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Abstract
In this paper we have introduced a new digital adaptive control design algorithms based on the theory of matrix polynomials.
the main contribution of this procedure is based on the so called block pole placement gathered with a MIMO RLS estimator,
the advantages of this control are the non-interacted behavior, simplicity in control design and allowing to relocate not only
the eigenvalues but both eigenstructure are adaptively assigned altering both stability and the rate convergence.
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1. Introduction
Design of controllers for multivariable systems requires
an assessment of structural properties of transfer matri-
ces and matrix polynomials see [1],[2],[3] and [4]. Unlike
to the scalar cases zeros and gains in multivariable sys-
tems have directions which lead to the creation of new
concepts called matrix fraction description (MFD)[5, 6, 7],
Block poles, Block zeros etc... to analyze more easily and
with less effort the multivariable compensator reaching
a desired performances see [8] ,[9] and [10]. The combi-
nation of a pole placement control law with a parameter
estimator or an adaptive law leads to an adaptive pole
placement control (APPC) scheme that can be used to
control a wide class of LTI plants with unknown param-
eters see [11] ,[12] and [13]. An extension of this idea
to the more general case in MIMO systems described by
either left or right matrix fraction lead to adaptive Block
pole placement[14, 15, 16, 17, 18, 19].

In the present work a new MIMO adaptive compensator
design procedure is proposed which offers the designer a
larger degree of freedom[20, 21, 22] (more than the set of
original desired eigenvalues can be assigned) and the al-
gorithm is direct and allows assigning desired eigenstruc-
ture through block poles[23, 24]. Compared to the previ-
ous works and to the best of the authors’ knowledge no
body considered using adaptive block poles placement for
digital systems described by matrix fractions to assign an
eigenstructure using dynamic compensators[25, 26, 27].

The paper is organized as follow, the first section be an in-
troductory to the present work. Then the second section
will include some exist MIMO identification algorithms.
It is followed with the section which deals with adap-
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tive block pole placement (or adaptive matrix polynomial
placement) via MIMO digital compensator design. In the
fourth section we have illustrated an application example
which is the discrete adaptive control of winding process
via a digital compensator design based on the Block struc-
ture assignment[28]. Finally comments and a conclusion
will finish the paper.

2. Some Exist MIMO Identification
Algorithms

System identification will provide us with an approxi-
mate model which is often sufficient to achieve control
goals, therefor we will introduce some exist MIMO iden-
tification algorithms [29], [30], [31] and [32].

2.1. MIMO Least Squares
A MIMO ARMAX (autoregressive moving average with
exogenous excitation) mode

𝐴(𝑞−1)𝑦[𝑘] = 𝐵(𝑞−1)𝑢[𝑘] + 𝐶(𝑞−1)𝑒[𝑘] (1)

can be written in LMFD form as:

𝑦[𝑘] = 𝐴(𝑞−1)
−1
𝐵(𝑞−1)𝑢[𝑘] +𝐴(𝑞−1)

−1
𝐶(𝑞−1)𝑒[𝑘]

(2)
Where 𝑢[𝑘] ∈ 𝑅𝑚 and 𝑦[𝑘] ∈ 𝑅𝑝 are input and output
vectors of the system respectively, while 𝑒[𝑘] ∈ 𝑅𝑝 is a
white-noise signal and the polynomial matrices 𝐴(𝑞−1),
𝐵(𝑞−1) and 𝐶(𝑞−1) have the following structure

𝐴(𝑞−1) = 𝐼𝑝 +𝐴1𝑞
−1 + · · ·+𝐴𝑛𝑎𝑞

−𝑛𝑎

𝐵(𝑞−1) = 𝐵1𝑞
−1 + · · ·+𝐵𝑛𝑏𝑞

−𝑛𝑏

𝐶(𝑞−1) = 𝐼𝑝 + 𝐶1𝑞
−1 + · · ·+ 𝐶𝑛𝑐𝑞

−𝑛𝑐

The objective is to identify the matrix coefficients 𝐴𝑖 ∈
𝑅𝑝×𝑝 and 𝐵𝑖 ∈ 𝑅𝑝×𝑚 of the matrix polynomials
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𝐴(𝑞−1) and𝐵(𝑞−1) assuming in this case𝐶(𝑞−1) = 𝐼𝑝.
Taking the transpose of equation (1) and expanding
𝐴(𝑞−1) and 𝐵(𝑞−1) yield:

