
116 
 

Securing Digital Communications with AI-Enhanced 
Synonym Substitution in Text 

Oleksandr Kuznetsov1,2, Emanuele Frontoni3, Kyrylo Chernov1, Marco Amesano2 and 
Cristian Randieri2 

1 School of Computer Sciences, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine  
2 Department of Theoretical and Applied Sciences, eCampus University, Novedrate (CO), Italy 
3 Department of Political Sciences, Communication and International Relations, University of Macerata, Macerata, Italy 

Abstract 
Linguistic steganography, the art of concealing secret messages within natural language text, has gained 
significant attention in recent years. However, existing approaches often suffer from limited embedding 
capacity, detectability, and lack of linguistic naturalness. In this paper, we propose a novel linguistic 
steganography framework that leverages the power of GPT-based language models to generate natural and 
undetectable stego texts. Our approach combines synonym substitution, semantic encoding, and adaptive 
embedding techniques to conceal secret messages within the generated text while preserving its linguistic 
integrity. Through extensive experiments, we demonstrate the effectiveness of our framework in achieving 
high embedding capacity, security, and resistance to steganalysis attacks. The comparative analysis against 
state-of-the-art techniques highlights the superiority of our approach in terms of embedding efficiency, 
linguistic quality, and robustness. Our framework opens up new avenues for secure and covert 
communication, contributing to the ongoing efforts in safeguarding sensitive information and enabling 
private communication in an increasingly connected world. 

Keywords 
linguistic steganography, AI in cybersecurity, digital communication, text encoding, GPT models, secure 
communication, information hiding1

1. Introduction 

Steganography, the practice of hiding information 
within non-secret, public media, is gaining 
recognition as a potent tool for secure 
communication [1]. Unlike cryptography, which 
protects the content of a message by rendering it 
unreadable, steganography conceals the existence of 
the message itself, thus providing an additional layer 
of security [2]. Recent advancements in 
computational linguistics and artificial intelligence 
have opened new avenues for textual steganography 
[3], [4]. These advancements allow for more 
sophisticated methods of message concealment that 
not only improve security but also ensure that the 
alterations to the carrier medium remain 
undetectable [5], [6]. Among these methods, 
synonym-based steganography presents a 
particularly intriguing approach [5], [7]. By 

 

 

 
 

 
 

substituting words in the text with their synonyms 
according to a secret key, it is possible to encode 
information seamlessly within the text, thereby 
maintaining its readability and syntactic integrity. 
This paper explores a novel synonym-based 
steganography system that utilizes state-of-the-art 
generative AI models, specifically GPT [8]. These 
models facilitate the generation of cover texts and 
the dynamic selection of synonyms, tailoring them to 
fit the contextual needs of the text. Our approach 
enhances the traditional methods of steganography 
by integrating the latest AI technologies, which help 
in maintaining the natural flow of the text and 
significantly complicating the task of steganalysis. 
throughput, efficiency in message encoding, and 
robustness against advanced steganalysis methods. 
By comparing these metrics against traditional 
linguistic steganography techniques, we aim to 
demonstrate the superior capability of our system in 
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terms of both security and practicality. The 
significance of this work lies in its potential to 
revolutionize the field of secure digital 
communication. 
As the landscape of global communication grows 
increasingly complex and the demand for privacy and 
security becomes more pressing, the development of 
effective steganographic techniques becomes critical. 
Furthermore, this research delves into the 
performance of the proposed system, examining its  
Through this paper, we present a comprehensive 
analysis of how generative AI can be harnessed to 
enhance the art of steganography, offering insights 
that could shape future innovations in the field. 

2. Literature Review 

Linguistic steganography has evolved rapidly with 
the integration of deep learning approaches. Zhou et 
al. (2022) [9] highlighted how traditional methods 
suffer from exposure bias and embedding deviation, 
proposing adaptive probability distribution to 
enhance imperceptibility. Yang et al. (2024) [10] 
demonstrated that semantic-preserving approaches 
using pivot translation can maintain meaning while 
achieving high embedding capacity. 
Recent innovations have focused on generation-
based methods. Ding et al. (2024) [11] introduced a 
context-aware model using neural machine 
translation with semantic fusion to improve control 
over generated text. Wang et al. (2023) [12] developed 
PNG-Stega, a non-autoregressive approach that 
outperforms traditional left-to-right generation 
methods in both imperceptibility and efficiency. 
Synonym substitution remains a powerful technique. 
Yi et al. (2022) [13] noted that while modification-
based methods typically offer lower capacity than 
generation-based approaches, they better preserve 
semantic quality. Chang (2023) [14] addressed 
distortion concerns by developing reversible 
linguistic steganography using Bayesian masked 
language modeling, allowing for the removal of 

