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Abstract
Magnetic Resonance Imaging (MRI) is a prevalent non invasive imaging technique that produces high contrast anatomical
images without ionizing radiation. However, due to long acquisition times, MRI scans are prone to noise and artifacts
corruption. In this paper, we address the denoising problem by leveraging the intrinsic nature of the K-space domain where
the noise naturally occurs during acquisition. We propose a light, efficient U-Net architecture that is specifically tailored to
operate directly in the K-space. The model considers a residual learning-based estimate of the noise component across a
range of noise levels and distributions and in particular for additive Gaussian noise. We also propose a SNR degradation
based progressive training scheme that greatly improves performance across a wide range of noise levels. The network
is computationally cost-effective and can be run on CPU in acceptable inference time, making it suitable for real time or
resource constrained applications.

1. Introduction
MRI is a powerful medical imaging technique that pro-
vides detailed images of the internal structures of the
body of a patient. The main benefit of MRI is the possibil-
ity to acquire images in multiple planes (sagittal, coronal,
and axial) without repositioning the patient. MRI pro-
vides a very high contrast images of soft tissues, using
their water content and molecular properties. It is also
non invasive because it doesn’t require X-rays or other
radiations that could be harmful for the patient.

When a patient is placed inside an MRI scanner, the
machine generates a magnetic field that aligns the pro-
tons in fat and water molecules along the direction of
the field. Once the alignment is established, the scanner
applies radio frequency pulses at the natural frequency
of the protons. The energy stored in the pulses excites
the alignment, and the protons precess along the axis of
the magnetic field. When the pulses stop, the protons
begin to realign themselves to their original configura-
tion. As they realign, they release energy in the form of
radio frequency signals, which are picked up by special
receiving coils. They do not appear directly as an image;
they are in K-space, a domain in which data is recorded in
terms of spatial frequencies. To obtain a doctor-readable
image, an inverse Fourier transform is then performed
on this complex valued data, resulting in high-resolution
grayscale images that relate to the anatomical structure
of the tissues being examined.

Although magnetic resonance imaging (MRI) is a valu-
able tool for medical imaging, the resulting scans are
inherently noisy and present some challenges. The ac-
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quisition process is time-consuming and expensive, so
the patient must remain still throughout the scan, other-
wise the resulting images will contain motion artifacts.
Additionally, the MRI machine is sensitive to external
factors such as temperature and electrical pulses, which
can cause additional noise to be introduced. The thermal
mobility of protons can potentially introduce noise into
the image background, especially in low-signal regions.

Mathematically, certain probability distributions can
be used to characterize noise in MRI scans. The equa-
tion 1 describes the bell-shaped symmetric probability
distribution of Gaussian noise, often known as normal
noise. This type of noise is additive, defined by a con-
stant standard deviation across the image, and is typically
attributed to thermal motion and electrical noise.

𝑃𝜇,𝜎 (𝑥) =
1

𝜎
√
2𝜋

𝑒
− (𝑥−𝜇)2

2𝜎2 (1)

Rician noise is prominent in the low signal-to-noise
ratio (SNR) regions of the scans. It follows a Rician distri-
bution (equation 2) and emerges when the magnitude of
the MRI signal is nonnegative and follows a Rayleigh dis-
tribution, while the phase is uniformly distributed. This
type of noise is particularly difficult to handle compared
to other types of noise.

𝑃𝜇,𝜎 (𝑥) =
𝑥

𝜎2
𝑒
− (𝑥−𝜇)2

2𝜎2 𝐼0
(︁𝑥𝜇
𝜎2

)︁
(2)

Another type of noise is Salt and Pepper noise, which
appears as isolated, randomly distributed bright and dark
pixels in MRI images. It may be caused by transmission
problems in the collected data, random signal spikes, or
electrical anomalies and is often referred to as impulse
noise.

Low-intensity MRI images often contain background
noise. This occurs when the amount of photons detected
by the MRI system is subject to statistical fluctuations,
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creating variability in the returned signal. It follows a
Poisson distribution (equation 3).

𝑃𝜆 (𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
(3)

Finally, the T1 and T2 relaxation phases are usually
subject to exponential noise. This type of noise reflects
the intrinsic unpredictability of the decay of MRI signals
over time and has an exponential distribution (equation
4).

