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Abstract
The COVID-19 pandemic has exposed the fragility of healthcare systems, especially in the management of Intensive Care
Unit (ICU) resources. Accurate forecasting of ICU occupancy is essential to support public health decisions and to prevent
saturation during epidemic waves. In this work, we propose a predictive model based on Long Short-Term Memory (LSTM)
neural networks, combined with Monte Carlo dropout to estimate model uncertainty. This approach allows us to generate
probabilistic forecasts of ICU demand, including confidence intervals that help quantify prediction reliability.

We apply the model to real-world data from California counties, using historical ICU occupancy records collected during
the pandemic. We show that the model can anticipate trends up to several weeks in advance, maintaining good accuracy and
consistent uncertainty calibration. To assess robustness, we compare the proposed LSTM model with simpler architectures,
including GRU-based and feedforward neural networks, confirming the superior performance of LSTM in capturing complex
temporal patterns.

Our results highlight the importance of integrating uncertainty estimates into forecasting systems, particularly in high-risk
domains such as healthcare. The method is computationally efficient, easy to implement, and adaptable to other time series
prediction tasks where uncertainty awareness is required.
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1. Introduction
The COVID-19 pandemic has revealed the limitations and
vulnerabilities of healthcare systems across the world
[1, 2]. One of the most critical challenges faced during
the emergency phase was the saturation of Intensive
Care Units (ICUs), which rapidly became unable to ac-
commodate the growing number of patients requiring
urgent and life-saving treatments [3, 4]. This situation
has demonstrated the importance of predictive tools that
can support healthcare systems in advance planning and
resource allocation [5, 6].

In many countries, governments and hospitals were
forced to make complex decisions regarding the distri-
bution of limited resources under uncertain and rapidly
evolving conditions [7, 8]. Often, these decisions had to
be taken without the support of reliable forecasts, leading
to either overestimations, with underutilized resources,
or underestimations, with tragic consequences for pa-
tient care. This lack of foresight exposed how fragile and
reactive most infrastructures still are when it comes to
managing exceptional pressure over extended periods of
time [9].

Within this critical context, it has become evident that
the ability to forecast future resource needs is not merely
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a technical problem, but a strategic component of health
governance [10]. Forecasting the number of ICU beds
required, even with a moderate level of uncertainty, can
allow health authorities to organize staff, reallocate equip-
ment, delay non-urgent procedures, or coordinate pa-
tient transfers more effectively [11]. The accuracy and
trustworthiness of such predictions directly influence
the capacity to reduce avoidable mortality, limit system
overload, and optimize healthcare delivery under crisis
conditions.

From this context, the need for robust models capable
of forecasting ICU occupancy became evident. However,
the nature of the data involved in pandemic scenarios is
deeply uncertain. The transmission rate of the virus, the
effects of governmental restrictions, individual behaviors,
and emerging virus variants all contribute to creating a
system with high variability and limited predictability
[12, 13]. Therefore, classical deterministic models are
not sufficient. It becomes essential to account for the
uncertainty associated with predictions.

One of the central problems in predictive modeling is
not only generating a forecast, but also knowing how
much that forecast can be trusted [14]. Traditional mod-
els usually produce a single estimate for each future value,
implicitly assuming a high level of confidence. However,
in situations where data is sparse, noisy, or rapidly chang-
ing, this assumption is unrealistic and potentially dan-
gerous. In the case of ICU demand during a pandemic,
overconfident predictions can lead to insufficient prepa-
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ration, while excessively conservative estimates can lead
to the waste of precious resources [15].

To address this, we adopt the concept of model un-
certainty as formulated by Gal and Ghahramani [16, 17],
who demonstrated that dropout, typically used for reg-
ularization in deep learning, can also be interpreted as
an approximate Bayesian inference method. This insight
allows us to construct neural models that do not just
provide point predictions, but also quantify the uncer-
tainty associated with those predictions. This probabilis-
tic information is crucial in high-stakes contexts, where
decisions must often be made even when the available
data is incomplete or ambiguous [18].