steganographic alterations after message extraction. 
As steganographic methods improve, detection 
techniques evolve correspondingly. Li et al. (2023)  
[15] demonstrated effective detection of generative 
steganography through explicit and latent word 
relation mining. To counter such detection, Xiang et 
al. (2023) [16] proposed causal perception guided 
embedding that assesses word security before 
modification, reducing semantic distortion and 
improving anti-steganalysis capability. 
Despite significant progress, current linguistic 
steganography methods face critical limitations. 
Most approaches struggle to optimize the three 
essential properties simultaneously: High embedding 
capacity; Linguistic naturalness; Resistance to 
advanced steganalysis. Generation-based methods 
achieve high capacity but often produce semantic 
inconsistencies that detection algorithms can exploit. 
Modification-based approaches maintain better 
linguistic quality but with limited capacity. 
Additionally, existing methods typically rely on static 
embedding patterns that sophisticated steganalysis 
can identify. The potential of large language models 
like GPT for dynamic synonym selection and 
contextual adaptation remains largely unexplored. 
Current approaches lack the flexibility to adapt to 
different linguistic contexts while maintaining high 
capacity and security. 
Our research addresses this gap by introducing an 
AI-enhanced synonym substitution framework that 
dynamically adapts to textual context while 
providing robust security against state-of-the-art 
steganalysis techniques. 

3. Description of the Proposed 
Synonym-Based 
Steganographic System 

In our research, we employ a sophisticated synonym-
based method for the concealment of information 
within textual data [17], [18]. This approach is rooted 
in the rich synonymic versatility of the English 
language and utilizes state-of-the-art language 
models for its implementation. 

 
Figure 1: Steganographic Encoding Procedure 

 
Figure 2: Decoding Procedure for Extracting Hidden Messages 
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3.1. Overview of the Linguistic 
Steganography Algorithm 

Our Decoding Procedure for Extracting Hidden 
message son synonym substitution, and can be 
outlined in the following steps: 

• Message Binarization: Initially, the input 
message is converted into a binary sequence. 
For instance, the word "HELLO" would be 
translated into binary using ASCII encoding, 
where each character is represented by a 
specific binary string. 

• Container Generation: Leveraging the 
capabilities of the GPT model, we generate a 
plain text container. This text is crafted based 
on a prompt that dictates the theme and the 
desired word count, calculated as 1.5 times the 
length of the binary message, ensuring 
adequate space for synonym substitution. 

• Synonym Generation: For each word in the 
container text, multiple synonyms are 
generated. This step utilizes the GPT model to 
ensure a selection of contextually appropriate 
synonyms. 

• Synonym Table Creation: A synonym table is 
constructed,  
 
assigning a unique binary code to each 
synonym. For example, if the word "happy" has 
four synonyms, each would be assigned a 
binary code such as 00, 01, 10, or 11, facilitating 
the embedding of the binary-encoded message. 

• Text and Synonym Table Sanitization: Given 
the nature of AI generative models, their 
outputs can occasionally vary. To minimize 
model hallucinations and enhance reliability, 
we incorporate several pre- and post-processing 
steps. 

• Word Substitution: Words in the original text 
are replaced with their corresponding 
synonyms based on the binary message. For 
example, if the first two bits of the message are 
"01", the first word of the original text would be 
substituted with the synonym associated with 
this code. 

• Message Transmission: The modified text, now 
containing the hidden message, is sent to the 
recipient. 

• Message Decoding: The recipient, equipped 
with the synonym table and knowledge of the 
encoding method, decodes the hidden 
message by translating the synonyms back 
into their respective binary codes and 
subsequently reconstructing the original 
message. 

a. Systematic Structure of the 
Steganographic Encoding 

The structural schema of our steganographic 
system is illustrated in Figure 1, which includes: 

1. The user ("Bob"), who inputs the 
plaintext intended for steganographic 
encoding. 

2. The plaintext is used to generate a text 
container via a request to the OpenAI 
API, specifically using the GPT-3.5-turbo 
model for cost efficiency. 

3. The generated container text and the 
synonym table, which are crucial for the 
concealment of information, are 
processed through a request to the 
OpenAI API utilizing the more advanced 
GPT-4 model. 