𝑃𝜆 (𝑥) = 𝜆𝑒−𝜆𝑥 (4)

A modern and popular approach to deal with long ac-
quisition processes is to take a shorter one and capture
less details, this involves acquiring only a portion of the
K-space data which corresponds to a subset of spatial
frequencies. With this process, the generated images
contains more artifacts and more noise, but reliable and
powerful deep learning models can enhance these scans.
This paper is focused on the implementation of a model
for denoising that can work with different levels of noise;
in particular the focus is on denoising MRI scans with an
additive Gaussian noise at the K-space level. The model,
which follow a residual approach, should adapt also to
other noise probability distributions.

2. Related Works
From image pixel analysis to contemporary deep learn-
ing models, a number of methods have been developed
recently to solve the issue of denoising in magnetic reso-
nance imaging (MRI). Using the subdivision suggested by
J. Mohan et al. [1], we follow an outline of the primary
MRI denoising techniques in this section, beginning with
those that are not based on deep learning.

2.1. Filtering
These algorithms make use of a weighting kernel on the
noisy image to reduce its variance. Damping of noise is
done with this operation. Filters are basically of linear
and non linear category.

Linear filters are ideal if the noise is evenly distributed.
They are realized with fixed smoothing kernels and are
not dependent on the content. There is a subgroup that
acts in the spatial domain: the kernel acts on each pixel of
a 2D neighborhood. The goal is to smooth, detect edges,
or sharpen. Traditional examples include the Gaussian
filter, the Sobel operator, and the Laplacian kernel. Linear
filters remove Gaussian noise, but blur details as well.

The second type is temporal. There, the kernel is used
in the time domain. There, the kernel is applied along
time, on the same spatial pixels across two frames. It
detects temporal changes, the most widely used ones
are temporal averaging, differencing, and optical flow.

They reduce noise caused by rapid change or motion but
occasionally perturb content as well.

Non-linear filters are applied when the noise is not
uniformly distributed. They rely on adaptive kernels
or other rules of convolution. They are more advanced
and can function differently depending on local intensity
patterns.

The second is anisotropic diffusion filtering, which is a
variation of standard spatial filtering in that it adapts its
behavior to the local image properties. The algorithm ad-
justs the number of filtering iterations depending on the
intensity gradient in the neighborhood: more iterations
where there are smooth transitions, fewer where there
are sharp transitions. This technique preserves edges
more effectively than linear filters, but certain details
along boundaries are still lost.

The second technique is the non-local means filter,
which better exploits image redundancy. In this case,
the algorithm treats larger structures as meaningful fea-
tures and smaller patterns as noise that should be re-
moved. Each pixel is adjusted by averaging values from
a broader neighborhood area weighted by structure simi-
larity. This technique overcomes some of the deficiencies
of anisotropic diffusion but at the cost of more compu-
tation, since it involves a search in large neighborhoods
for each pixel.

Finally, methods that combine domain and range filter-
ing consider both spatial proximity and intensity similar-
ity. A highly successful algorithm in this category is the
bilateral filter, initially derived by Tomasi and Manduchi
[2], subsequently generalized to MRI denoising by Xie
et al. [3]. This filter averages spatial and photometric
information to some extent by averaging neighbor pixel
values and diminishing the influence of those with ex-
treme intensity differences, thereby actually preserving
edges. Its derivative, the trilateral filter, incorporates a
time element as well, which causes it to respond more
favorably in dynamic or multi-frame situations. These
techniques, while effective in noise reduction and struc-
tural detail preservation, can produce visible halo arti-
facts along sharp edges, where the filtered to unfiltered
boundary is evident. Domain techniques address image
denoising by first converting the image from the spa-
tial domain to a new representation, where noise and
appropriate image structures can be separated more eas-
ily. Standard filters or operations specifically designed
for the operation can then be applied to the new domain.
The main classes within this class differ depending on the
type of transform used and the character of the resulting
representation.

One of the simplest methods is frequency domain de-
noising, which applies the Fourier transform to represent
the image in terms of spatial frequency. Noise, being
high frequency by nature, can be minimized in this do-
main without losing low-frequency data. This method is
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usually effective when the noise intensity is moderate,
but breaks down when the noise increases.

