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Abstract
Aphasia is a severe communication disorder that significantly impairs an individual's ability to convey and 
process language, often resulting from stroke-related damage to brain regions critical for speech and 
language functions. With the emergence of Large Language Models (LLMs), their potential has been 
explored in various text-based tasks due to their exceptional language understanding capabilities, which 
are particularly valuable in medical applications where access to specialised data is crucial yet frequently 
restricted. In this paper, we present our research on leveraging Tiny and Small Language Models (SLMs) to 
improve speech interpretation for people living with aphasia (PwA). Through benchmarking several LLMs, 
we established performance  benchmarks  to  guide  the  development  of  our  SLM-based  solution.  Our 
findings indicate that chain-of-thought prompting significantly enhances interpretation accuracy (median 
similarity score: 0.68 vs. 0.64 for zero-shot), with larger SLMs (e.g., Phi4-mini:3.8b) outperforming smaller 
counterparts  while  maintaining  clinical  utility.  Notably,  compact  models  like  Qwen2.5:1.5b  achieved 
competitive  results,  demonstrating  feasibility  for  re-source-constrained  settings.  This  work  advances 
accessible, privacy-preserving assistive technology for aphasia, balancing computational efficiency with 
clinical relevance. 
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1. Introduction

Aphasia  is  a  profoundly under-recognised yet  widespread condition that  significantly  impacts 
millions worldwide. In the USA alone, over two million individuals live with aphasia, a prevalence 
surpassing that of multiple sclerosis, Parkin-son’s disease, and muscular dystrophy [1] [2]. Similarly, 
conservative  estimates  suggest  that  at  least  350,000  individuals  are  affected  in  the  UK,  with 
approximately 66 new cases per 100,000 people each year [3]. Stroke, a leading cause of aphasia, 
remains the third most common cause of death in both the USA and Great Britain, with one-third of 
stroke  survivors  experiencing  aphasia  and  12% remaining  aphasic  six  months  post-stroke  [3]. 
Despite these alarming figures, awareness remains critically low, with 84.5% of people having never 
encountered the term aphasia, and only 8.8% can correctly identify it as a language dis-order [2]. The 
consequences extend beyond communication difficulties; aphasia has been shown to have a greater 
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negative impact on quality of life than both cancer and Alzheimer’s disease [2]. Aphasia severely 
impacts  communication,  leading  to  challenges  in  employment,  social  participation,  and 
relationships, ultimately reducing quality of life [4]. Post-stroke, individuals with aphasia face worse 
recovery outcomes, including longer hospital stays and higher mortality rates [5].

Large Language Models (LLMs) are advanced AI systems trained on vast text data, enabling 
human-like language understanding and generation. In digital health, they enhance diagnostics, 
medical  documentation,  education,  and  project  management  [6].  Integrated  into  healthcare 
applications, LLMs improve patient engagement, symptom analysis, and real-time health insights, 
supporting precision medicine and personalised care [7]. 

 The authors in [8] proposed a novel framework for detecting and analysing speech dysfluencies 
(e.g., stuttering, repetitions, blocks) using articulatory gestures and a connectionist subsequence 
aligner  (CSA),  achieving state-of-the-art  accuracy in  dysfluency detection and alignment.  The 
research concludes that while LLMs enhanced usability (e.g., generating diagnostic reports), the 
study highlighted that scalability and accuracy depended more on the gestural and alignment 
modules, suggesting LLMs serve best as interactive interfaces rather than core dysfluency analysers. 

In [9], the study found that LLMs when integrated into AAC systems like SocializeChat, can 
enhance Augmentative and Alternative Communication (AAC) supported social communication 
through  personalised,  context-aware  responses,  but  face  limitations  in  handling  open-ended 
dialogue, accurately modelling user preferences, and adapting to cultural and contextual nuances. 