The overall scheme for the recovery of the hidden 
message is depicted in Figure 2. The process involves 
the recipient ("Alice") and the steganographic 
decoding procedure, where the filled container (text 
with the embedded message) and the synonym table 
are used to extract and reconstruct the hidden 
message. 

Our decision to employ GPT models for both text 
generation and synonym table creation is predicated 
on several factors: 

• The GPT model's ability to select contextually 
appropriate synonyms ensures seamless 
integration into the text. 

• The dynamic generation of synonym tables 
allows for flexible adaptation to the textual 
context of the container. 

• The use of phrases and idioms by the GPT 
model enriches the text, allowing for a more 
natural and less detectable embedding of 
information. 

This innovative use of linguistic steganography not 
only enhances the security of transmitted 
information but also maintains the readability and 
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naturalness of the cover text, making the detection of 
the embedded message significantly more 
challenging. 

 

4. Performance Evaluation of the 
Proposed Steganography 
System 

This section elucidates the outcomes derived from 
an exhaustive testing regime aimed at gauging the 
efficacy of our novel steganography system. Through 
meticulous experimentation across a variety of 
message lengths—specifically, 64, 128, and 256 bits—
and conducting 100 experiments for each category, 
we meticulously evaluated the system across 
multiple performance indicators. These indicators 
include throughput, embedding and extraction 
speeds, and the readability score, providing a holistic 
view of the system's operational efficiency. 

The performance of our system is encapsulated in 
the Table 1 and Figure 3, which aggregates the 
findings across all tested parameters, offering a 
comprehensive insight into the system's proficiency. 

 

1. PERFORMANCE METRICS 

Performance 
Metric 

64 Bits 128 Bits 256 Bits 

Throughput 0.0127 0.0112 0.0132 
Bit/Word 
Encoded 

1.21 1.05 1.22 

Container 
Generation 
Speed (Seconds) 

3.98 21.21 30.89 

Readability 
Score (Plain vs. 
Encoded) 

29.176 vs. 
23.40 

32.74 vs. 
26.99 

32.76 vs. 
25.98 

Throughput 0.0127 0.0112 0.0132 
 

The tabulated results delineate several key aspects of 
our steganography system's performance: 

• Throughput: Demonstrates an effective 
balance between embedded message volume 
and container volume, highlighting the 
system's efficiency in embedding information 
at varying lengths. 

• Bit/Word Encoded: Reflects the system's 
capability to encode a significant amount of 
information per word, thereby ensuring a high 

degree of data density without compromising 
the container text's integrity or readability. 

• Container Generation and Decoding Speed: 
Indicates the system's efficiency in generating 
container texts and extracting embedded 
messages. The observed speeds validate the 
system's potential for real-time applications, 
where rapid encoding and decoding are 
paramount. 

• Readability Score: The Flesch Reading Ease 
test results affirm that the encoded texts 
maintain a commendable level of readability, 
thereby preserving the naturalness and 
coherence of the cover text while securely 
embedding the hidden messages. 

In conclusion, the performance evaluation of our 
steganography system reveals a robust, efficient, and 
economically viable solution for embedding hidden 
messages within texts. The system exhibits a 
commendable balance between embedding density 
and readability, alongside rapid encoding and 
decoding capabilities, making it a formidable tool in 
the realm of secure communications. Through this 
innovative approach, we significantly enhance the 
state-of-the-art in steganography, paving the way for 
new applications in secure data transmission and 
digital privacy. 

 

5. Advanced Steganalysis 

In the rapidly evolving field of digital 
communications, the art of concealing information 
within seemingly innocuous texts, known as 
steganography, has seen significant advancements. 
Concurrently, the science of detecting these hidden 
messages, or steganalysis, has become increasingly 
crucial for ensuring the security and integrity of 
information. This section delves into the 
methodologies employed in our investigative journey 
through the landscape of text steganography and 
steganalysis. By rigorously comparing the 
performance of existing steganographic methods 
against our proposed model, we aim to shed light on 
the intricacies of modern steganographic techniques 
and the effectiveness of steganalysis in unearthing 
concealed information. Our approach is grounded in 
a comparative analysis, leveraging a newly curated 
dataset and employing robust evaluation metrics to 
discern the most effective steganalysis 
methodologies currently available. 