𝑒𝑇 [𝑘] =
(︀
𝑦𝑇 [𝑘] + 𝑦𝑇 [𝑘 − 1]𝐴1

𝑇 + · · ·+ 𝑦𝑇 [𝑘 − 𝑛𝑎]𝐴𝑛𝑎
𝑇
)︀

−
(︀
𝑢𝑇 [𝑘 − 1]𝐵1

𝑇 + · · ·+ 𝑢𝑇 [𝑘 − 𝑛𝑏]𝐵𝑛𝑏
𝑇
)︀

= 𝑦𝑇 [𝑘]− 𝜙𝑇 [𝑘]𝜃

Where

𝜙𝑇 [𝑘] =
[︀
−𝑦𝑇 [𝑘 − 1] · · · − 𝑦𝑇 [𝑘 − 𝑛𝑎], 𝑢

𝑇 [𝑘 − 1] · · ·𝑢𝑇 [𝑘 − 𝑛𝑏]
]︀

𝜃 =
[︀
𝐴1

𝑇 · · ·𝐴𝑛𝑎
𝑇 , 𝐵1

𝑇 · · ·𝐵𝑛𝑏
𝑇
]︀𝑇

so, the least squares estimate is

𝜃𝑙�̂� = Φ𝑇Φ
−1

Φ𝑇𝑌 (3)

Where

𝑌 =

⎡⎢⎢⎢⎣
𝑦𝑇 [𝑛+ 1, :]

...

𝑦𝑇 [𝑀, :]

⎤⎥⎥⎥⎦ , Φ =

[︃
Φ𝑦

... Φ𝑢

]︃

Φ𝑦 =

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

−𝑦𝑇 [𝑛, :]

...

−𝑦𝑇 [𝑀 − 1, :]

⎤⎥⎥⎥⎦
· · ·

· · ·

· · ·

⎡⎢⎢⎢⎣
−𝑦𝑇 [𝑛− 𝑛𝑎 + 1, :]

...

−𝑦𝑇 [𝑀 − 𝑛𝑎, :]

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

Φ𝑢 =

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

𝑢𝑇 [𝑛, :]

...

𝑢𝑇 [𝑀 − 1, :]

⎤⎥⎥⎥⎦
· · ·

· · ·

· · ·

⎡⎢⎢⎢⎣
𝑢𝑇 [𝑛− 𝑛𝑏 + 1, :]

...

𝑢𝑇 [𝑀 − 𝑛𝑏, :]

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

with 𝑛 = 𝑛𝑎 and 𝑀 is the number of 𝐼/𝑂 data. To
avoid a large space memory and the large dimension ma-
trix inversion taken by the simple least secure a MIMO
recursive least square algorithm can be handled and elab-
orated to be used in digital software preserving the mem-
ory space.

2.2. MIMO Recursive Least Squares
A recursive implementation of the MIMO least squares
can be written as an algorithm:

Algorithm (MIMO RLS Algorithm)
1- Initialize 𝜃 to zero
2- Let 𝑃 = 𝑐× 𝐼 Where c is a constant
3- For 𝑘 = 𝑛𝑎 : 𝑁 − 1,
𝜓 =

[︁
−𝑦𝑇 [𝑘, :] · · · − 𝑦𝑇 [𝑘 − 𝑛𝑎 + 1, :], 𝑢𝑇 [𝑘, :] · · ·𝑢𝑇 [𝑘 − 𝑛𝑏 + 1, :]

]︁𝑇
𝐺 = (𝑃𝜓)(1 + 𝜓𝑇𝑃𝜓)−1

𝜃 = 𝜃 +𝐺(𝑦𝑇 (𝑘 + 1, :)− 𝜓𝑇 𝜃)

𝑃 = (𝐼 −𝐺𝜓𝑇 )𝑃

end

Example1: consider the next dynamical system with

the following matrices.

𝐴(𝑞−1) =

[︂
1 0
0 1

]︂
+

[︂
0.5 −0.4
0.3 −0.6

]︂
𝑞−1 +

[︂
−0.1 −0.3
0.2 0.3

]︂
𝑞−2

𝐵(𝑞−1) =

[︂
−0.1 −0.9
0.4 0.5

]︂
𝑞−1

A PRBS data sequence of length 𝑁 = 1000 is used to
excite the system. A simulation experiment has been
performed for signal to noise ratio equal to 20𝑑𝑏 for both
outputs. The results of using the next algorithm:

𝑃 = 1000× 𝐼

For k=2:1000-1 do,
𝜓 =

[︁
−𝑦𝑇 [𝑘, :],−𝑦𝑇 [𝑘 − 2 + 1, :], 𝑢𝑇 [𝑘, :]

]︁𝑇
𝐺 = (𝑃𝜓)(1 + 𝜓𝑇𝑃𝜓)−1

𝜃 = 𝜃 +𝐺(𝑦𝑇 (𝑘 + 1, :)− 𝜓𝑇 𝜃)

