unity
3D, we create three scenes with virtual objects,
the hand can grasp and move in different posi-
tions.

3.1. Hardware
The Leap Motion controller, when used in conjunction
with the current Application Programmer Interface (API),
provides positional data in Cartesian space for predefined
objects such as fingertips and pen tips. These positional
values are given relative to the central point of the Leap
Motion controller, which is situated at the position of
the second infrared emitter. As depicted in Figure 2,
the controller comprises three infrared emitters and two
infrared cameras, classifying it as an optical tracking
system based on Stereo Vision. Due to the absence of a
point cloud for the scene and the presence of predefined
detectable objects, traditional calibration methods are
not suitable for Leap Motion. Nevertheless, it is essential
to establish a precise reference system for evaluating the
accuracy and consistency of the Leap Motion controller.
The information is subsequently transmitted to the Leap
Motion tracking software via a USB connection. This data
materializes as a grayscale representation resembling
a stereo image of the nearby infrared light spectrum,
captured separately by the left and right cameras.

3.2. Software
To utilize the Leap Motion Controller for hand tracking,
we need specialized software. The Leap Motion Con-
troller’s Software Development Kit (SDK) is available in
various programming languages, including C++, Java,
JavaScript, Objective C, C#, and Python. It offers compat-
ibility with different operating systems such as Windows,
Linux, and macOS. The benefit of this versatility is that it
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enables the development of custom software applications
capable of tracking human hand movements, empow-
ering developers to create their own unique software
solutions tailored to their specific needs.

Following the transmission of photo data to your com-
puter, the real computational heavy lifting takes place.
Contrary to common misconceptions, the Leap Motion
Controller does not directly generate a depth image;
rather, it employs sophisticated algorithms to process
the raw sensor data.

3.3. Image captured from LMC
The Leap Motion Controller captures images through
its built-in camera arranged in the configuration of an
inverted pyramid shape[34]. This controller operates at
a frame rate of 120 frames per second, allowing for rapid
and continuous image acquisition. Moreover, it offers a
wide field of view, spanning 135 degrees, which ensures
comprehensive coverage for tracking hand movements
and gestures.

Figure 2: LMC and coordinates.

3.4. Hand skeletal
As mentioned in Figure 3, hand skeletal. It consists of
a total of 27 bones. Eight are located in the wrist re-
gion, known as the carpals. The palm, referred to as the
metacarpals, contains five bones, with each digit being
associated with one metacarpal. The remaining fourteen
bones are referred to as digital bones, which make up the
fingers and thumb.

Within the palm, there are five metacarpal bones, each
featuring a head, a shaft, and a base. These metacarpals
correspond to the five digits of the hand.

In the fingers and thumb, there are a total of fourteen
digital bones, also known as phalanges or phalanx bones.
The thumb differs from the other fingers as it lacks a
middle phalanx. In contrast, the four fingers possess three

Figure 3: Anatomy of Hand Finger Bones.

phalanges each: the distal phalanx, the middle phalanx,
and the proximal phalanx.

Additionally, there are small ossified nodes known as
sesamoid bones, embedded within the tendons to pro-
vide added leverage and alleviate pressure on underlying
tissues. These sesamoid bones are typically found at the
bases of the digits around the palm, although the precise
number can vary among individuals. In this study, the
leap motion controller utilizes a conventional skeletal
model for tracking the human hand.

3.5. Convert captured human hand into
virtual hand

The Leap Motion Controller functions by using human
hand motion as input. It achieves this by employing
an infrared(IR) sensor integrated into the Leap Motion
Controller to detect the motion of the human hand. Addi-
tionally, two cameras within the Leap Motion Controller
capture the hand movements that are detected by the IR
sensors. These hand gestures are then transmitted to the
computer through a USB communication port[35]. As
depicted in Figure 4. On the computer, there is a Software
Development Kit(SDK) that processes the data related
to hand gestures. This processing is typically carried
out using the Visual C++ programming language, allow-
ing for the manipulation of hand gesture data for virtual
simulation. This simulated hand gesture information is
then relayed from the computer to a robot hand using a
ZigBee wireless device.

4. Experimental Results:
To implement this approach, we construct three distinct
virtual environments that are seamlessly integrated with
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Figure 4: Hand Tracking using Leap motion controller.

the Leap Motion Controller. The integration between the
LMC and these virtual environments is crucial for en-
abling precise and intuitive hand tracking within the dig-
ital space. By combining the tracking abilities of the LMC
with the interactive capabilities of Unity 3D, we aim to
create immersive and interactive experiences that bridge
the gap between the physical and digital worlds. We cre-
ate three virtual environments that interact in real-time
with virtual objects. The first scenario is composed of
virtual hands that connect with real hands captured from
LMC cameras and show the outputs in unity3D cameras.
Figure 6. shows that dynamic hand movements rely on
fingertip and palm velocity to detect complex movement
patterns, contrasting with simpler static gestures. Our
approach starts by analyzing global hand movements,
including translation, rotation, and circular motion. We
focus on individual finger movements, with particular
emphasis on the index finger, which holds significant
importance in communication and interactions.

5. Conclusion
In this research work, hand tracking and its interaction
in different scenarios in real-time. LMC observes hand
and finger gestures. It displays a three-dimensional im-
age of a hand. The proposed concept of a linked virtual
environment with real-time the environment is found to
perform better.

In future, the latency of leap motion controller can be
reduced by the new version of SDK. The speed of wireless
communication might be improved by the new types of
wireless communication. The proposed concept can be
implemented in remote-operated robotic applications.

6. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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