In this work, we apply this methodology to a Long
Short-Term Memory (LSTM) network [19], a class of re-
current neural networks particularly suited to model tem-
poral dependencies in sequential data. These networks
are able to retain and exploit long-term dependencies
in time series data, making them particularly effective
for modeling the evolution of ICU admissions over time
[20, 21]. By applying Monte Carlo (MC) dropout dur-
ing both training and inference, our model is capable of
generating probabilistic forecasts of ICU occupancy that
include confidence intervals, enabling decision-makers
to interpret the model outputs with greater caution and
awareness.

We test this approach on real-world data concerning
ICU occupancy across counties in California during the
COVID-19 pandemic, with the goal of providing a flex-
ible and interpretable forecasting system. The results
indicate that the model is able to provide meaningful
forecasts, even several weeks in advance, and that the
uncertainty estimation can serve as a key element in the
process of healthcare planning. In addition to evaluating
prediction accuracy, we also assess the calibration of the
uncertainty estimates, that is, how well the predicted
confidence intervals match the true variability of future
data.

In the following sections, we will review related works
(Section 2), present the theoretical foundations of LSTM
networks and model uncertainty (Section 3.1), describe
our proposed model in detail (Section 4), report on exper-
imental results and model performance (Section 5), and
finally discuss the implications, limitations, and future
directions of our research (Section 6).

2. Related Works
The prediction of ICU occupancy during health emer-
gencies, such as the COVID-19 pandemic, has received
increasing attention from the scientific community. This
interest is motivated by the urgent need to support health-
care systems in optimizing the use of limited resources,
especially in times of crisis.

Several studies have explored the application of ma-
chine learning techniques for forecasting hospital ad-
missions, ICU transfers, and mortality risk. These ap-
proaches typically rely on the analysis of clinical data,
epidemiological curves, and time series models. For in-
stance, Chamola and Sikdar [22] provided a broad review
of artificial intelligence methods applied to disaster and
pandemic management, including early warning systems,
resource allocation strategies, and decision support tools.
Their work highlights the potential of AI to improve
preparedness and response capacity in large-scale emer-
gencies.

A specific example of this approach is presented by
Cheng et al. [23], who developed a risk prediction tool
using Random Forests to estimate the probability of ICU
transfer within 24 hours. This tool is based on electronic
health record data and allows physicians to identify high-
risk patients in advance. Similarly, Ruyssinck et al. [24]
proposed a model for ICU bed prediction using Random
Survival Forests. In their study, the Sequential Organ
Failure Assessment (SOFA) score was used as a key in-
put, and the model outperformed traditional machine
learning methods for survival analysis in critical care.
Another relevant contribution is the work by Li et al.
[25], who employed a Deep Neural Network (DNN) com-
bined with a feature selection method (Boruta algorithm)
to build a risk score for ICU admission and patient mor-
tality. Their model showed good performance, especially
in identifying the most relevant clinical predictors.

Beyond direct ICU prediction, many authors have pro-
posed machine learning systems designed to detect early
warning signals and support preventive decision-making.
For instance, studies during the COVID-19 pandemic
have explored how to integrate clinical markers with psy-
chological, behavioral, and societal factors. A growing
number of works has highlighted the potential of com-
bining multimodal data, including physiological signals
and high-level cognitive features, to support healthcare
response strategies.

Notable efforts have also focused on the detection
and classification of disinformation related to COVID-19,
which may indirectly affect the behavior of the popu-
lation and the load on hospital systems. De Magistris
et al. [26] proposed an explainable fake news detection
system combining named entity recognition and stance
classification, showing that misinformation during a pan-
demic can propagate uncertainty and reduce adherence
to preventive measures, thus indirectly affecting hospital
saturation patterns.

Complementary studies explored the psychological
and neurocognitive consequences of the pandemic, es-
pecially in relation to post-COVID stress syndromes. In
particular, Russo et al. [27] proposed an innovative ap-
proach using remote EMDR therapy to treat long-COVID-
related traumatic disorders. Such works are relevant be-
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cause they reveal how the pandemic impacted not only
physical but also psychological health, both of which can
influence the demand on healthcare facilities.