𝑃 = (𝐼 −𝐺𝜓𝑇 )𝑃

are given below

𝜃 =

⎡⎢⎢⎢⎣
𝐴𝑇

1

𝐴𝑇
2

𝐵𝑇
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[︂
0.5015 0.3047

−0.4006 −0.5953

]︂
[︂

−0.0947 0.2053
−0.2994 0.6957

]︂
[︂

−0.0992 0.4027
−0.8998 0.5021

]︂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Where: The dimension of the matrices are dim(𝜓) =
6×1, dim(𝐺) = 6×1 , dim(𝑃 ) = 6×6, dim(𝜃) = 6×2
and dim(𝐼) = 6× 6.
Comments:
■ The MIMO Recursive least squares reduces the com-
putation load associated with MIMO least squares by
casting it in recursive form which is useful for On-line
system identification.
■ This basic RLS can be improved by introducing a for-
getting factor [31] in order to give more weights to the
most recent data.

2.3. MIMOMaximum Likelihood
For the previous given A MIMO ARMAX model the equa-
tion (1) can be developed to yield

𝐶(𝑞−1)𝑒[𝑘] = (𝑦[𝑘] +𝐴1𝑦[𝑘 − 1] + · · ·+𝐴𝑛𝑎𝑦[𝑘 − 𝑛𝑎])

− (𝐵1𝑢[𝑘 − 1] + · · ·+𝐵𝑛𝑏𝑢[𝑘 − 𝑛𝑏])

Using the Kronecker operator we can be rewrite it as:

𝑒[𝑘] = 𝐼𝑝 ⊗ 𝑦𝑇 [𝑘]𝑐𝑜𝑙(𝐼𝑝)− [𝜂𝑦, 𝜂𝑢, 𝜂𝑒] 𝜃 (4)

Where:

𝜂𝑦 = 𝐼𝑝 ⊗ 𝑦𝑇 [𝑘 − 1] + · · ·+ 𝐼𝑝 ⊗ 𝑦𝑇 [𝑘 − 𝑛𝑎]

𝜂𝑢 =− 𝐼𝑝 ⊗ 𝑢𝑇 [𝑘 − 1]− · · · − 𝐼𝑝 ⊗ 𝑢𝑇 [𝑘 − 𝑛𝑏]

𝜂𝑒 =− 𝐼𝑝 ⊗ 𝑒𝑇 [𝑘 − 1]− · · · − 𝐼𝑝 ⊗ 𝑒𝑇 [𝑘 − 𝑛𝑐]
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𝜃 = [𝜃𝐴, 𝜃𝐵 , 𝜃𝐶 ]
𝑇

𝜃𝐴 =
[︁
𝑐𝑜𝑙(𝐴𝑇

1 )
𝑇 · · · 𝑐𝑜𝑙(𝐴𝑇

𝑛𝑎
)
𝑇
]︁

𝜃𝐵 =
[︁
𝑐𝑜𝑙(𝐵𝑇

1 )
𝑇 · · · 𝑐𝑜𝑙(𝐵𝑇

𝑛𝑏
)
𝑇
]︁

𝜃𝐶 =
[︁
𝑐𝑜𝑙(𝐶𝑇

1 )
𝑇 · · · 𝑐𝑜𝑙(𝐶𝑇

𝑛𝑐
)
𝑇
]︁

The best estimate of the parameter vector �̂� can be ob-
tained using a numerical minimization algorithm such
as:

∙ Steepest descent method: 𝜃𝑘+1 = 𝜃𝑘 − 𝜆∇𝑇𝐸

∙ Gauss Newton method: 𝜃𝑘+1 = 𝜃𝑘 − (∇𝑇∇)−1∇𝑇𝐸

With

∇ =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑒[𝑚+ 1]

𝜕𝜃𝑇

...

𝜕𝑒[𝑁 ]

𝜕𝜃𝑇

⎤⎥⎥⎥⎥⎥⎦, 𝐸 =

⎡⎢⎢⎢⎢⎣
𝑒[𝑚+ 1]

...

