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Abstract
Digital calendars, accessible via laptops, tablets, and smartphones, offer features such as automatic reminders that improve
time management and personal organization. However, older people often struggle to use these tools, preferring to rely
on traditional paper calendars. This digital divide can lead to missed appointments and a subsequent negative impact on
well-being. We propose an innovative application that can automatically capture and digitize a physical calendar, allowing
reminders to be sent and commitments to be tracked even by third parties. By integrating the familiar interface of paper with
digital features, our tool aims to improve appointment keeping and reduce the technological gap in time management for the
elderly population.
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1. Introduction
Optical Character Recognition (OCR) refers to a set of
techniques used to detect and convert characters from
physical documents into editable, and searchable digital
text. This process typically involves capturing an image
of the document using a scanner or a digital camera. The
ability of converting various forms of documents can be
applied in a wide range of fields, for example the recog-
nition of human handwriting, the digital conversion of
labels and manuscripts, the recognition of numerical dig-
its in financial and banking contexts and the validation
of a particular type of handwriting to authenticate the
provenance of a manuscript. Another interesting applica-
tion that has been developed in recent years involves the
recognition of ancient characters [1]. The objective of
the challenge was to digital reconstruct ancient damaged
papyrus scrolls. The scrolls were digitally "unwrapped"
using computed tomography (CT) and machine-learning
technology. The resulting scans were then turned into
a 3D volume of voxels, which have been segmented by
tracing the crumpled layers of the rolled papyrus in the
3D scan, actually flattening the images. The last step
was detecting ink on papyrus by using machine learning
to identify regions of ink in the flattened segments of
the papyrus. A particularly remarkable aspect of this
application is that the model operated without any prior
knowledge of alphabets or handwriting conventions. The
digital characters predicted by the model, result therefore
purely from plotting the local ink detection spots across
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a generated image. Another important application of
handwriting recognition has been applied to cuneiform
tablets [2]. Researchers, instead of using photos, relies
on 3D models of the tablets, delivering significantly more
reliable results than previous methods. This makes it pos-
sible to search through the content of multiple tablets and
to compare them with each other. They used 3D models
of nearly 2000 cuneiform tablets, many of them are more
than 5000 years old and are thus among mankind’s oldest
surviving written records. What they discover is an ex-
tremely wide range of topics, from shopping lists to court
rulings, providing a glimpse into mankind’s past several
millennia ago. However, despite the result obtained, the
challenge remains open since there are lot of complica-
tions, mostly the fact that some tablets are heavily ruined
and also that the writing system was very complex at that
age and encompassed several languages. Consequently,
effective modeling requires not only higher-quality data
but also more sophisticated prior knowledge [3, 4] to cap-
ture the complexity and multilingual nature of cuneiform
writing.

It is noteworthy that also a major technology company
such as Google has developed its own personal OCR sys-
tem in the more recent years. Google OCR, developed
by Google AI [5], is designed to convert a variety of doc-
ument types, including scanned documents, PDFs, and
images captured by a digital camera, into editable text.
The system’s principal advantages are its high degree of
accuracy, achieved through the use of sophisticated deep
learning techniques for the recognition and extraction of
text with remarkable precision (even in the presence of
complex backgrounds or low-quality images), the incor-
poration of multiple languages within the system leads
to the capability of processing a wide range of alphabets,
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including ideograms, and possibility to process not only
printed characters but also handwritten texts.

OCR system plays also an important social role when
it is employed in all that applications to deal with visual
impairments, giving the possibility to blind people to con-
vert a written text into audio (OCR + speech synthesis).
In conclusion, OCR represents a versatile technological
solution with broad applicability across document pro-
cessing, data management, and accessibility domains. In
order to achieve our scope, it is necessary to create a
pipeline that can be employed to digitize the content,
assign it to a category and store it in a database or in an
existing digital calendar, for example using the Google
Calendar API or the iOS Calendar API.