From a methodological point of view, advanced clus-
tering and statistical learning techniques have been used
to analyze both behavioral data and physiological signals
in the context of pandemic-related stress. For example,
Ponzi et al. [28] used Expectation Maximization and
Gaussian Mixture Models to investigate the differences
in psychodiagnostic profiles before and after the pan-
demic, using Rorschach test data. These types of investi-
gations, though not focused directly on ICU occupancy,
enrich the broader understanding of pandemic impacts
on healthcare systems.

Moreover, the use of computer vision methods for
surveillance and prevention has seen widespread exper-
imentation. De Magistris et al. [29] developed an auto-
matic CNN-based system for face mask detection, tested
in real-world scenarios during the COVID-19 emergency.
Monitoring compliance with mask-wearing policies is
another aspect that, indirectly, affects the spread of in-
fection and therefore the load on ICU infrastructures.

While these models and applications provide impor-
tant insights, most of them focus on patient-level pre-
diction using static clinical data, or address secondary
aspects related to prevention and communication. In
contrast, our approach focuses on a population-level pre-
diction of ICU bed usage, considering temporal dynam-
ics and variability over time. This aspect is crucial in a
pandemic, where the number of new infections and hos-
pitalizations can change rapidly due to social behavior,
public policies, and virus mutations.

The closest works to our approach are the studies
by Gal and Ghahramani [16, 17], who introduced the
concept of model uncertainty in neural networks using
dropout as a Bayesian approximation. Their framework
allows the estimation of predictive uncertainty without
requiring a full Bayesian treatment, which would be com-
putationally expensive. This idea is especially valuable
in the healthcare domain, where making overconfident
predictions can lead to serious consequences, such as
underestimating ICU demand or delaying interventions.

Therefore, our work builds upon these contributions
by integrating the dropout-as-Bayesian approach with
LSTM networks for time series forecasting. This combi-
nation enables us to provide not only accurate predictions
of ICU occupancy, but also to associate each prediction
with a quantitative measure of uncertainty. This feature
is fundamental in supporting cautious and informed de-
cisions in critical contexts such as healthcare planning
during a pandemic.

3. Background
In this section we present the main theoretical founda-
tions upon which our work is built. The aim is to provide
the conceptual and methodological background needed
to understand the structure and rationale of the model we
propose. Forecasting ICU occupancy during a pandemic
presents a unique combination of challenges: on one
hand, the system evolves over time in a non-linear and
context-dependent way; on the other hand, any predic-
tive model must be able to represent and communicate its
own uncertainty to support decision-making processes
in high-risk environments.

To address these requirements, our work is based on
two fundamental components. The first is the use of
Long Short-Term Memory (LSTM) networks, a class of
recurrent neural networks specifically designed to pro-
cess sequential data. LSTMs are particularly well suited
to time series forecasting tasks where past values influ-
ence future observations, even across long temporal gaps.
Their internal structure allows them to capture dependen-
cies over time more effectively than traditional models,
making them ideal for modeling ICU admission patterns,
which often follow delayed and seasonally modulated
trends.

The second key component is the use of Monte Carlo
dropout, a technique that allows us to estimate the pre-
dictive uncertainty of deep learning models in a com-
putationally efficient way. Instead of relying on fully
Bayesian neural networks, which are difficult to imple-
ment and often computationally prohibitive, Monte Carlo
dropout enables approximate Bayesian inference through
stochastic forward passes in standard architectures. This
method allows us to associate each forecast with a confi-
dence interval, which is essential in a healthcare context
where predictions cannot be blindly trusted, and caution
is required in interpreting the results.

These two elements—temporal modeling through
LSTM networks and uncertainty estimation through
dropout interpreted in a Bayesian framework—are then
combined in our architecture to construct a robust, flexi-
ble, and interpretable forecasting model. The following
subsections describe each component in detail.