Small  Language  Models  (SLMs)  and  Tiny  LMs  offer  a  more  efficient  alternative  to  LLMs, 
operating with reduced computation-al resources. While not as powerful as full-scale LLMs, they 
provide key advantages in security and privacy by processing data locally rather than relying on 
cloud-based servers. Additionally, SLMs and Tiny LMs deliver faster response times and function in 
low-connectivity environments, making them ideal for real-time health applications [10].

This paper introduces our innovative approach to use Natural Language Pro-cessing (NLP) and 
SLMs  to  explore  how  we  can  improve  communication  for  individuals  with  mild-to-moderate 
expressive aphasia. Our proposed AI-based assistive tool helps users express their thoughts more 
clearly by interpreting and extracting meanings from their speech. Designed through a collaborative 
co-design process with experts and healthcare professionals, it aims to enhance stroke survivors’ 
independence and quality of life.

2. Methodology

Our AI-based solution leverages the recent breakthroughs NLP, specifically the advent of LLMs, and 
their small and tiny variants, to augment the speech comprehension of people with aphasia (PwA). 
By harnessing the language-understanding capabilities of LLMs, our proposed system generates 
coherent speech by building upon the utterances of PwA. The process, illustrated in Figure 1, begins 
with recording and transcribing the speech of people with aphasia (PwA). These transcripts, along 
with responses from their conversation partners, are used to craft precise prompts and provide 
contextual data for LLMs. The LLMs then generate coherent interpretations by inferring unclear 
terms, filling in missing words, and removing filler content. The user selects the most appropriate 
output, which is subsequently rendered as speech, optionally using a synthesised voice that mimics 
the user’s own voice. This study focuses on evaluating the performance of  several open-source SLMs 
within this  pipeline,  particularly their  potential  to replace LLMs in low-resource or embedded 
systems.

The use of tiny and SLMs is critical to enable deployment on mobile devices, ensuring widespread 
accessibility and real-time assistance in daily communication. Furthermore, SLMs address pressing 
privacy and security concerns by processing sensitive speech data locally, minimising reliance on 
cloud-based servers and reducing risks associated with transmitting identifiable health information. 
This innovative approach ensures the production of intelligible sentences readily understood by the 
conversational  partner,  offering  advantages  such  as  personalisation  opportunities,  continuous 
improvement, potential integration with existing assistive technologies and services.



Figure 1: Pipeline of the Proposed AI-Assisted Communication System for Aphasia.

To establish a ground truth or a consensus-derived reference for benchmarking the performance 
of  the  selected  tiny  and  SLMs  in  transforming  spoken  utterances  from  PwA  into  intelligible 
sentences, we collected 30 question-answer pairs transcribed from AphasiaBank [11]. These pairs 
were processed using six LLMs: Mix-tral:22x7b, Gemma2:9b, Qwen2:7b, Llama3:8b, Phi3:3.8b, and 
WizardLM2:7b. These LLMs were chosen for their open-source nature, allowing local deployment 
without the need for high-end hardware. This enabled multiple experimental runs to assess result 
consistency. They are also known for their strong reasoning capabilities, which is essential for the 
task at hand. Moreover, running entirely offline ensured that potentially sensitive medical data 
remained  secure,  avoiding  transmission  over  cloud-based  services  and  supporting  ethical 
compliance. 

Five experts, specialising in speech-language therapy, clinical rehabilitation, and digital health 
transformation, independently evaluated the LLM interpretations of aphasic speech for each pair, 
selecting  the  output  they  deemed  most  accurate.  Consensus  analysis  revealed  that  Mixtral 
outperformed all other models, as shown in Figure 2, followed by Gemma and Qwen. The highest-
rated interpretations were then designated as the ground truth for subsequent evaluations. This 
expert-derived reference standard enabled systematic evaluation of ten widely used tiny and SLMs 
against clinically validated interpretations, as detailed in the following section.

Figure 2: Consensus Performance of LLMs in Interpreting Aphasic Speech (% Agreement with 
Expert Judgements).