𝑒[𝑁 ]

⎤⎥⎥⎥⎥⎦
MIMO ML Algorithm:
Step1:

For 𝑘 = 𝑚+ 1 to 𝑁
■ Compute the prediction error

�̂�[𝑘] = �̂�(𝑞−1)𝑦[𝑘] − �̂�(𝑞−1)𝑢[𝑘] − 𝐶1�̂�[𝑘 − 1] · · · −
𝐶𝑛𝑐 �̂�[𝑘 − 𝑛𝑐]

■ Compute the partial derivatives of 𝑒[𝑘]:
𝜕𝑒[𝑘]

𝜕𝜃𝑇

The elements of
𝜕𝑒[𝑘]

𝜕𝜃𝑇
can be computed through MIMO

IIR (Infinite Impulse Response ) digital filtering using the
updated matrix coefficients estimates �̂�𝑖 of the matrix
polynomial �̂�(𝑞−1)

Step2: Estimate the parameter vector 𝜃 using

𝜃𝑘+1 = 𝜃𝑘 − 𝜆∇𝑇𝐸 or 𝜃𝑘+1 = 𝜃𝑘 − (∇𝑇∇)−1∇𝑇𝐸

with 𝑚 = 𝑛𝑎 , 0 < 𝜆 < 1 and 𝑁 is the number of 𝐼/𝑂
data.

Step3: If no convergence, go to step1.

Example2: Let’s consider the 2-input
2-output process (ie, p=m=2) described
in LMFD by its polynomial matrices as
𝐴(𝑞−1) =

[︂
1 0
0 1

]︂
+

[︂
0.5 −0.4
0.3 −0.6

]︂
𝑞−1 +

[︂
−0.1 −0.3
0.2 0.3

]︂
𝑞−2

𝐵(𝑞−1) =

[︂
−0.1 −0.9
0.2 0.3

]︂
𝑞−1 +

[︂
−0.8 −0.3
0.1 0.7

]︂
𝑞−2

𝐶(𝑞−1) =

[︂
1 0
0 1

]︂
+

[︂
0.7 0.2
0.3 −0.9

]︂
𝑞−1 +

[︂
0.3 0.4
−0.5 0.7

]︂
𝑞−2

The aim is to estimate the matrix polynomials , and
𝐴(𝑞−1) 𝐵(𝑞−1) and 𝐶(𝑞−1) from I/O data contami-
nated by white noise. A PRBS data sequence of length

𝑁 = 1000 is used to excite the system. A simulation
experiment has been performed for signal to noise ratio
equal to 20𝑑𝑏 for both outputs.

𝜕𝑒[𝑘]

𝜕(𝜃𝐴)
=

[︂
𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐴𝑇
1 ))

𝑇
,

𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐴𝑇
2 ))

𝑇

]︂
=

[︁
𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑦𝑇 [𝑘 − 1]

]︀
, 𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑦𝑇 [𝑘 − 2]

]︀]︁
𝜕𝑒[𝑘]

𝜕(𝜃𝐵)
=

[︂
𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐵𝑇
1 ))

𝑇
,

𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐵𝑇
2 ))

𝑇

]︂
= −

[︁
𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑢𝑇 [𝑘 − 1]

]︀
, 𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑢𝑇 [𝑘 − 2]

]︀]︁
𝜕𝑒[𝑘]

𝜕(𝜃𝐶)
=

[︂
𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐶𝑇
1 ))𝑇

,
𝜕𝑒[𝑘]

𝜕(𝑐𝑜𝑙(𝐶𝑇
2 ))𝑇

]︂
= −

[︁
𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑒𝑇 [𝑘 − 1]

]︀
, 𝐶(𝑞−1)

−1 [︀
𝐼𝑝 ⊗ 𝑒𝑇 [𝑘 − 2]

]︀]︁

and finally we can form
𝜕𝑒[𝑘]

𝜕(𝜃)𝑇
as:

𝜕𝑒[𝑘]

𝜕(𝜃)𝑇
=

[︂
𝜕𝑒[𝑘]

𝜕(𝜃𝐴)
,
𝜕𝑒[𝑘]

𝜕(𝜃𝐵)
,
𝜕𝑒[𝑘]

𝜕(𝜃𝐶)

]︂
Where it elements can be computed through MIMO IIR
(Infinite Impulse Response) digital filtering using the up-
dated matrix coefficients estimates �̂�1,�̂�2 of the matrix
polynomial:

�̂�(𝑞−1) = 𝐼2 + �̂�1𝑞
−1 + �̂�2𝑞

−2

Then using the Gauss Newton method to update the
parameter vector 𝜃 gives the results shown below:

�̂�𝐴
𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4932
−0.4055
0.2963
−0.6029
−0.1022
−0.2968
0.1975
0.3040

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, �̂�𝐵

𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1056
−0.8996
0.1954
0.3014
−0.8017
−0.2929
0.1018
0.7053

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, �̂�𝐶

𝑇
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7225
0.1946
0.3023
0.9205
0.3202
0.4200
−0.4972
0.7518

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Comments: The use of the Kronecker operator , block fil-
tering using MIMO IIR (Infinite Impulse Response) digital
filtering using the updated matrix coefficients estimates
are the main features of the MIMO Maximum Likelihood
algorithm. Better process and noise dynamics estimates
can be achieved by increasing the number of samples or
increasing the signal to noise ratio.