3.1. Long Short-Term Memory (LSTM)
Networks

LSTM networks are a special type of Recurrent Neu-
ral Networks (RNNs), specifically designed to handle
sequences and temporal dependencies. Traditional RNNs
suffer from problems such as the vanishing or exploding
gradient, which make it difficult to learn long-term de-
pendencies in time series. LSTMs solve this limitation
by introducing a more sophisticated memory unit that
includes several internal gates: the input gate, the forget
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gate, and the output gate [19].
Each LSTM cell contains a memory unit that can main-

tain information over long periods of time. The input
gate controls how much new information is stored, the
forget gate decides what information to discard, and the
output gate determines how much of the memory is ex-
posed to the next layers of the network. This internal
mechanism allows LSTMs to learn long-range patterns
and to keep important signals in memory while ignoring
irrelevant data.

Due to these characteristics, LSTM networks are
widely used in many real-world applications involving
sequential data, such as speech recognition, financial fore-
casting, and medical monitoring [30]. In our study, we
use a multi-layer LSTM network to model the temporal
evolution of ICU occupancy in different regions, allowing
the system to capture the non-linear dependencies and
seasonalities typical of epidemic curves.

3.2. Model Uncertainty and Monte Carlo
Dropout

In traditional machine learning, models produce point
estimates: they predict a single value for each input. How-
ever, in high-stakes contexts like healthcare, it is essential
not only to predict a value, but also to know how confi-
dent the model is in its prediction. This concept is known
as model uncertainty.

A promising method to estimate uncertainty in neural
networks is the technique proposed by Gal and Ghahra-
mani [16, 17]. They demonstrated that applying dropout
during both training and testing phases can be inter-
preted as a form of approximate Bayesian inference. This
allows the model to simulate a posterior distribution over
its weights and produce a distribution of outputs rather
than a single point estimate.

In practice, this approach is implemented using Monte
Carlo dropout (MC dropout). During inference, multiple
stochastic forward passes are executed through the same
network with dropout activated, and the results are aver-
aged. This procedure generates both the expected output
and a measure of variance, which reflects the model’s
confidence. Formally, if we perform 𝑇 forward passes,
each with a different dropout mask, the predictive mean
is estimated as:

E[𝑦*] =
1

𝑇

𝑇∑︁
𝑡=1

𝑦*
𝑡 (𝑥) (1)

and the predictive variance as:

V[𝑦*] =
1

𝑇

𝑇∑︁
𝑡=1

𝑦*2
𝑡 (𝑥)− (E[𝑦*])

2 (2)

In our case, this allows us to not only forecast ICU
bed usage but also to associate each prediction with a
confidence interval. This is particularly useful in guiding
decisions regarding the allocation of resources, where the
cost of a false prediction can be extremely high. Using
dropout in this way enables a form of Bayesian modeling
that is computationally efficient and compatible with
modern deep learning frameworks.

4. Proposed Model
The core of our approach is the design of a forecasting
model based on Long Short-Term Memory (LSTM) net-
works, enhanced with a method to quantify uncertainty
using Monte Carlo dropout. The goal is to build a predic-
tive system that can provide both the expected number of
ICU beds occupied in the near future and the associated
confidence intervals. This dual output is essential to sup-
port decision-makers in high-risk and high-variability
environments such as healthcare.

4.1. Motivation and Design Rationale
During the pandemic, the evolution of ICU occupancy
followed complex temporal patterns. These patterns are
not only influenced by biological and medical factors (e.g.,
virus spread, severity of cases), but also by non-linear
external factors such as lockdown policies, vaccination
campaigns, or population movements. To capture these
dynamics, it is necessary to adopt a model that is able
to learn temporal dependencies and nonlinearities from
past sequences.

Moreover, the data used for such predictions are sub-
ject to noise, inconsistencies, and rapid changes in trends.
Hence, our model must also be able to express its own un-
certainty: this means providing not only a prediction, but
also an estimate of how reliable that prediction is. A deci-
sion made on a forecast with high uncertainty should be
treated differently than one based on a highly confident
output.