The wavelet transform is an improvement over this
method, as it decomposes the image into sets of frequency
bands at different scales and allows simultaneous local-
ization in both space and frequency. The multi resolution
structure allows for better separation between noise and
signal at different frequency levels. However, the wavelet
basis can be challenged when representing curved or
highly textured structures, which limits its applicability
in some medical imaging scenarios.

This drawback was addressed with the creation of the
curvelet transform, a generalization of wavelets specif-
ically designed to produce a coarser representation of
curves and edges. It is well suited to handle long and
anisotropic features, and is ideal for images with highly
directional textures. Despite this advantage, the trans-
form produces artifacts in smooth regions, where the
redundancy of the representation is lower.

The contourlet transform takes this concept a step
further by combining multiscale and directional decom-
position. It starts with a Laplacian pyramid for coarse
image structures and then uses directional filtering to
capture edges at different orientations. This produces a
more expressive and flexible representation, especially
for contours and geometric shapes. However, the in-
creased complexity of this method leads to increased
computational costs, especially for the fine-grained edge
preservation required at multiple scales.

2.2. Deep Learning approaches
In recent years, machine learning and then deep learning
started to become popular, because of the better compu-
tational performance offered by modern GPUs and the
brilliant results obtained. The first improvement in the
use of deep learning for images was the introduction of
hybrid neural networks models [4, 5, 6, 7, 8] and con-
volutional neural networks (CNNs) [9, 10, 11] with the
architecture LeNet proposed by LeCun et al. [12]. This
model was taken as inspiration by subsequent and pop-
ular networks like AlexNet [13], GoogLeNet [14], VGG
[15], transformers [16, 17] .

Afterwords, researchers believed that increasing the
number of convolutional layers in the networks would
have lead to better performances, but it was not true be-
cause the models suffered from the vanishing gradient
problem. To overcome this issue, He et al. [18] proposed
ResNet, a new network with the so called residual layers
where the new outputs are computed with an additive
update from the previous inputs. Moreover, ResNet al-
lowed to obtain better performances and a more stable
training with less convolutional layers.

ResNet was also one of first deep learning models used
for general image denoising, together with the Autoen-

coder presented by Hinton and Salakhutdinov [19]. The
main application is to learn a latent and more compact
representation of an image by downgrading it in the first
half of the model and then reconstructing it back in the
second half; this process can be adapted to denoising by
passing noisy images as input and expecting as output
their denoised version. Similar architectures have also
been applied in other areas of the medical sector, such
as in the processing of speech signals for the automatic
detection of speech disorders [20]. Some years later, Ron-
neberger et al. [21] proposed a new architecture, the
U-Net, consisting in a fusion between the Autoencoder
and the ResNet, that achieved good results in biomedical
image segmentation. Also the U-Net can be adapted to
perform general image denoising and so in particular
MRI denoising.

Although the deep learning MRI denoising perfor-
mance was adequate, a new problem arose. MRI scans
with noise distributions other than Gaussian could not
be accommodated by the networks. This drawback stems
from the straightforward methodology of the models,
which learned to produce a clean image from a noisy im-
age. This indicated that the models had only worked on
denoising one distribution, or perhaps a limited number
of related distributions. Zhang et al. [22] proposed a new
approach that they called residual learning in which the
model learns to predict the residual image, i.e. the noise
from the noisy image, with the possibility of focusing on
more and different noise distributions. Residual learning
also introduced regularization in the training process and
boosted the image denoising performances.

3. Methodology
This work introduces a new method for MRI denoising
that try to exploit and merge the benefits of previous
works, keeping also an eye on speed.

3.1. Data Acquisition
The dataset is the Information eXtraction from Images
(IXI) [23], which includes approximately 600 MRI scans
in NIFTI format. Data were acquired from healthy sub-
jects using different acquisition protocols (T1, T2, PD,
MRA, DTI) at three hospitals in London, namely Ham-
mersmith Hospital (Philips 3T), Guy’s Hospital (Philips
1.5T), and the Institute of Psychiatry (GE 1.5T). Each scan
is associated with protocol specific parameters, publicly
available on the dataset website.