Challenges The process of recognizing and digitiz-
ing human handwriting presents several significant chal-
lenges for OCR systems. The presence of noise and distor-
tions in images represents a considerable obstacle, as it
can negatively impact the efficiency and accuracy of the
system. They may also struggle to recognize characters in
scanned images affected by distortions or intrinsic noise,
leading to recognition errors. Furthermore, the issue of
multilingual support introduces another layer of complex-
ity, as OCR systems may face challenges in processing
documents that contain multiple languages, each with its
own set of characters and linguistic rules. OCR systems,
like human readers, are inherently tied to specific alpha-
bets when recognizing characters. The system learns the
local features of the different characters directly from
the handwritten text, there are input data in the form
of 𝐼 = ( 𝑥𝑖, 𝑦𝑖) , 𝑦𝑖 = {𝑦( 𝑖,1) , 𝑦( 𝑖,2) , . . . , 𝑦( 𝑖,𝑁) },
where each 𝑦( 𝑖,𝑗) is a symbol, or grapheme (from gr.
𝛾𝜌𝛼𝜑𝜔, ‘write’), mapped in a digital encoding and de-
coding alphabet. The system learns a specific alphabet
directly from the text and since local features (shape,
thickness, corners, edges,...) are inherent to the charac-
ters of an alphabet, As a result, the system experiences a
significant drop in performance when applied to charac-
ters outside its trained alphabet. This significantly limits
the transfer learning techniques, since the network
must be retrained from scratch to recognize another al-
phabet different from the one on which the model has
already been trained.

Moreover, the diversity of handwriting styles further
complicates the OCR process. Handwriting is highly
individual, requiring OCR systems to handle not only
personal variation but also atypical styles such as cursive
or artistic fonts. The inherent subjectivity of handwriting
makes it imperative to develop an OCR system that is
robust: it should handle as much as possible the actual
changes in font and style from text to text and decipher
the myriad ways in which individuals express themselves
on paper. Taking the Latin alphabet into account, we can
differentiate the characters into capital letters and low-

ercase letters. Notably, capital letters tend to exhibit
lower variability, whereas lowercase letters—though sub-
ject to basic calligraphic conventions—reflect more per-
sonal handwriting traits and a broader range of stylistic
variation.

2. Related Works
Early efforts in text digitization date back to the devel-
opment of LeNet [6], which demonstrated that a shallow
convolutional neural network could accurately recognize
handwritten digits in 32× 32 grayscale images. Build-
ing on this, [7] proposed a methodology leveraging the
MNIST dataset [8] to address more complex handwriting
recognition tasks, but also coping with image defects
and noise [9]. Their approach emphasized preprocessing
steps—including grayscale normalization, cropping, and
resizing—to improve the recognition of isolated hand-
written characters. They showed the effectiveness of
convolutional neural networks (CNNs) in extracting lo-
cal features from such inputs. The utility of CNNs for
handwriting recognition has since been widely adopted.
In 2015, [10] introduced the CRNN architecture, which
combines CNNs for spatial feature extraction with re-
current neural networks (RNNs) to model character se-
quences. This design is particularly suited for handwrit-
ten word recognition, as RNNs can capture sequential
dependencies—albeit with limitations such as the van-
ishing gradient problem. More recently, [11] proposed a
system that combines CNNs with Error Correcting Out-
put Codes (ECOC) to enhance classification robustness.
Feature extraction is performed using architectures such
as LeNet [6] and AlexNet [12], while classification is car-
ried out by training an ensemble of binary Support Vector
Machines (SVMs) via ECOC. This method decomposes
the multiclass problem into several binary subproblems,
yielding higher accuracy compared to CNNs followed by
a standard softmax classifier—particularly on the MNIST
dataset. In 2021, [13] introduced a more complex model
based on CRNNs for full handwritten document recogni-
tion. This approach integrates CNNs for visual feature
extraction with Long Short-Term Memory (LSTM) net-
works to model sequential dependencies across words or
phrases. The system is trained using the Connectionist
Temporal Classification (CTC) loss function [14], which
enables sequence prediction without requiring explicit
character-level alignment. CTC considers all possible
alignments and computes a summed probability, allow-
ing for end-to-end training even when segmentation is
ambiguous. The next leap in this domain has been driven
by the application of transformers [15] to computer vi-
sion, particularly through the introduction of the Vision
Transformer (ViT) [16]. ViT replaces convolutional lay-
ers with a pure attention mechanism, enabling the model
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to capture long-range dependencies in visual inputs. This
shift opens new directions in handwriting recognition
by enabling the integration of global context across en-
tire input images, beyond the local receptive fields of
traditional CNNs.