4.2. Model Architecture
We construct a deep LSTM model consisting of four re-
current layers, each followed by a dropout layer. The
use of stacked LSTM layers allows the model to learn in-
creasingly abstract temporal patterns, while the dropout
layers serve both as regularization (during training) and
as a Bayesian approximation (during inference).

Each model takes as input a univariate time series
𝑥𝑡 representing the number of ICU patients at time 𝑡.
Optionally, an encoded representation of the county is
also included if multiple counties are modeled together.
The model outputs a prediction �̂�𝑡+1, i.e., the estimated
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number of ICU beds that will be occupied in the next
time step.

4.3. Dropout in Recurrent Layers
The novelty of our approach is in the use of **recur-
rent dropout** with fixed masks, as proposed by Gal
and Ghahramani [17]. In contrast to traditional dropout,
where different neurons are dropped at each time step,
here the same dropout mask is applied consistently across
all time steps for the recurrent weights. This strategy en-
sures a proper approximation of the variational inference
process in RNNs.

During training, dropout is applied both to input and
recurrent connections. The same is done during infer-
ence, which transforms the deterministic prediction into
a stochastic one. Each forward pass through the network
generates a slightly different result, depending on the
random dropout masks.

4.4. Monte Carlo Dropout for Uncertainty
Estimation

To estimate the uncertainty, we use the Monte Carlo (MC)
dropout method. Specifically, we perform 𝑇 stochastic
forward passes at test time, each time using a different
dropout mask. This process yields a set of predictions
{�̂�(1)

𝑡+1, �̂�
(2)
𝑡+1, . . . , �̂�

(𝑇 )
𝑡+1}.

From this set, we compute:

• The predictive mean:

�̄�𝑡+1 =
1

𝑇

𝑇∑︁
𝑖=1

�̂�
(𝑖)
𝑡+1

• The predictive variance:

V[𝑥𝑡+1] =
1

𝑇

𝑇∑︁
𝑖=1

(︁
�̂�
(𝑖)
𝑡+1

)︁2

− (�̄�𝑡+1)
2

These statistics allow us to construct prediction inter-
vals at various confidence levels (e.g., 68%, 95%, 99%). The
wider the interval, the higher the uncertainty. This is
especially important for hospital administrators: a sharp
increase in uncertainty may signal unusual trends, re-
quiring increased attention or human intervention.

4.5. Advantages of the Proposed
Architecture

The model we propose offers several advantages: it
is based on well-established deep learning techniques
(LSTM, dropout), but reinterpreted in a Bayesian frame-
work; it can handle multiple time series (e.g., different

counties) either separately or jointly using encoded iden-
tifiers; it provides interpretable uncertainty estimates
without requiring a full probabilistic model or compu-
tationally expensive Bayesian methods; it is compatible
with any modern deep learning framework and can be
deployed on standard hardware.

In the next section, we describe the experimental pro-
tocol, including the dataset, the preprocessing steps, and
the empirical evaluation of our model.

4.6. Theoretical Justification and Bayesian
Framing

The model presented in this work relies on a theoret-
ical framework that interprets dropout as an approxi-
mation of Bayesian inference. This idea, introduced by
Gal and Ghahramani, allows us to treat standard neural
networks as approximate Bayesian models, without re-
quiring changes in the model architecture or complex
probabilistic methods.

In classical Bayesian inference, the goal is to estimate
the posterior distribution of the model parameters given
the observed data. Formally, we aim to compute:

𝑝(𝑊 | 𝒟) =
𝑝(𝒟 | 𝑊 ) · 𝑝(𝑊 )

𝑝(𝒟)
(3)

where 𝑊 represents the weights of the model and 𝒟 is
the training dataset. However, this posterior is typically
intractable in neural networks, due to the high dimension-
ality of the parameter space and the non-linear nature of
the model.