3.2. MRI Scan Preprocessing
The main preprocessing step is to extract 2D slices from
the T1-weighted volumetric MRI of each subject. This
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procedure offers several advantages. 2D image process-
ing is faster and more suitable for real-time situations,
as it uses less processing resources than full-volume pro-
cessing. A more focused investigation is also possible,
as regions of interest are often located in a single plane,
such as axial, coronal or sagittal. This makes it possible
to focus on the relevant anatomical elements and elimi-
nates the need to consider the entire volume. 2D images
are easier to visualise and evaluate and provide a recog-
nisable and comprehensible representation of the data.
Another advantage is the reduction in the overall size
of the data, which facilitates its transmission or storage,
especially in resource limited environments.

Despite these advantages, relying solely on 2D slices
has some disadvantages. It may not accurately represent
complex structures or dynamic processes and may result
in the loss of 3D or temporal information. In some situa-
tions, combining both modalities and examining selected
slices in the context of the full volume may be more use-
ful. For each of the 581 subjects, for a total of 43,575
images, the 25 central slices in the coronal, axial, and
sagittal planes are selected to avoid completely or mostly
black images. A padding technique involving continuous
zero-filling is used to uniformly scale all photos to the
maximum size, since slices acquired from different planes
have variable sizes.

After preprocessing, the dataset is split into the train-
ing (75%), validation (15%) and test(10%);

Before loading the images in the dataset they are nor-
malized in the [0, 1] range, then the noisy images are
generated by adding Gaussian noise in the K-space ob-
tained by the Fourier transform.

In particular, the levels of added noise is based on the
Signal-to-Noise Ratio (SNR), with the standard deviation
𝜎 computed using equation 5, where |ℱ [𝐼]| is the average
of the magnitude of the Fourier transform of the image.

𝜎 =
|ℱ [𝐼]|
10

SNR
20

(5)

3.3. Proposed Model
The model proposed in this work is a modified version
of the classic U-Net. The main modifications concern
several aspects of the network. In both the descending
and ascending parts, five convolutional layers are present.
Although additional layers can be added, the size of the
preprocessed MRI images is 256×256, so adding more
layers would lead to activation maps that are too small.
Furthermore, the network is faster and lighter by avoid-
ing additional layers.

Convolutions do not include bias, since the introduc-
tion of bias parameters has shown a drastic worsening
of the network performance, generating images with
anomalous visual artifacts. Similarly, normalization tech-

niques were not used. This is because the U-Net model
already tends to adjust the activations thanks to the con-
catenation mechanism between the old and new features
in the upsampling phase. Another reason is related to
efficiency, the network remains faster and, in the tests
carried out, the denoised images with or without normal-
ization did not present relevant differences. PReLU was
adopted as the activation function, since the presence of
a trainable parameter improves the overall performance
of the network according to the metrics used.

The network can be described with simple equations
following its division in layers.

The down part can be seen as the function
DownConv2d (𝑑𝑖) defined as in equation 6, in which the
𝑑𝑖 parameter represents the features computed by the
previous layer.

𝑧𝑖 = PReLU (Conv2d (𝑑𝑖))
𝑑𝑖+1 = PReLU (Conv2d (𝑧𝑖))

(6)

The up part can be seen as the function
UpConv2d (𝑢𝑖, 𝑑𝑁−𝑖−1) defined as in equation 7,
in which the 𝑢𝑖 parameter represents the features com-
puted by the previous layer and the 𝑑𝑁−𝑖−1 parameter
represents the correspondent features computed by the
down part to be concatenated.

𝑧𝑖 = cat (PReLU (ConvT2d (𝑢𝑖)) , 𝑑𝑁−𝑖−1)
𝑢𝑖+1 = PReLU (Conv2d (𝑧𝑖))

(7)

Since the model (figure 1 for a visual representation)
uses the residual approach, the entire network can be
seen as the function 𝑛 = Net (𝐼𝑛), where the input 𝑖𝑛 is
a batch of noisy MRI scans in the K-space and the output
𝑛 is the estimated batch of noise also in the K-space.

3.3.1. Loss Function

Image denoising in general can be considered a regression
task, so a well suited loss function is the mean squared
error (MSE) defined in equation 8.