It is worth pointing out that, before the advent of
CRNN and ViT model, the majority of the proposed
achieved high performance in terms of recognition accu-
racy but showed huge limitations: the input for the first
OCR neural model was necessarily provided in the form
of individual character alphabet, the networks were able
to classify the salient features of the character and pro-
vide a classification consisting of the corresponding digi-
tal label, but with the inability to create a context (both in
terms of previous word in a sentence and in terms of indi-
vidual characters in a single word), profound refactoring
of the software systems was often required[17, 18].

3. Implementation Description
To ensure accurate calendar digitization, the proposed
pipeline is composed of several neural modules. The ini-
tial component is a segmentation network based on
the U-Net architecture [19], which enables the model to
identify the most semantically relevant regions of the
calendar. This network produces a segmentation mask,
allowing for the algorithmic extraction of targeted calen-
dar segments. Once the relevant segments are extracted,
they are processed by two separate ResNet6-based con-
volutional neural networks [20], responsible for recog-
nizing the month and day digits, respectively. While
the recognition of day digits benefits from standardized
patterns—since the digits recur uniformly across sam-
ples—the month field presents greater variability. Users
are allowed to write the month manually, which intro-
duces inconsistencies in handwriting style and position-
ing. To address these variations and improve classifi-
cation robustness, the calendar template incorporates a
distinct pair of AprilTags [21] for each month of each year,
positioned at the left and right margins of the month field.
This design introduces spatial regularity, guiding the con-
volutional layers toward more stable visual features and
mitigating the ambiguity caused by user-written titles.
The final step of the pipeline involves processing the re-
minder segments, where a second U-Net is employed to
segment user-written sentences into individual words.
These word segments are then passed to a digitization
module that combines the Vision Transformer (ViT) [16]
and BERT [22]. While ViT captures visual features at a
global scale, BERT processes the embedded representa-
tions to extract semantic meaning. An additional com-
ponent of the system enables content classification at
the line level. Specifically, each textual line is processed
through BERT for semantic categorization. With mini-

Dataset Training Validation
Calendar 146 74

Numeric Digits 682 527
IAM Lines/Sentences 7561 3781

IAM Words 64302 32152

Table 1
Datasets: the calendar dataset has been created manually by
using a graphic tablet, numeric digits is a collections of num-
bers in the range [ 1, 31] generated from computer system
fonts, while IAM (Institut f�̈�r Informatik und Angewandte
Mathematik) Handwritten is a dataset belonging to the Uni-
versity of Bern.

mal additional effort, this classification can be extended
to the entire calendar: feature vectors from each line are
aggregated and averaged to obtain a single representa-
tion, which is then used to predict a high-level category
for the calendar’s overall content.