3. Adaptive compensator design

3.1. Matrix Fraction Discerption
Matrix Faction Description (MFD) is a representation of
a matrix transfer function of a multivariable system as
a ratio of two polynomial matrices. The MFD approach
is based on the fact that the Transfer Function Matrices
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𝐻(𝑞−1) and 𝐹 (𝑞−1) of a MIMO system described by the
vector difference equation

𝑦[𝑘] = 𝐻(𝑞−1)𝑢[𝑘] + 𝐹 (𝑞−1)𝑒[𝑘] (5)

can be represented as ratio of two polynomial matrices.
However, because matrices do not commute in general,
we note that there are two representations for the
transfer function matrix 𝐻(𝑞−1) (or 𝐹 (𝑞−1)) as a ratio
of two polynomial matrices [8] which are:

∙ Right Matrix Fraction Description (RMFD)

𝐻(𝑞−1) = 𝐶(𝑞−1)𝐷(𝑞−1)
−1

(6)

∙ Left Matrix Fraction Description (LMFD)

𝐻(𝑞−1) = 𝐴(𝑞−1)
−1
𝐵(𝑞−1) (7)

Where the matrix polynomials𝐴(𝑞−1), 𝐵(𝑞−1), 𝐶(𝑞−1)
and 𝐷(𝑞−1) have the following structures

𝐴(𝑞−1) =𝐼𝑝 +𝐴1𝑞
−1 + ...+𝐴𝑛𝑎𝑞

−𝑛𝑎

𝐵(𝑞−1) =𝐵0 +𝐵1𝑞
−1 + ...+𝐵𝑛𝑏𝑞

−𝑛𝑏

𝐶(𝑞−1) =𝐶0 + 𝐶1𝑞
−1 + ...+ 𝐶𝑛𝑐𝑞

−𝑛𝑐

𝐷(𝑞−1) =𝐼𝑚 +𝐷1𝑞
−1 + ...+𝐷𝑛𝑑𝑞

−𝑛𝑑

The matrix coefficients have the following dimensions:
𝐴𝑖 ∈ R𝑝×𝑝, 𝐵𝑖 ∈ R𝑝×𝑚, 𝐶𝑖 ∈ R𝑝×𝑚 and 𝐷𝑖 ∈
R𝑚×𝑚

Remark1: it is possible to obtain either LMFD or RMFD
from the other only by solving the following matrix equa-
tion

𝐴(𝑞−1)𝐶(𝑞−1) = 𝐵(𝑞−1)𝐷(𝑞−1) (8)

This last matrix equality can be expanded and rewritten
in more compact form after rearrangement into

𝑆𝐴𝐵𝑆𝐶𝐷 = 𝑆𝐵

Where:

𝑆𝐴𝐵 is the Silvester matrix and

𝑆𝐶𝐷 =
[︁
𝐶1

𝑇 , 𝐶2
𝑇 , · · · , 𝐶𝑛𝑏

𝑇 ,−𝐷1
𝑇 , · · · ,−𝐷𝑛𝑎

𝑇
]︁𝑇

𝑆𝐵 =
[︁
𝐵1

𝑇 , 𝐵2
𝑇 , · · · , 𝐵𝑛𝑏

𝑇 , 𝑂𝑝×𝑚
𝑇 , 𝑂𝑝×𝑚

𝑇 , · · · , 𝑂𝑝×𝑚
𝑇
]︁𝑇

and the solution vector is

𝑆𝐶𝐷 = 𝑆+
𝐴𝐵𝑆𝐵

3.2. Nonadaptive Compensator Design
Consider now the unity feedback system in the next
figure. The plant is described by a 𝑝×𝑚 proper rational
matrix (RMFD)

𝐻(𝑞−1) = 𝐶(𝑞−1)𝐷(𝑞−1)
−1

(9)

The compensator to be designed is required to have a
𝑚× 𝑝 proper rational matrix (LMFD).