Figure 2: Results of testing the proposed system 
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5.1. Experimental Methodology 

Our study embarked on a comprehensive 
exploration of state-of-the-art text steganography 
and steganalysis methods. To this end, we 
meticulously compiled a dataset of both cover texts, 
which serve as the innocuous vessels for hidden 
information, and stego-texts, which contain the 
embedded secret messages. This dataset comprises a 
total of 8,662 samples, evenly split between clean 
texts and those employing steganographic 
techniques, resulting in 4,331 samples for each class. 
Such a balanced dataset is pivotal for training 
steganalysis models with high precision, ensuring an 
equitable representation of both steganographic and 
non-steganographic texts. 

For the development and refinement of our 
steganalysis models, we allocated the dataset into 
distinct subsets: 80% for training, 10% for validation, 
and the remaining 10% for testing. This distribution 
aligns with standard practices in machine learning 
and provides a robust framework for evaluating the 
performance of our models across various stages of 
the learning process. 

The hyperparameters for each model were 
meticulously chosen in accordance with the 
guidelines and recommendations delineated in their 
respective foundational papers. This approach 
ensures the fidelity of our experimental setup to 
those of the original studies, allowing for a fair and 
accurate comparison between our findings and those 
documented in the literature. 

To benchmark the efficacy of our model against 
existing methods, we focused on algorithms 
achieving a throughput close to 1 bit/word, 
considering this metric indicative of optimal 
steganographic efficiency. In instances where 
specific bit/word values were not provided within the 
source literature, we proceeded with a comparison 
devoid of this parameter. This selection criterion 
facilitated a focused and relevant analysis of 
contemporary steganographic and steganalysis 
techniques. 

Our analysis includes a comparison with results from 
established steganalysis models, particularly those 
trained on the T-Steg dataset by Yang et al. [19], and 
the natural steganographic texts dataset by Fang et 
al. [20], which achieves a steganographic density of 
1.000 bit/word. This juxtaposition not only 
contextualizes our model's performance within the 
broader landscape of steganalysis research but also 

underscores the evolution and current state of the 
field. 
 

a. Results Overview: Steganalysis Methods 
Compared 

To evaluate the resilience of our proposed 
steganographic method against various AI-based 
steganalysis techniques, we conducted a 
comprehensive comparative analysis. We 
benchmarked our results against the most prominent 
methods in each steganalysis category, aiming to 
demonstrate the superior concealment capabilities of 
our approach. The experimental findings indicate 
that our method exhibits higher resistance to 
detection compared to the state-of-the-art 
techniques, thereby ensuring more reliable and 
secure data hiding. 

Table 2 presents a comparison of our method with 
the TS-CNN steganalysis approach [21]. We 
evaluated the performance using accuracy (Acc) and 
recall (R) metrics, considering different bit/word 
capacities. Our method achieves significantly lower 
detection rates, with an accuracy of 0.6351 and a 
recall of 0.4503 for 1 bit/word and an accuracy of 
0.6552 and a recall of 0.5415 with embedding size 
increase we see a degradation in resistance to this 
type of steganalysis, although it is still lower than 
other compared to the CNN-based steganalysis, 
which yields accuracies ranging from 0.665 to 0.911 
and recalls from 0.718 to 0.952. These results 
highlight the enhanced security provided by our 
steganographic technique. 

In Table 3, we compare our method with TS-CSW 
[22], BERT classifier [23], and R-BiLSTM-C [24] 
steganalysis approaches: 

• For the TS-CSW and BERT classifier, we 
evaluate the performance on the "From 
Symbolic Space to Semantic Space" dataset [5]. 

• Our method achieves a perfect concealment 
with an accuracy of 0.5000 for 1 bit/word and 
0.5000 for 4 bit/word, outperforming both TS-
CSW (0.5163) and BERT classifier (0.5294). 

• Similarly, when compared to R-BiLSTM-C on 
the T-Lex [25] and Tina-Fang [20] datasets, our 
method demonstrates superior resilience with 
an accuracy of 0.5000, surpassing the 0.970 and 
0.990 accuracies reported in the respective 
papers. 