3.1. Dataset
To conduct the experiments, we independently created a
dataset of handwritten calendar images using a graphic
tablet. The corresponding ground truth segmentation
masks were annotated using the Oxford VGG Image An-
notator tool. The dataset, although limited in size (see
Table 1), is sufficient for our use case. Unlike generic
segmentation tasks—such as those involving the hetero-
geneous images found in datasets like ImageNet—our
domain involves structurally homogeneous data. All in-
put images depict the same subject: a calendar with a
symmetric and well-defined layout. This structural regu-
larity allows for meaningful learning even with a smaller
number of examples. To simulate realistic acquisition
conditions, we applied synthetic distortions using Pho-
toshop to introduce parallax effects (horizontal, vertical,
or both). These transformations reflect the common sce-
nario where the camera capturing the calendar may not
be perfectly aligned with the sheet. Incorporating such
distortions during training improves model robustness in
real-world scenarios. To correct these geometric distor-
tions at inference time, we integrated a RANSAC (Ran-
dom Sample Consensus) [23] module into our pipeline.
The four AprilTags placed at the corners of each calen-
dar template serve as keypoints, allowing RANSAC to
estimate a homography and realign the captured image
with the reference calendar layout.

The numeric digits dataset is assembled by saving pic-
tures of numbers from 1 to 31 using classical fonts avail-
able at the level of the computer’s operating system. This
choice is useful both for training a compact ResNet to
recognize calendar day numbers and for allowing the
model to generalize beyond the specific font used in the
study.
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Other useful data are retrieved from the public Internet.
In particular, the IAM Handwriting Datasets [24] are
used to make the pre-trained of the Word Paser model
and of the Note Digitizer. IAM Handwriting is a dataset
that contains a collection of words cut from portions of
written texts, nd its main advantage, as discussed in the
introduction, lies in enabling the model to learn relevant
character features. This approach enables the system
to learn the sequential features of the characters that
together make up a particular word.

(a) Example of the original image taken from IAM Lines dataset,
"suitable to be paraded before the public"

(b) The original image is filtered with the Laplacian operator
to retrieve its details, in particular the edges

(c) Pixels values of the detail are corrected in order to be 0
128 255. The filtering is applied taking into account some
intensity values as threshold.

(d) Final binary inverse thresholding

Figure 1: IAM Lines Mask Creation: since each sentence con-
tained in the IAM lines dataset is constructed as a collage of
words cuttings, there’s a gray scale level provided that denote
the break between the white background and the "internal"
background of the little piece of word. This information can
be exploited to construct more or less accurate binary word
masks to trained a second U-Net to learn the text line seg-
mentation.(1d)

3.2. Data Processing
Standard computer vision techniques are employed to
process the images contained in the datasets: Gaussian
blurring is preferred over classical blurring, since using
a kernel derived from a Gaussian distribution helps to
attenuate image noise and details, ensuring better preser-
vation of edges and contours. The image pixel intensity
values are uniformed by applying a binary thresholding
technique that sets to a maximum value all pixels above
a certain threshold (represented, for example, in the case
of the IAM dataset, by the grayscale levels annotated in
the data), while setting the values below to 0. Moreover,
all pixel values in the image are additionally scaled by
a factor of 1/255 to bring them into the interval [ 0, 1 ],
and normalized around a certain mean and standard de-
viation. These general steps ensure that data are in a
format more suitable for model processing.

Regarding the calendar dataset, to ease the computa-
tional segmentation process, images are downsampled
using a Laplacian Pyramid. The reason why this tech-
nique is applied to the calendar data before feeding them
into the network will be made clearer in Section 3.4.1.

It is also worth noting that, since a word segmentation
block for the calendar note segments has been included
in the architecture, it needs to be trained on pairs (image,
word mask) that are not directly available in the dataset.
This is why a dedicated image processing step is applied
online during dataset generation to obtain, from a single
text line image, its corresponding ground-truth word
segmentation mask. The original image (Figure 1a) is
filtered with a Laplacian operator in order to extract its
details, borders, and edges (Figure 1b). This operation is
particularly useful in the current data domain because, as
previously mentioned in Section 3.1, the images from the
IAM Line/Sentence datasets are collections of cropped
word/text lines. By further filtering the pixel values of the
detailed image, it becomes possible to highlight borders
and edges, and thus delineate the cutting boundaries
with respect to their content (Figure 1c). At this point, by
applying a binary inverse threshold function, the final
word-level binary segmentation mask can be obtained
(Figure 1d).