𝐺𝑐(𝑞
−1) = 𝐷𝑐(𝑞

−1)
−1
𝑁𝑐(𝑞

−1) (10)

Hence the closed-loop transfer matrix is:

H(q−1)

C(q−1)D(q−1)
−1

Gc(q
−1)

Dc(q
−1)

−1
Nc(q

−1)
∑ y[k]r[k]

-+

Figure 1: RMFD Compensator Structure

𝐺𝑐𝑙(𝑞
−1) =

(︀
𝐼 +𝐻(𝑞−1)𝐺𝑐(𝑞

−1)
)︀−1

𝐻(𝑞−1)𝐺𝑐(𝑞
−1)

(11)
Using the identity:(𝐼 +𝐴𝐵)−1𝐴 = 𝐴(𝐼 +𝐵𝐴)−1 we
get:

𝐺𝑐𝑙(𝑞
−1) = 𝐻(𝑞−1)

(︀
𝐼 +𝐺𝑐(𝑞

−1)𝐻(𝑞−1)
)︀−1

𝐺𝑐(𝑞
−1)

(12)
Which can be written as:

𝐺𝑐𝑙(𝑞
−1) = 𝐶(𝑞−1)𝐷𝑓 (𝑞

−1)
−1
𝑁𝑐(𝑞

−1) (13)

Where 𝐷𝑓 (𝑞
−1) is called the Diophantine matrix equa-

tion and defined by the next formula:

𝐷𝑓 (𝑞
−1) = 𝐷𝑐(𝑞

−1)𝐷(𝑞−1) +𝑁𝑐(𝑞
−1)𝐶(𝑞−1) (14)

Hence the design problem becomes: Given 𝐷(𝑞−1) and
𝐶(𝑞−1) and an arbitrary 𝐷𝑓 (𝑞

−1) , find 𝐷𝑐(𝑞
−1) and

𝑁𝑐(𝑞
−1) to satisfy this compensator equation. We note

that the roots of𝐷𝑓 (𝑞
−1) are the poles of the closed-loop

transfer matrix 𝐺𝑐𝑙(𝑞
−1) , and the solvents of 𝐷𝑓 (𝑞

−1)
are block-poles of 𝐺𝑐𝑙(𝑞

−1). The compensator design,
to achieve arbitrary block pole placement for the feed-
back configurations described previously, requires the
solution of the compensator equation (14). Various nu-
merical algorithms, for solving the Diophantine equation,
have been developed and different approaches have been
attempted [33] and [34]. The method proposed in this
section is developed from the results obtained by Chen
[8]. The idea is basically to transform the given matrices
into a set of linear algebraic equations, which leads to
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the construction of a Sylvester matrix (or a generalized
resultant matrix of {𝐵(𝑞−1), 𝐴(𝑞−1)}). The solution is
obtained by applying searching algorithms for linearly
dependent rows of the obtained matrix.

The Recursive Search Algorithm:
Given a set of 𝑛-dimensional rows 𝑇1, 𝑇2, ..., 𝑇𝑝 , an
𝑛 × 𝑛 matrix 𝑃 (𝑘) is determined recursively for 𝑘 =
1, 2, ..., 𝑝
1. initialize 𝑃 (0) = 𝐼𝑛( 𝑛× 𝑛 identity matrix)
2. for 𝑘 = 1, 2, ...𝑝 do
if 𝑇𝑘𝑃 (𝑘 − 1)𝑇𝑇

𝑘 ̸= 0 , then

𝑃 (𝑘) = 𝑃 (𝑘 − 1)−
[︀
𝑃 (𝑘 − 1)𝑇𝑇

𝑘

]︀ [︀
𝑃 (𝑘 − 1)𝑇𝑇

𝑘

]︀𝑇
𝑇𝑘𝑃 (𝑘 − 1)𝑇𝑇

𝑘
and 𝑇𝑘 is linearly independent of the previous rows
else 𝑃 (𝑘) = 𝑃 (𝑘 − 1)
and 𝑇𝑘 is linearly dependent.

3.3. Adaptation Mechanism Devolvement
Classical controllers cannot solve the problem of
uncertainties in dynamic systems, because the change in
the process parameters cause a change in that operating
conditions which leads to technical matters in the system
(Instability and undesired performance) see [12] and
[13]. Hence the adaptive control theory arise naturally
when we surprised by this matter of uncertainties,
therefore a typical problem is a parameter adjustment
rule that is guaranteed to results in a stable closed loop
system. Adaptive controllers can be divided into two
main groups called model reference adaptive system
(MRAS) and the self-tuning regulators (STRs). In this
work we focus on the second category which is based on
the parametric estimation, and the next figure show the
overall mechanism. Algorithm:

Plant H(s)D/A A/D

On_Line Parameter
Estimation

Calculation Of The
Controller Parameters

Controller

∆H

r[k]
y[k]

Nois

Figure 2: Indirect adaptive control Structure

Step1:

-Enter the values of: 𝑀, 𝑛𝑎, 𝑛𝑏, 𝑃 = 𝑐.𝐼
-Enter the nominal values of the 𝐷𝑖 ∈ 𝑅𝑚×𝑚 and
𝐶𝑖 ∈ 𝑅𝑝×𝑚