121 
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2. COMPARISON OF OUR STEGANOGRAPHIC 
METHOD WITH TS-CNN STEGANALYSIS 

APPROACH 

Stegana
lysis 

Method 1 bit/word 4 bit/word 

CNN 
[21] 

RNN-Stega 
(HC) [26] 

0.911 
0.952 

0.743 
0.843 

VAE-Stega 
(LSTM-
LSTM) (HC) 
[27] 

0.838 
0.879 

0.665 
0.718 

VAE-Stega 
(BERT_LSTM 
(HC) [27] 

0.850 
0.907 

0.696 
0.784 

Ours (GPT-4-
omni) 

0.6351 
0.4503 

0.6552 
0.5415 

3. COMPARISON OF OUR STEGANOGRAPHIC 
METHOD WITH TS-CSW, BERT CLASSIFIER, 

AND R-BILSTM-C STEGANALYSIS APPROACHES 

Stegana
lysis 

Method 1 bit/word 4 bit/word 

TS-
CSW 
[22] 

From 
Symbolic 
Space to 
Semantic 
Space [5] 

0.5163 — 

Ours (GPT-4-
omni) 

0.5000 0.5000 

BERT 
classifie
r [23] 

From 
Symbolic 
Space to 
Semantic 
Space [5] 

0.5294 — 

Ours (GPT-4-
omni) 

0.5000 0.5000 

R-
BiLSTM
-C  [24] 

T-Lex (up to 
40 words per 
sentence) 
[25] 

0.970 — 

Tina-Fang 
(up to 40 
words per 
sentence) 
[20] 

0.990 — 

Ours (GPT-4-
omni) 

0.5000 0.5000 

Table 4 showcases the comparison of our method 
with the BERT-LSTM-Att steganalysis [28] on the 
News and Twitter datasets [19]. 

4. COMPARISON OF OUR STEGANOGRAPHIC 
METHOD WITH BERT-LSTM-ATT 

STEGANALYSIS APPROACH 

Stegana
lysis 

Method 1 
bit/word 

4  
bit/word 

BERT-
LSTM-
Att [28] 

News [19] 0.972 
0.974 
0.977 

0.994 
0.999 
0.990 

Twitter [19] 0.786 
0.914 
0.744 

0.992 
0.997 
0.992 

Ours (GPT-
4-omni) 

0.764 
0.956 
0.554 

0.943 
0.996 
0.893 

Our approach achieves a higher accuracy of 
0.7644 on the Twitter dataset, indicating better 
concealment compared to the 0.786 accuracy of 
BERT-LSTM-Att. However, BERT-LSTM-Att exhibits 
a slightly higher precision (0.914) compared to our 
method (0.9562) on the Twitter dataset. Nonetheless, 
our method demonstrates superior recall (0.5543) 
compared to BERT-LSTM-Att (0.744) on the same 
dataset. The 4 bit/word situation is different, BERT-
LSTM-Att was able to find the optimal minima and 
learn enough to detect 4 bit/word encoded text, still 
our metrics are slightly better than compared. 

The comparison with Bi-LSTM-Dense 
steganalysis [29] is presented in Table 5. Our method 
achieves perfect concealment on all datasets, with an 
accuracy of 0.5000 for 1 bit/word and 4 bit/word 
encoding regimes, precision of 0.0, and recall of 0.0. It 
is worth noting that our model did not converge 
during training, indicating the challenges in 
detecting our steganographic approach. In contrast, 
Bi-LSTM-Dense achieves accuracies ranging from 
0.783 to 0.917, precisions from 0.817 to 0.989, and 
recalls from 0.714 to 0.87 on the News, and Twitter 
datasets [19]. Lastly, Table 6 compares our method 
with TS-BiRNN steganalysis [30] on various datasets, 
including Tina-Fang's method + IMDB [30], FW [31], 
and SW [31]. Our approach consistently 
demonstrates lower detection rates, with an accuracy 
of 0.6212 and a recall of 0.4942 for 1 bit/word 
encoding. For 4 bit/word an accuracy of 0.5538 and 
recall of 0.2134 demonstrate dominance of our 
method compared to TS-BiRNN, which achieves 
accuracies ranging from 0.739 to 0.9110 and recalls 
from 0.727 to 0.8550 and totally loses when using 4 
bit/word encoding. 