3. Implementation and Results

Building on the expert-validated benchmark established in Section 2, we evaluated the performance 
of 10 tiny and small language models (SLMs) in interpreting aphasic speech by comparing their 
outputs  to  the  consensus-derived  interpretations.  We  implemented  a  structured  evaluation 
framework  measuring  cosine  similarity  between  model-generated  outputs  and  the  consensus-
derived  interpretations.  The  chosen  models  (gemma3:1b,  llama3.2:1b,  llama3.2:3b,  qwen2.5:0.5b,  
qwen2.5:1.5b, qwen2.5:3b, smollm2:1.7b, phi3:3.8b, phi4-mini:3.8b, and hermes3:3b), ranging from 0.5B 



to 3.8B parameters, were tested across three prompting techniques: zero-shot, zero-shot chain-of-
thought (CoT), and explicit CoT prompting designed to mimic clinical reasoning [12].

This chosen parameter range, spanning two orders of magnitude, was deliberately selected to 
assess the balance between computational efficiency and clinical efficacy, with smaller models (e.g., 
0.5B) optimised for deployment in re-source-limited environments (e.g., mobile devices), and larger 
architectures (e.g., 3.8B) targeting enhanced linguistic reasoning for complex aphasic speech pat-
terns, deployable on higher-capacity portable clinical systems. The spectrum directly informs real-
world applicability, balancing latency-sensitive environments against scenarios requiring nuanced 
semantic reconstruction. Table 1 defines these prompting techniques within the study context and 
shares the CoT prompt used in this study. 

Table 1
Prompt Techniques Definitions.

Prompt Technique Definition/Description

Zero-Shot The model is directly instructed to provide interpretations without 
examples or in-context guidance or hints

Zero-Shot CoT A variation of Zero-Shot where the model is instructed to generate its 
own CoT steps before arriving to its final answer 

CoT The model is provided with explicit reasoning framework to guide the 
analysis steps to help the model break down the problem and reach more 
accurate results.

Prompt: You are a speech-language pathologist interpreting responses from a person 
with aphasia. Aphasia is a communication disorder that can affect a person ability to  
speak, understand, read, or write. People with aphasia often use incomplete phrases,  
incorrect words, or fragmented speech, yet their intended meaning can often be  
inferred from context and key words. Your task is to reconstruct the person intended 
message based on their response.

Question: '{question}'
Answer from patient: '{answer}'
Internally analyse the response step by step:
1. Identify meaningful or relevant words in the patient answer
2. Infer what the patient is trying to communicate
3. Consider how the response relates to the context of the question
4. Construct a clear and natural interpretation of the patient intended message
Only output the final interpretation, written in the first person as if the patient is 

saying  it  themselves.  Do  not  include  any  internal  reasoning,  explanations,  or  
additional commentary.
Interpretation:

Table 2 provides an example of the variations in aphasic speech interpretation across the ten 
language models, contrasting a representative question-answer pair with model-generated outputs. 
The ground-truth interpretation in this example (Wizardlm2:7b, zero-shot) reflects comprehensive 
inference, while the best-performing SLM (Phi4-mini:3.8b, chain-of-thought) achieves high semantic 
similarity  (0.82)  through  concise  synthesis  of  key  medical  details.  In  contrast,  the  weakest 
interpretation  (Llama3.2:1b,  zero-shot)  scores  substantially  lower  similarity  score  (0.45), 
demonstrating typical failure patterns where models overlook temporal progression and diagnostic 
markers. The comparison highlights how model architecture and prompting strategies influence the 
model ability in reconstructing communicative intent from fragmented aphasic speech.

Table 2



Example of LLM Interpretations of Aphasic Speech.

Question Aphasic Speech Response

Do you remember much 
about your strokes?