3.3. Neural blocks
The digitization system is composed of five neural mod-
ules working in parallel. The first is the Calendar Parser,
a U-Net model with encoder-decoder structure and skip
connections, which takes as input a calendar image
(downsampled using a Laplacian Pyramid) and performs
pixel-wise classification into six semantic regions. Ini-
tially, a larger number of classes was tested to directly
model the month and day digits at this stage, but this
was later simplified, as discussed in Section 3.4. The
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Figure 2: Calendar Parser: it represents the first neural block of the overall digitization system. The model, represented by a
U-Net network takes as input a downsample image of a calendar and predict as output its segmentation map. It worthy to
note that the input image is scaled by using a Gaussian and Laplacian Pyramids both for two reason: 1) providing an input
that is not too much big for the model in order to help its computations. 2) Once the calendar fragment are retrieved thank to
segmentation map is important to bring them back to the original sizes by adding their corresponding residuals stored from
the pyramid downsampling process. This ensure to have images that are poor in resolution for the next digitization steps.

Word Parser is also based on a U-Net architecture and
is pre-trained using image/mask pairs from the IAM
Line/Sentence dataset, where masks are generated as
described in Section 3.2. It produces a binary segmenta-
tion mask for each text line, and, as shown in Section 4,
generalizes well to calendar data despite significant vi-
sual differences from the training set. Both the Month
Digitizer and Day Digitizer are implemented as compact
ResNet architectures composed of six convolutional lay-
ers with two residual connections. Each model concludes
with a linear classification head, consisting of either 12 or
31 output units depending on whether the task is month
or day classification, respectively. This minimal design
was chosen to ensure fast inference while maintaining
adequate performance given the low visual variability of
the segmented inputs.

3.3.1. Content classification with BERT

Once the handwritten text has been digitized, it may be
useful to classify it into categories to highlight the na-
ture of its content. To do so, it is possible to rely on a
Transformer-based architecture modeled by a modern
LLM such as BERT. BERT is a Transformer architecture
consisting of a single encoder. Its peculiarity lies in the
fact that, given the nature of its training (Next Sentence
Prediction and Question Answering tasks), it can be eas-
ily adapted to a new domain by fine-tuning the encoder
on the target dataset and stacking an additional classi-
fication layer on top of its head. BERT incorporates a
strong semantic understanding of the English language
and can therefore be used to process textual content.

Figure 3: Text Classification Component: relying on BERT
LLM architecture it is mainly composed of a fully connected
that act as a classifier of [CLS] special token features. CLS
BERT special token embed the overall meaning of the entire
sentence resulting very suitable to classify the text’s content.

Content Text Classifier To classify the textual con-
tent, each sentence is preprocessed by lowercasing all
words and removing stopwords to reduce noise and re-
tain only the most relevant terms. The processed text is
then passed through BERT, which maps each token to a
768-dimensional latent space. The special [CLS] token,
capturing the overall sentence meaning, is extracted and
fed into a linear classification layer. A Softmax function
is applied to the output to obtain a probability distribu-
tion over predefined content categories. The model is
trained using multiclass cross-entropy loss.

3.4. Experiment
The overall project is made up of a bunch of experiments
that have been conducted on the different architectural
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components examined in Section. 3.3: since both the
calendar parser and the word parser take benefit of using
U-Net segmentation architecture, both the model has
been trained using Dice Loss [25]. The Dice-Sørensen
coefficient, Equation. 1, also know as Dice Coefficient, is
a statistic used to gauge the similarity of two samples. It
is widely employed in the field of segmentation, where
it is particularly effective in evaluating the pixel-wise
accuracy of ground truth masks in comparison to the
output segmentation mask generated by a model.