To overcome this difficulty, variational inference can
be used. The idea is to approximate the true poste-
rior distribution 𝑝(𝑊 | 𝒟) with a simpler distribution
𝑞(𝑊 ), and to find the parameters of 𝑞 that minimize
the Kullback-Leibler divergence between 𝑞 and the true
posterior. This is equivalent to maximizing the evidence
lower bound (ELBO), defined as:

ℒ = E𝑞(𝑊 )[log 𝑝(𝒟 | 𝑊 )]− KL(𝑞(𝑊 )‖𝑝(𝑊 )) (4)

In the interpretation proposed by Gal, the application
of dropout during training and inference corresponds to
sampling from a variational distribution 𝑞(𝑊 ), where
the weights are randomly masked by a binary matrix
drawn from a Bernoulli distribution. Specifically, each
weight matrix is redefined as:

𝑊𝑖 = 𝑀𝑖 · diag(𝑧), 𝑧𝑗 ∼ Bernoulli(𝑝) (5)

This formulation allows the use of dropout not only as
a regularization method, but as a way to simulate multi-
ple network configurations drawn from the approximate
posterior distribution. Each stochastic forward pass cor-
responds to a sample from the variational approximation.

111



Katarzyna Nieszporek et al. CEUR Workshop Proceedings 107–115

The predictive distribution for a new input 𝑥* is ob-
tained by marginalizing over the weight distribution:

𝑝(𝑦* | 𝑥*,𝒟) =

∫︁
𝑝(𝑦* | 𝑥*,𝑊 ) · 𝑞(𝑊 ) 𝑑𝑊 (6)

Since this integral cannot be computed analytically, it
is estimated by Monte Carlo sampling. In practice, we
perform multiple forward passes through the network
using different dropout masks and compute the empirical
mean and variance of the predictions:

E[𝑦*] ≈ 1

𝑇

𝑇∑︁
𝑡=1

𝑦*
𝑡 , Var[𝑦*] ≈ 1

𝑇

𝑇∑︁
𝑡=1

(𝑦*
𝑡 )

2−(E[𝑦*])
2

(7)
This approach makes it possible to estimate the epis-

temic uncertainty of the model without requiring the
use of fully Bayesian neural networks, which are often
difficult to implement and computationally expensive.

In summary, the Bayesian interpretation of dropout
provides a principled way to incorporate model uncer-
tainty into deep learning. This is particularly important
in healthcare applications, where decisions based on pre-
dictions must also take into account the confidence in
those predictions. By applying Monte Carlo dropout,
our model can offer both the expected evolution of ICU
occupancy and a reliable measure of its own uncertainty.

5. Experiments
In this section, we describe the experimental framework
used to validate our approach. We first present the dataset
and the criteria adopted for its selection. Then we ex-
plain the preprocessing operations necessary to train the
model. Finally, we report the training strategies and the
performance metrics used to evaluate both accuracy and
uncertainty.

5.1. Dataset Description
We used an open-access dataset provided by the Cali-
fornia Department of Public Health (CDPH) [31]. The
dataset includes daily data on the COVID-19 pandemic
collected at the county level, covering the period from
March 2020 to May 2021. Specifically, we focused on the
number of ICU beds occupied by confirmed COVID-19
patients in each county.

The dataset includes measurements for 58 counties.
However, not all of them have complete or stable records.
To ensure data reliability, we performed a quality control
phase and excluded counties with excessive missing val-
ues or inconsistent time series. The final dataset included
36 counties, which represent a good balance between
geographic coverage and data quality.

5.2. Time Series Preprocessing
Since our objective is to predict ICU occupancy over time,
we treated each county’s record as a univariate time se-
ries. The raw data are noisy and affected by local fluctu-
ations (e.g., reporting delays, corrections). Therefore, we
applied the following preprocessing steps:
1. Missing Data Handling: Missing values were

interpolated using a linear method, as long as the pro-
portion of missing points was below 10% in a time series.
Counties with too many missing values were excluded.