MSE (𝑦𝑝𝑟𝑒𝑑, 𝑦) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑖)
2 (8)

In particular we use the MSE applied to noisy scans
and free noise scans is called pixel loss (PL) (equation 9),
which is the main part of the total loss function.

Some works like Zhao et al. [24] or Mustafa et al.
[25] showed that in image regression tasks, the MSE
succeeded in performing the task with good results, but it
blurred the resulting images. A popular way to overcome
this problem is to add other parts in the total loss function,
focusing on the features [24], or to design from scratch a
specific and more complex loss function [25].

For the proposed network, we integrates other two
parts in the total loss function, the frequency loss (FL)
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Figure 1: Structure of the Fast U-Net model with 5 downsam-
pling and 5 upsampling layers, connected via skip connections.

(equation 10) that is the sum of MSE applied to real and
imaginary part of the Fourier transform of the noisy scans
and the free noise ones, and the edge loss (EL) (equation
11 that is the MSE applied to some edge features of the
noisy scans and the free noisy ones; in particular the 𝑓
function used are the Laplacian and/or the Sobel filters.

PL (𝐼𝑛, 𝐼) = MSE (𝐼𝑛, 𝐼) (9)

FL (𝐼𝑛, 𝐼) =
Re [MSE (ℱ [𝐼𝑛] ,ℱ [𝐼])] +
Im [MSE (ℱ [𝐼𝑛] ,ℱ [𝐼])]

(10)

EL (𝐼𝑛, 𝐼) = MSE (𝑓 (𝐼𝑛) , 𝑓 (𝐼)) (11)

The total loss function L is the simple sum of the three
previously introduced parts: the pixel loss (PL), the fre-
quency loss (FL) and the edge loss (EL).

L (𝐼𝑛, 𝐼) = PL (𝐼𝑛, 𝐼) + FL (𝐼𝑛, 𝐼) + EL (𝐼𝑛, 𝐼) (12)

4. Experiments & Results
The experiments were conducted on a Google Colab en-
vironment with an NVIDIA T4 GPU (CUDA 11.8), 12 GB
RAM, and Intel Xeon CPU at 2.20 GHz. Python version
3.10, and the PyTorch version 2.0.1 with CUDA.

We used ADAM optimizer, the starting learning rate of
0.001 and batch size of 64. A learning rate scheduler was
used to reduce the learning rate by a factor of 0.1 at every
instance that the validation loss failed to decrease for two
successive epochs. Training was also monitored using
an early stopping criterion that terminated if validation
loss failed to drop for five epochs.

Model comparison was based on two common im-
age reconstruction evaluation metrics,namely the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM). The PSNR is defined as

PSNR(𝐼, 𝐽) = 10 log10

(︂
max(𝐼)2

MSE(𝐼, 𝐽)

)︂
, (13)

where 𝐼 and 𝐽 are the reference and reconstructed
images, respectively, and MSE is the mean squared error.
The SSIM is computed as

SSIM(𝐼, 𝐽) =
(2𝜇𝐼𝜇𝐽 + 𝑐1)(2𝜎𝐼𝐽 + 𝑐2)

(𝜇2
𝐼 + 𝜇2

𝐽 + 𝑐1)(𝜎2
𝐼 + 𝜎2

𝐽 + 𝑐2)
, (14)

where𝜇𝐼 , 𝜇𝐽 are the local means, 𝜎2
𝐼 , 𝜎2

𝐽 the variances,
and 𝜎𝐼𝐽 the covariance between 𝐼 and 𝐽 , with 𝑐1 and
𝑐2 being constants to stabilize the division. Two pairs of
training experiments can be distinguished. The first uses
MSE loss, while the second uses MAE loss plus another
type of normalization. The studies vary in how noisy
scans are produced within each pair. Specifically, the
second uses a progressive technique, while the first uses
a random one.

4.1. Evaluation under MSE and MAE
The training phase was structured around two main
configurations, each evaluated under different condi-
tions. The first group of experiments employed the Mean
Squared Error (MSE) as loss function, while the second
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used the Mean Absolute Error (MAE), along with a differ-
ent input normalization strategy based on centering the
data with zero mean and unit standard deviation, instead
of scaling it to the [0,1][0,1] interval. Within each group,
two noise injection strategies were considered: random
and progressive.