𝐷𝑖𝑐𝑒( 𝑃,𝐺) =
2|𝑃 ∩𝐺|
|𝑃 |+ |𝐺| (1)

𝑃 and 𝐺 are the set of pixels belonging respectively
to the predicted and the ground truth masks, |𝑃 ∩ 𝐺|
is the number of pixels that both set have in common
and finally |𝑃 | and |𝐺| represent the total amount of
pixel in the two sets. The calendar parsing is essentially
a MultiClassification task. The Equation. 1 be-
comes:

𝐷𝑖𝑐𝑒( 𝑃,𝐺) = 1
𝐶

∑︀𝐶
𝑐=1

(︁
1− 2

∑︀𝑁
𝑛=1( 𝑃𝑖,𝑐·𝐺𝑖,𝑐)∑︀𝑁

𝑛=1 𝑃𝑖,𝑐+
∑︀𝑁

𝑛=1 𝐺𝑖,𝑐

)︁
(2)

the word parsing can be treated instead as a
BinaryClassification task and the Equation.
1 becomes:

𝐷𝑖𝑐𝑒( 𝑃,𝐺) =
2
∑︀𝑁

𝑛=1( 𝑃𝑖 ·𝐺𝑖)∑︀𝑁
𝑛=1 𝑃𝑖 +

∑︀𝑁
𝑛=1 𝐺𝑖

(3)

𝑃𝑖 is the predicted binary value for pixel 𝑖 and could be
𝑃𝑖 = 1 or 𝑃𝑖 = 0, 𝐺𝑖 is the same but in the ground truth
mask while 𝑁 is the total number of pixel, and since
the task deals with 2D images, 𝑁 = 𝑊 ×𝐻 , where 𝑊
and 𝐻 are respectively the width and the height of the
images. The value of the Dice Loss can be easily obtained
as:

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠( 𝑃,𝐺) = 1−𝐷𝑖𝑐𝑒( 𝑃,𝐺) (4)

Looking at the Equation. 4 it can observed that mini-
mize the loss means effectively maximize the Dice Co-
efficient that provides a measurement of the similarity
between the model’s prediction and the ground truth.
Once the model is trained, the most suitable predic-
tion of the segmentation map is obtained respectively as
𝑃 * = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐( 𝑃𝑖,𝑐) in a multi-class domain and in
the simpler binary case as 𝑃 * = 1( 𝑃𝑖 ≥ 0.5) , with 1
that is an indicator of whether the condition is satisfied
or not.

3.4.1. Design Choices

The images are converted from 3 channels (RGB) to 1
channel (black and white) and processed as described
in Section 3.2. Calendar images are downsampled using
a Laplacian Pyramid before being fed into the network.

This technique is particularly useful, as each blurring-
downsampling step retains the image’s residuals. Once
the calendar is segmented, each relevant segment can be
upsampled and added back to its corresponding residual
in the pyramid to restore the original resolution. This
design choice is especially effective in addressing the
problem of image resolution, which would otherwise be
too low for proper digitization.

Regarding resizing operations, day segments are scaled
to 32× 32, while month fragments are resized to 128×
512. It is also worth noting that since a ViT [16] is used
in the note digitization phase, word images from the IAM
Words dataset are resized to 224× 224. This dimension
allows the Vision Transformer to correctly apply its ini-
tial convolutional step, which extracts patches using a
16× 16 kernel with a stride of 16× 16.

One final note concerns the
VisualEncoderDecoder model: HuggingFace
provides a wrapper class combining a vision transformer
with a language model decoder. Instead of using the
pre-trained TrOCR [26], a new model instance was
created, modifying the first convolutional layer of
ViT to accommodate the specific input conditions
of this experiment. This adjustment was necessary
because ViT was originally trained on ImageNet [27],
where input images have three channels. In our case,
inputs are reduced to a single channel, both to reduce
computational complexity and because the task involves
calligraphy, which typically uses grayscale intensity and
does not benefit from RGB information.