-Initiate �̂�(𝑞−1) and �̂�(𝑞−1) by the values of𝐷𝑖 ∈ 𝑅𝑚×𝑚

and 𝐶𝑖 ∈ 𝑅𝑝×𝑚

For 𝑘 = 𝑛𝑎 :𝑀 do

Step2:

Enter the desired Block poles 𝑅𝑖𝑑 ∈ 𝑅𝑚×𝑚 to be placed
and construct the corresponding matrix polynomial
𝐷𝑓 (𝑞

−1)
Then compose the Diophantine equation as:

𝐷𝑓 (𝑞
−1) =

(︁
�̂�𝑐(𝑞

−1)�̂�(𝑞−1) + �̂�𝑐(𝑞
−1)�̂�(𝑞−1)

)︁
Now solve the Diophantine equation using recursive
search algorithm we obtain �̂�𝑐(𝑞

−1) and �̂�𝑐(𝑞
−1)

Step3:

Give the desired trajectory sequence 𝑟[𝑘].
Compute the closed loop output and the control law by:

𝑦[𝑘] = �̂�(𝑞−1)
(︁
�̂�𝑐(𝑞

−1)�̂�(𝑞−1) + �̂�𝑐(𝑞
−1)�̂�(𝑞−1)

)︁−1

�̂�𝑐(𝑞
−1)𝑟[𝑘]

𝑢[𝑘] = �̂�𝑐(𝑞
−1)

−1
�̂�𝑐(𝑞

−1)𝑢𝑐[𝑘]

𝑢𝑐[𝑘] = 𝑟[𝑘]− 𝑦[𝑘]

Step4:

Identify the plant parametrs using MIMO-RLS:

𝜓 =
[︁
−𝑦𝑇 [𝑘, :] · · · − 𝑦𝑇 [𝑘 − 𝑛𝑎 + 1, :], 𝑢𝑇 [𝑘, :] · · ·𝑢𝑇 [𝑘 − 𝑛𝑏 + 1, :]

]︁𝑇
𝐺 = (𝑃𝜓)(1 + 𝜓𝑇𝑃𝜓)−1

�̂�𝐴𝐵 = �̂�𝐴𝐵 +𝐺(𝑦𝑇 (𝑘 + 1, :)− 𝜓𝑇 �̂�𝐴𝐵)

𝑃 = (𝐼 −𝐺𝜓𝑇 )𝑃

Step5:

Updating the matrix coefficients 𝜃𝐴𝐵 = �̂�𝐴𝐵 .
Convert LMFD to RMFD using Silvester Matrix equation

�̂�𝐶𝐷 = 𝑓
(︀
𝐴(𝑞−1), 𝐵(𝑞−1)

)︀
= 𝑓(𝜃𝐴𝐵)

Getting �̂�𝑖 ∈ 𝑅𝑝×𝑚 and �̂�𝑖 ∈ 𝑅𝑚×𝑚 and go to Step:2

4. Application to Winding process
Winding systems are encountered in a wide variety of
industrial plants such as rolling mills in the steel indus-
try, plants involving web conveyance including coating,
paper-making and polymer film extrusion processes. The
main role of a winding process is to control the web con-
veyance in order to avoid the effects of friction and slid-
ing, as well as the problems of material distortion and can
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also damage the quality of the final product [35]. The il-
lustrative example used here is modeled by identification
of RMFD using constrained PEM see [36].

Figure 3: The winding process

The system inputs and outputs are:

𝑢1 : setpoint of motor current 1
𝑢2 : setpoint of motor angular speed 2
𝑢3 : setpoint of motor current 3
𝑦1 : web tension between motors 1 and 2 (𝑇1)
𝑦2 : web tension between motors 2 and 3 (𝑇3)
𝑦3 : motor angular speed 2 (Ω2)

Referring to [36] the winding is described by the follow-
ing RMFD model

𝑦[𝑘] = 𝐶(𝑞−1)𝐷(𝑞−1)
−1
𝑢[𝑘]

Where:

𝐷(𝑞−1) = 𝐼3 +𝐷1𝑞
−1 +𝐷2𝑞

−2

𝐶(𝑞−1) = 𝐶1𝑞
−1 + 𝐶2𝑞

−2

With the following matrix coefficients:

𝐷1 =

[︃
−2.2783 −0.06775 0.55208
1.8518 −1.6639 −2.9525
−1.1294 −0.17974 −0.18159

]︃

𝐷2 =

[︃
1.2801 0.067705 −0.5535
−1.8033 0.67218 2.8754
1.0791 0.17193 −0.73911

]︃

𝐶1 =

[︃
0.0042909 0.0063885 −0.012831
0.066877 0.008738 −0.12115

0.00077228 0.030226 0.00060105

]︃

𝐶2 =

[︃
0.010399 −0.0027112 −0.015017
−0.14411 −0.020832 0.24284
0.048767 −0.021682 −0.079244

]︃

Remark2: In order to simplify the control procedure
let we chose a fixed structure compensator of 1𝑠𝑡 order
With constant gain pre-compensator

𝑢[𝑘] = (�̂�𝑐0 + �̂�𝑐1𝑞
−1)

−1
(�̂�𝑐0 + �̂�𝑐1𝑞

−1)(𝑟[𝑘]− 𝑦[𝑘])

𝐹 = lim
𝑞→1

[︁
�̂�(𝑞−1)𝐷𝑓 (𝑞

−1)
−1
�̂�𝑐(𝑞

−1)
]︁−1

Then the desired matrix polynomial 𝐷𝑓 (𝑞
−1) is of order

three, let we now chose thee Block roots (Solvents) to be
placed

𝑅1 =

(︃
0.0000 −0.0082 0.0033
0.0306 −0.0533 0.0228
0.0028 −0.0041 −0.0045

)︃
, 𝜎1(𝑅1) =

⎛⎝ −0.046
−0.0053
−0.0065

⎞⎠

𝑅2 =

(︃
0.0607 −0.0201 −0.0278
0.1411 −0.0482 −0.0718
0.0875 −0.0267 −0.0432

)︃
, 𝜎2(𝑅2) =

⎛⎝ −0.033
0.0074
−0.0051

⎞⎠

𝑅3 =

(︃
0.0499 −0.0223 −0.0250
0.0156 −0.0023 −0.0133
0.0572 −0.0285 −0.0302

)︃
, 𝜎3(𝑅3) =

⎛⎝ 0.0054
−0.010
0.022

⎞⎠
Where: 𝜎1(𝑅1), 𝜎2(𝑅2) and 𝜎3(𝑅3) are the spectrum
of those block roots. Hence to reconstruct the desired
matrix polynomial we orient the reader to see [9] and
[4].

𝐷𝑓𝑞
−1 = 𝐼3 +𝐷𝑓1𝑞

−1 +𝐷𝑓2𝑞
−2 +𝐷𝑓3𝑞

−3

Solving the Diophantine matrix equation yield to the
linear system of equations:⎡⎢⎢⎢⎢⎢⎢⎣
�̂�𝑐0

𝑇

�̂�𝑐1
𝑇

�̂�𝑐0
𝑇

�̂�𝑐1
𝑇

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝐼𝑇3 𝑂𝑇

3 𝑂𝑇
3 𝑂𝑇

3

𝐷1
𝑇 𝐼𝑇3 𝐶1

𝑇 𝑂𝑇
3

𝐷2
𝑇 𝐷1

𝑇 𝐶2
𝑇 𝐶1

𝑇

𝑂𝑇
3 𝐷2

𝑇 𝑂𝑇
3 𝐶2

𝑇

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

𝐼𝑇3

𝐷𝑓1
𝑇

𝐷𝑓2
𝑇

𝐷𝑓3
𝑇

⎤⎥⎥⎥⎥⎦
The nominal values of the compensator coefficients are
obtained according to this last equation.

Remark3: assuming that the system uncertainties are
of 7% of the nominal one, means that 𝐻(𝑞−1) =
𝐻0(𝑞

−1) + ∆𝐻(𝑞−1)
Now starting the adaptive block pole placement algo-
rithm we obtain the next results as shown in figure It can
be observed from the above simulation results that the
algorithm developed in this paper able to assign block
poles guaranteing the system stability even if some sud-
den uncertainties occurs and with smaller tracking errors.
The influence of the parameter change don’t affect the
designed digital compensator due to the goodness of its
adaptation mechanism, also simulation results show that
relatively small interactions for the closed-loop system
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Figure 4: Adaptive Trajectory Tracking and Error Signals

when the setpoint of one of the variables is changed.
Which means that the closed loop system is perfectly and
complectly decoupled, This is because the control action
produced by the MFD in both variables acts simultane-
ously on both manipulated variables as soon as a change
in the reference of any of them is detected.

5. Conclusion
In this paper, a new adaptive Block pole-placement con-
trol for MIMO discrete-time systems has been considered.
This control scheme includes the MIMO RLS estimation
algorithm and Block pole-placement control, which is
used not only to identify the unknown plant parameters
but to achieve some specified performances. The pro-
posed control scheme indeed improves both regulation
and tracking error.

6. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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