In the first experiment, the training set was corrupted
by Gaussian noise with a signal to noise ratio (SNR) ran-
domly sampled from a discrete uniform distribution be-
tween -5 and 5. For the validation set, the SNR was fixed
at -5 to maintain a challenging evaluation scenario. The
model was trained with early stopping based on valida-
tion loss.

The second experiment introduced noise in a progres-
sive manner, the training began with images at SNR = 5
and gradually moved down to SNR = -5. At each level, the
model was trained separately using a validation set with
matching noise level. This setup was designed to let the
model adapt incrementally to increasing noise intensity.

The third and fourth experiments mirrored the struc-
ture of the first and second, respectively, but used the
MAE loss instead of MSE, and applied the aforementioned
centered normalization. These variations aimed to evalu-
ate the impact of a loss function less sensitive to outliers
and a normalization scheme more common in deep learn-
ing workflows. Detailed results for all experiments are
reported in Table 1.

4.2. The MAE and the centered standard
normalization

Although the random approach introduces stochasticity
in the training procedure allowing the model to be more
robust to different levels of noise earlier, the progressive
approach has faster convergence time because the model
only has to adapt to the next level of noise from the
previous without the abrupt shifts.

Moreover, MSE can be sensitive to the presence of
noise or outliers in the data because it strongly penal-
izes large deviations from the true values, due to the
squared function. So the resulting denoised images could
be overly influenced by noise. Instead, the Mean Abso-
lute Error (MAE) (equation 15) is more robust to noise
and outliers.

MAE (𝑦𝑝𝑟𝑒𝑑, 𝑦) =
1

𝑁

𝑁∑︁
𝑖=1

|𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑖| (15)

It treats errors uniformly, due to the absolute value
function making it less susceptible to extreme values in
the data. Consequently, the denoised images produced
tend to be more noise resistant. Also, MAE tends to
produce images that are visually crisper, but with better
preservation of fine structures. MSE instead tends to sup-
press high-frequency details and edges in favor of noise

reduction. For this reasons, the other two experiments
are made with the same loss function, but substituting
each instance of MSE with MAE.

Another change is to have the normalized MRI scans
centered with mean 0 and standard deviation 1 instead
of having them normalized in the interval between 0 and
1. This because this type of normalization is widely used
in lots of works and tends to have better performances
in most of the cases.

4.3. Results
From Table 1 and Figures 2a–3d, the following trends are
easily observable. The most obvious is that progressive
noise injection consistently outperforms random noise
injection. With both loss functions, MSE and MAE, the
progressive setting improves the average by about 4.8 dB
for PSNR and from 0.14 to 0.15 for SSIM. In addition to
achieving higher scores, this training approach is also
more stable, with lower variance at various noise levels.
Comparing the two loss functions, the model trained with
MSE has slightly better SSIM values. The difference is
small, about 0.01 on average, but constant. This indicates
that the model trained with MSE is better at keeping
structural details intact. In contrast, the model trained
with MAE is superior in PSNR by about 0.2 dB on average.
This holds true for all noise levels and suggests that MAE
may be better at removing noise, albeit at the expense of
slightly worse structural fidelity These results highlight
the behavior of the proposed architecture under different
training conditions. To further contextualize its perfor-
mance, we compare it against existing state-of-the-art
denoising approaches.

4.4. Comparisons with other methods
To evaluate the denoising performance of the networks,
they are compared with other four denoising methods.
In particular, with Optimized NLM by Coupé et al. [26],
WSM by Coupé et al. [27], MCDnCNNg and MCDnCNNs
by Jiang et al. [28].

It is useful to point out that the four chosen methods
work with different datasets and have a different noise
generation procedure. Therefore, the collected metrics
to make comparisons are different (a kind of average on
the level of noise) from the real ones.

Analyzing the table 2, the two fast U-Net trained with
the progressive approach have overall very similar met-
rics with the other methods. In particular they are better
on MRI scans with low noise, while they lose some per-
formances on scans with high noise. This is due to the
trade-offs made to keep the network fast.
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Table 1
Metrics. The table shows the results of the experiments.