3.4.2. Training Strategy

The models Calendar Parser and Word Parser are
trained on the calendar dataset and the IAM lines dataset,
respectively, to develop the capability of producing suit-
able segmentation maps as output. For both models, the
Dice Loss (see Section 3.4) is used during the backpropa-
gation phase to update the weights. The overall learning
process is optimized using the Adam optimizer, with an
initial learning rate tuned in the range of 0.001 to 0.0001.
The batch size for the calendar parser is set to 4, while
the best configuration for the word parser is obtained
with a batch size of 8 and gradient accumulation set to
16 in order to simulate a larger batch size and improve
generalization.

The Day Digitizer model is trained on the nu-
meric fonts dataset and fine-tuned on day segments ex-
tracted from the calendar via segmentation. The Month
Digitizer, instead, is trained on a set of month seg-
ments obtained through calendar parsing and heavily
augmented to improve robustness against issues related
to the calendar’s month field, as discussed in Section ??.
Both models use the Adam optimizer with an initial learn-
ing rate of 0.001 and a batch size of 4.
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Table 2
Results of the training achieved by the singular neural compo-
nents: the best candidate for the calendar segmentation is the
one with 6 segmentation classes as output, the month e day
digitizers both show great capability in the recognition and
so in the classification of the calendar fragments extracted
with the segmentation map, word parser is pre-trained over
the IAM Lines dataset and becomes good in performing the
segmentation of the text line into word pieces and the note
digitizer has acquire a good level of digitazion capability even
if it should reach a little bit greater performance in terms of
CER (Char Error Rate) and WER (Word Error Rate).

Experiment Valid F1 CER WER

Calendar Parser 6 0.986 - -
Calendar Parser 37 0.906 - -
Calendar Parser 49 0.942 - -

Month Digitizer 0.937 - -
Day Digitizer 0.978 - -

Words Parser 0.986 - -
Handwriting Digitizer - 0.201 0.272

Table 3
Text classification with BERT LLM: The skills acquired by BERT
during its pre-training make it a perfect candidate for text
classification. The model can be easily adapted to the new
domain with the fine-tuning, and its special context token (i.e.
[CLS]) allows us to achieve a good level of accuracy in text
classification after just few training epochs.

Text Classification Train F1 Valid F1

BERT Text Classifier 0.84 0.77

The Text Classifier is trained using Adam as well,
with a learning rate of 0.00015 and a batch size of 32,
accumulating gradients every 32 steps to simulate an
effective batch size of 32× 32. This practice, commonly
adopted in NLP tasks, is particularly useful when com-
putational resources are limited, as larger effective batch
sizes help the model better differentiate between data
samples and significantly enhance overall performance.

4. Results
In the current section, the results of the experiment are
discussed, highlighting both its strengths and weaknesses.
The training outcomes of the Calendar Parser and the
other neural modules are reported in Table 2, while the
results related to text classification are presented in Ta-
ble 3.

4.1. Calendar Segmentation
The model performs the segmentation of the calendar in
a satisfactory manner. Figure 4 illustrates the six distinct

Figure 4: Result of the segmentation process performed on
the calendar image. Each binary mask correspond to a partic-
ular segmentation value, in the range [ 0, 5]

binary masks that are generated when a specific classi-
fication segment is requested from the model. Class 0,
which corresponds to the None/Contours category, is de-
fined during the training phase because, during manual
segmentation of the calendar for ground truth genera-
tion, some segments do not overlap, leaving holes in the
mask. Class 5 corresponds to the borders of the calendar
and is included to ensure that the model focuses on the
most relevant features—namely, the one-month, two-day,
and three-note segments. Class 4, which corresponds
to empty notes, was incorporated into the segmentation
map to allow the system to eliminate, during digitization,
those areas whose average pixel values are close to 1 (i.e.,
white). In such cases, it can be inferred that the user has
not written any reminders for that day.