2. Normalization: To make the training process more
stable, we scaled the data. Two scaling strategies were
used: Standard Scaler : applied to grouped counties (mean
0, standard deviation 1); MinMax Scaler : applied to single-
county models, with upper bound equal to the mean ICU
occupancy 𝑁mean (rather than 1), to reduce saturation
effects.

3. Sliding Window: To generate training sequences,
we applied a sliding window of fixed size 𝑤 = 14 days.
Each input sample is a sequence of ICU values over 14
days, and the target is the ICU value on the 15th day.

5.3. Grouping Similar Counties
To avoid building a separate model for each county, we
explored the possibility of grouping counties with similar
ICU occupancy profiles. We applied the Dynamic Time
Warping (DTW) algorithm to compute pairwise distances
between the normalized time series. Counties with low
DTW distance were grouped together, resulting in six
distinct clusters.

This grouping reduces the number of models to be
trained. and improves model generalization by sharing
statistical patterns across counties with similar epidemic
curves.

5.4. Dropout Rate Tuning
We empirically evaluated several values of dropout prob-
ability 𝑝 in the range [0.05, 0.3]. We observed that lower
dropout rates (e.g., 𝑝 = 0.08) yield more stable predic-
tions, especially when training on small datasets. Higher
dropout values resulted in wider uncertainty bands, but
sometimes degraded the mean prediction.

This analysis confirmed the need to carefully tune
dropout rates when using MC dropout for uncertainty
estimation.

5.5. Monte Carlo Estimation
At test time, we performed 𝑇 = 1000 stochastic forward
passes through the trained model. For each input win-
dow, we obtained the predictive mean 𝑦𝑡 as the average
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of outputs, the standard deviation 𝜎𝑡 as a measure of un-
certainty, and the confidence intervals at 68%, 95%, and
99% using standard Gaussian quantiles:

𝑦𝑡 ± 𝑧 · 𝜎𝑡, with 𝑧 = 1, 1.96, 2.58

This allowed us to associate each forecast with a visual
band representing the model’s confidence.

5.6. Evaluation Metrics
We evaluated model performance using two Root Mean
Square Error (RMSE): to assess the accuracy of point
forecasts

RMSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

Moreover we also used Calibration of Uncertainty as
the percentage of true values falling within the predicted
95% confidence interval.

Across all counties, the average RMSE was 1.7 on the
training set and 3.0 on the test set, confirming the model’s
ability to generalize across time.

These results demonstrate the model’s ability to pro-
duce reliable and interpretable forecasts, even several
weeks ahead. The use of uncertainty estimates increases
trustworthiness and allows for more cautious resource
planning.

5.7. Comparison with Alternative
Architectures

To better assess the effectiveness of the proposed LSTM-
based model with Monte Carlo dropout, we conducted a
comparative study with two alternative neural architec-
tures. The objective was to evaluate the importance of
temporal memory, recurrent structure, and uncertainty
estimation by analyzing models with different levels of
complexity and expressiveness.

5.7.1. GRU-based model

Gated Recurrent Units (GRUs) are a simplified variant of
LSTM networks. They have fewer parameters and use
only two gates: an update gate and a reset gate. The re-
duced complexity makes GRUs faster to train, especially
when computational resources are limited.

In our experiments, we implemented a GRU model
with the same structure as the LSTM model (four recur-
rent layers), applying Monte Carlo dropout in the same
way. The performance was slightly lower than the LSTM
model, particularly in time series with strong seasonality
or abrupt changes. However, training time was reduced
by approximately 30%.

Table 1
Comparison of model performance

Model RMSE (Test) 95% C.I.
LSTM + MC Dropout 3.00 94.1%
GRU + MC Dropout 3.25 91.3%
Feedforward + MC Dropout 4.02 88.6%

5.7.2. Feedforward model with sliding window

As a baseline, we tested a simple feedforward neural net-
work with no recurrent connections. The input to the
network was a fixed-size sliding window of the previ-
ous 14 days of ICU occupancy, and the output was the
prediction for the following day.