Noise Level (SNR) Architecture PSNR SSIM

∼ U (−5, 5)
fast U-Net (MSE) 29.77 0.74
fast U-Net (MAE) 30.10 0.72

5
fast U-Net (MSE) 38.33 0.93
fast U-Net (MAE) 38.66 0.93

4
fast U-Net (MSE) 37.74 0.93
fast U-Net (MAE) 37.89 0.92

3
fast U-Net (MSE) 36.99 0.92
fast U-Net (MAE) 37.16 0.92

2
fast U-Net (MSE) 36.20 0.91
fast U-Net (MAE) 36.34 0.90

1
fast U-Net (MSE) 35.41 0.90
fast U-Net (MAE) 35.57 0.89

0
fast U-Net (MSE) 34.58 0.89
fast U-Net (MAE) 34.78 0.87

-1
fast U-Net (MSE) 33.80 0.88
fast U-Net (MAE) 34.02 0.86

-2
fast U-Net (MSE) 33.02 0.86
fast U-Net (MAE) 33.22 0.84

-3
fast U-Net (MSE) 32.27 0.85
fast U-Net (MAE) 32.46 0.82

-4
fast U-Net (MSE) 31.46 0.83
fast U-Net (MAE) 31.70 0.80

-5
fast U-Net (MSE) 30.72 0.81
fast U-Net (MAE) 30.96 0.78

Average (−5÷ 5)
fast U-Net (MSE) 34.59 ± 2.57 0.88 ± 0.04
fast U-Net (MAE) 34.80 ± 2.57 0.87 ± 0.05

Table 2
Metrics from other works. The following table shows averaged metrics of other methods and the ones presented to make
comparisons.

Method Low Noise PSNR High Noise PSNR High Noise SSIM High Noise SSIM

Optimized NLM 32.96 29.01 0.85 0.74
WSM 33.14 28.95 0.85 0.73

MCDnCNNg 35.46 31.20 0.90 0.81
MCDnCNNs 36.24 32.58 0.91 0.85

fast U-Net (MSE) (ours) 36.93 32.25 0.92 0.85
fast U-Net (MAE) (ours) 37.12 32.47 0.91 0.82

5. Conclusions
In this work, a new approach to MRI denoising is pre-
sented, introducing several novelties in both the noise
generation phase and the training strategy, as well as
an architectural modification of the classical U-Net to

improve its speed while maintaining good performance.
The noise generation procedure, based on the K-space

and the signal-to-noise ratio (SNR), allows to obtain more
realistic noisy scans. This realism is also due to the depen-
dence of the noise on the mean of the Fourier transform
modulus. However, this type of generation makes the
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(a) MSE, random (b) MSE, SNR=5 (c) MSE, SNR=0 (d) MSE, SNR=-5

Figure 2: Fast U-Net denoiser results using MSE loss under different training regimes.

(a) MAE, random (b) MAE, SNR=5 (c) MAE, SNR=0 (d) MAE, SNR=-5

Figure 3: Fast U-Net denoiser results using MAE loss under different training regimes.

Table 3
Time Performances. The following table shows averaged exe-
cution times on different batch sizes of the two architectures.

Batch Size L1 Time MSE Time

1 img 130 ms 141 ms
2 imgs 279 ms 239 ms
3 imgs 373 ms 409 ms
4 imgs 555 ms 544 ms
16 imgs 2.39 s 2.39 s
64 imgs 10.4 s 9.95 s

comparison with other methods more complex, since
in most works a simulated noise based on predefined
percentages is preferred.

The progressive training approach, where the SNR
varies from 5 to −5, represents a turning point for the
improvement of the results both in terms of PSNR and
SSIM, as well as leading to a clear visual quality in the
denoised images. Furthermore, the adaptive nature of this
strategy allows the network to maintain the denoising
performance already acquired along all the considered
noise levels.

The proposed U-Net, composed of only five layers and
without normalizations, can run in short times even on
CPU. This compromise in terms of speed does not lead
to a significant degradation of the metrics, which remain
comparable with those obtained by other methods based

on deep learning. It should also be noted that, although
processing time is rarely analyzed in the literature, today
in the medical field it is increasingly important to obtain
reliable results in short times.

6. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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