4.2. Text line segmentation
The Word Parser achieves good accuracy in generating
binary segmentation masks to separate sentence images
into individual words. The results of this operation are
shown in Appendix ??. As observed there, although the
process used to create binary masks—described in Sec-
tion 3.2—may not always be highly accurate, the model is
often able to learn segmentation patterns from the train-
ing data that, in some cases, allow it to produce masks
even more precise than those generated algorithmically
and used as ground truth.

4.3. Calendar fragments digitization
The calendar note digitizer model operates on word seg-
ments previously extracted by the Word Parser. Each
word image is first processed by the encoder, which di-
vides the image into patches, applies positional embed-
dings, and projects the result into a latent representa-
tion. This latent space is then interpreted by the decoder,
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which maps the encoded features to a sequence of out-
put symbols. In this study, the decoder is constrained to
generate output as a sequence of individual characters,
which are subsequently reassembled into words.

Although character-level decoding may seem less ef-
ficient than full-sentence transcription, it is justified by
the limited contextual information available in calendar
notes. In general, longer sentences allow the model to
capture richer semantic dependencies between words.
However, since calendar entries are typically short an-
notations, the limited context reduces the benefit of
sequence-level modeling. In this scenario, it is more
appropriate to train the model to learn direct mappings
between visual features and their corresponding alpha-
betic symbols.

This approach yields strong performance at both the
character and word levels. Character-level accuracy is
measured as:

acc𝑐ℎ𝑎𝑟 = 1− CER

while word-level accuracy is computed as:

acc𝑤𝑜𝑟𝑑 = 1− WER

Although the model performs well on the dataset used
for pretraining, its performance degrades when applied
to our domain—likely due to differences in resolution
and handwriting style. We conclude that, to improve
accuracy, it is necessary to expand the training dataset
with additional handwriting styles and apply further fine-
tuning to enhance model robustness.

4.4. Text Content Classification
The results of the classification task are reported in Ta-
ble 3 and appear to be satisfactory. BERT has proven to
be an effective tool for achieving the desired outcome,
thanks to its ability to leverage semantic knowledge of
the English language acquired during pretraining. The
classification was performed on a domain consisting of
15 distinct classes. This setting qualifies as a fine-grained
classification task, as opposed to a more general coarse-
grained classification with broader categories. Under this
hypothesis, the trained model can be reused for related
classification tasks without requiring retraining. It is pos-
sible to cluster fine-grained classes into broader seman-
tic groups and perform classification by mapping each
fine-grained label to its corresponding coarse-grained
category.

5. Conclusions
Overall, the experiment demonstrates how a character
recognition task can be addressed through a sequence
of neural models integrated into a single operational

(a) Calendar Segmentation F1 score

(b) Calendar Segmentation loss

Figure 5: Calendar Segmentation Training Results: from the
experiment is it possible to conclude that the model that clas-
sification with only six segments class as output has the best
performance among the three. This is probably due to the fact
the the image structure is too standard.

pipeline. The results, particularly in terms of calendar
segmentation and subsequent month and day classifi-
cation, are satisfactory. However, the same cannot be
said for the note digitizer, which still exhibits several
limitations—both in terms of Word Error Rate and Char-
acter Error Rate. A promising direction for improvement
would be to enrich the training set with a more heteroge-
neous handwriting dataset, incorporating a wider variety
of calligraphic styles. Indeed, data augmentation alone
did not significantly enhance performance when applied
to samples that differ substantially from those seen dur-
ing training and validation. A more diverse dataset could
improve the model’s ability to extract robust features and,
consequently, enhance the overall digitization process.

6. Declaration on Generative AI
During the preparation of this work, the authors
used ChatGPT, Grammarly in order to: Grammar and
spelling check, Paraphrase and reword. After using this
tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the publication’s
content.
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(a) F1 results

(b) Loss Results

Figure 6: Text classification system training results:
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