This model was also trained with dropout, and un-
certainty estimation was performed using Monte Carlo
sampling. Despite its simplicity, the feedforward model
performed reasonably well on counties with very regular
trends. However, it failed to capture long-term depen-
dencies and reacted poorly to abrupt changes, such as
second-wave peaks.

5.7.3. Performance comparison

The table below summarizes the performance of the three
models in terms of Root Mean Square Error (RMSE) and
confidence interval calibration, defined as the percentage
of true values falling within the 95% confidence band.

The results show that the LSTM model achieves the
best accuracy and the most reliable uncertainty quantifi-
cation. The GRU model offers a good trade-off between
speed and precision, but suffers slightly in unstable or
noisy series. The feedforward model is clearly less ca-
pable in capturing temporal patterns, but still provides
reasonable performance in regular conditions.

These findings support the adoption of LSTM networks
when forecasting complex time series in healthcare con-
texts, especially when the time horizon is long and the
dynamics are non-linear. While simpler models may be
sufficient for low-variability environments, they do not
generalize well to unseen epidemic behaviors.

In addition, the LSTM model showed more stable un-
certainty calibration, with narrower but better-aligned
confidence intervals. This is important in critical settings,
where over- or under-confidence

6. Conclusion
The work presented in this article proposes a forecast-
ing method for ICU occupancy based on a combination
of recurrent neural networks and approximate Bayesian
inference techniques. By integrating Long Short-Term
Memory (LSTM) models with Monte Carlo dropout, we
were able to develop a system that does not limit itself
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to generating single-point predictions, but also estimates
the uncertainty associated with each forecast. This ap-
proach represents a step forward in the context of health-
care, where decision-making often takes place under time
pressure, with incomplete information and high social
responsibility.

Through the analysis of data collected in California
during the COVID-19 pandemic, we observed that the
proposed model is capable of maintaining stable perfor-
mance across counties with different demographic and
epidemiological characteristics. The inclusion of uncer-
tainty estimation allowed us to associate confidence in-
tervals with each prediction, offering health managers
and decision-makers an additional layer of interpretabil-
ity and caution. This feature is especially important in
a context where underestimating the future demand for
critical care resources can lead to saturation and systemic
failures, while overestimating it can cause inefficient al-
location.

However, some limitations must be acknowledged.
The data used for training and evaluation cover only
the initial phase of the pandemic, limiting the model’s
ability to learn from multiple waves or long-term sea-
sonal patterns. Moreover, our model operates at the level
of aggregated time series, without incorporating indi-
vidual clinical features that could enrich the prediction
with information about the severity or progression of
patients’ conditions. This restricts the system’s ability to
adapt its forecasts to variations in population risk or to
the evolution of treatment protocols. A further limitation
concerns the spatial resolution of the dataset. Although
county-level data are useful for regional planning, they
are not always sufficient to guide decisions at the hospi-
tal level, where operational constraints and patient flow
dynamics are far more detailed and localized.

In future developments, it would be desirable to inte-
grate clinical variables directly into the time series mod-
eling process, in order to capture not only the epidemio-
logical evolution of the virus, but also the specific char-
acteristics of the population affected. Furthermore, the
model could be extended beyond COVID-19, adapting it
to other types of health emergencies that generate sudden
increases in ICU demand, such as influenza epidemics or
extreme climatic events. Another direction could concern
the introduction of spatial correlations between different
geographic units, which would make it possible to simu-
late the redistribution of patients between hospitals or
regions in case of local overload. Finally, the creation of
an interactive forecasting tool, accessible in real time to
public health authorities, could transform this model into
an operational resource capable of supporting decision-
making processes directly in the field.

The results of this study confirm that deep learning
methods, when equipped with mechanisms for uncer-
tainty estimation, can contribute concretely to making

healthcare systems more resilient. In scenarios charac-
terized by volatility and risk, the ability to predict with
caution and to quantify doubt becomes just as important
as the ability to predict with precision.

7. Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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