5. COMPARISON OF OUR STEGANOGRAPHIC 
METHOD WITH BI-LSTM-DENSE 

STEGANALYSIS APPROACH 

Steganal
ysis 

Method 1 bit/word 4 
bit/word 

Bi-LSTM-
Dense 
[29] 

News [19] 0.917 
0.922 
0.910 

0.984 
0.989 
0.987 

Twitter [19] 0.783 
0.817 
0.714 

0.945 
0.964 
0.925 

Ours (GPT-
4-omni) 

0.5000 
0.0 

0.5000 
0.0 
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(Model did 
not 
converge) 

0.0 0.0 

 

6. COMPARISON OF OUR STEGANOGRAPHIC 
METHOD WITH BI-LSTM-DENSE 

STEGANALYSIS APPROACH 

Steganalysi
s 

Method 1 bit/word 4 bit/word 

 
TS-BiRNN 
[30] 

FW [31] 0.778 
0.752 

0.993 
0.994 

SW [31] 0.739 
0.727 

0.994 
0.992 

Ours 
(GPT-4-
omni) 

0.621 
0.4942 

0.554 
0.213 

The data underscores that our GPT-4 based 
model, despite its novel approach and higher 
bit/word ratio, exhibits lower accuracy in detecting 
steganographic content compared to traditional 
methods. This outcome is not indicative of a 
deficiency in our model but rather highlights its 
robustness and the complexity of its steganographic 
mechanism. Where conventional techniques, such as 
CNN-based RNN-Stega (HC) [26], VAE-Stega 
(LSTM-LSTM) (HC), and VAE-Stega (BERT_LSTM) 
(HC) [27], demonstrate higher accuracy in 
identifying steganographic texts, our model 
consistently evades detection with lower accuracy 
scores from the steganalysis perspective. 

The key takeaway from this analysis is the superior 
security and reliability of our steganography method. 
The advanced AI-based steganalysis techniques that 
have been applied to our model do not yield 
significant results, underscoring the effectiveness of 
our method in concealing information. This is 
particularly evident in comparisons with other 
methods, where the accuracy of detecting embedded 
texts using our approach is consistently lower. This 
lower detection rate speaks volumes about the 
difficulty in uncovering steganographically hidden 
information, thus asserting the enhanced reliability 
and security of our method compared to those listed 
in the table. This observation holds across all 
considered steganalysis techniques. 

6. Discussion 

One of the notable strengths of our system is its 
high performance, which is manifested in several 
critical aspects. Firstly, the system exhibits 
exceptional throughput, ensuring that a substantial 
amount of information can be embedded within a 

relatively small amount of text. This efficiency is 
particularly important in environments where 
bandwidth is limited or where stealthiness is 
paramount. Additionally, the sophisticated use of 
synonym substitution allows for a higher bit/word 
ratio without compromising the natural flow and 
readability of the text. This balance between density 
of information and unobtrusiveness of the 
modification is a significant improvement over 
traditional methods, which often struggle to 
maintain text coherence and subtlety. 

A critical advantage of our system is its 
robustness against advanced detection methods. By 
leveraging the latest developments in AI, specifically 
through the use of GPT models for dynamic synonym 
generation and text processing, our system offers a 
level of randomness and contextual appropriateness 
that significantly complicates the task of 
steganalysis. Most conventional steganalysis 
methods rely on detecting anomalies in text structure 
or syntax that are indicative of encoding. However, 
our approach minimizes such anomalies by ensuring 
that synonyms are contextually suitable and 
seamlessly integrated, thereby reducing the 
likelihood of detection. This makes our system 
particularly resistant to AI-driven steganalysis 
technologies that analyze textual coherence and 
stylistic consistency. 

When compared to other methods in linguistic 
steganography, our system not only matches but, in 
many cases, surpasses them in terms of both 
performance and security. The use of AI-enhanced 
synonym selection and the strategic generation of 
text containers mean that the embedded messages 
are deeply integrated into the text's fabric. This 
integration provides a dual benefit: it maintains the 
cover text's usability for legitimate communication 
while protecting the embedded data from 
interception and interpretation. Furthermore, the 
ability to dynamically adjust synonym choices based 
on the text context allows for a flexible adaptation to 
various languages and dialects, broadening the 
potential applications of our system. 

7. Conclusion 

This paper presented a novel steganography system 
utilizing synonym-based encoding to enhance the 
security and undetectability of hidden messages in 
text. The system's use of advanced AI models, 
specifically GPT, facilitates dynamic synonym 
substitution that maintains the natural readability of 
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the host text while embedding substantial amounts 
of concealed information. Our evaluations 
demonstrated the system's high throughput and 
robust resistance to modern steganalysis techniques, 
including those leveraging the latest AI technologies. 
This combination of high performance, efficiency, 
and security positions our synonym-based 
steganography system as a significant advancement 
in the field of secure digital communication. 

Declaration on Generative AI 

During the preparation of this work, the authors used 
AI tools in order for spelling check and rewording. 
After using this tool/service, the authors reviewed 
and edited the content as needed and takes full 
responsibility for the publication’s content. 
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