"well   the first one  .  no . 
 I could hear the doctors that morning . 
 I could hear them talking . 
 I could hear what they were saying . 
 but I could not do things . 
 I I could listen to them . 
 and then later it was just hard to say things . 
 I couldn't take words . 
 I didn't know words ."

Ground Truth
Wizardlm2:7b
{zero_shot}

When I had my stroke, I recall hearing the doctors that morning as they 
discussed my condition, but at the time, I was unable to respond or 
perform tasks on my own. Later, it became particularly challenging to 
articulate words and express what I needed to say.

Best SLM Interpretation
Phi4-mini:3.8b
{cot} [acc=0.82]

I remember some details about my strokes; I could hear what was 
happening when they occurred but couldn't respond physically at that 
time and later found speaking difficult because of word-finding issues.

Worst SLM Interpretation
Llama3.2:1b
{zero_shot}[acc=0.45]

I remember hearing doctors talking about me in the hospital room.

For each model-prompt combination, we compared the semantic similarity scores using cosine 
similarity between sentence embeddings generated by the all-MiniLM-L6-v2 sentence-transformer 
model [13]. We also compared the performance two widely used evaluation metrics, BertScore [14] 
and  ROUGE scores  [15].  Our  analysis  reveals  that  these  existing  metrics  yield  inconsistent 
evaluations and fail  to  adequately capture the semantic  similarity that  this  research seeks to 
measure.  To  illustrate  this  limitation,  we  examined  the  results  obtained  for  the  sample  texts 
presented in Table 2. When assessed using BertScore, the best and worst SLMs responses received 
scores of 0.89 and 0.85, respectively, suggesting only a marginal difference in quality. In contrast, 
ROUGE-1 scores for the same responses were substantially lower (0.5 and 0.3), while ROUGE-2 
scores  exhibited  an  even  greater  discrepancy  (0.06  and  0.00).  Additionally,  ROUGE-L  scores 
displayed  inconsistency,  assigning  values  of  0.32  and  0.36  to  the  respective  responses.  These 
divergent results highlight the lack of agreement between metrics and underscore their inadequacy 
in reliably assessing semantic similarity.

Performance was analysed through aggregate statistics (mean, median similarity scores) and 
visualised to compare models and prompting strategies. Figure 3 demonstrates how larger language 
models (e.g.,  Phi3:3.8b and  Phi4-mini:3.8b) achieve significantly higher semantic similarity scores 
compared to other models, while the smallest model (Qwen2.5:0.5b) performs weakest. Notably, 
Qwen2.5:1.5b delivers competitive performance relative to its compact architecture, suggesting a 
favourable trade-off between model size and accuracy.



Figure 3: Semantic Similarity of Model-Prompt Combinations for Aphasic Speech Interpretation.

The boxplot analysis, shown in Figure 4, reveals distinct performance patterns among the tested 
prompting  techniques.  CoT  prompting  achieves  the  highest  median  semantic  similarity  score 
(~0.68), with a tighter interquartile range (IQR) suggesting more consistent performance compared 
to  zero-shot  methods.  Zero-shot  techniques  show  broader  score  distributions  (median  ~0.64), 
indicating higher variability in interpretation quality. Notably, zero-shot CoT (median ~0.63) bridges 
this gap, demonstrating that implicit step-by-step reasoning improves reliability over basic zero-shot 
approaches while remaining less constrained than full CoT. These results underscore that explicit 
reasoning frameworks,  represented in CoT, enhance both accuracy and consistency in aphasic 
speech interpretation.

Figure 4: Distribution of Semantic Similarity Scores Across Prompting Techniques.

4. Conclusions

This  study demonstrates  the potential  of  tiny and small  language models  (SLMs)  to  enhance 
communication for individuals with aphasia, offering a balance be-tween computational efficiency 
and clinical utility.  Our findings indicate that model size and prompting strategy significantly 
influence interpretation accuracy, with chain-of-thought (CoT) techniques yielding the most reliable 
results. While larger SLMs (e.g.,  Phi4-mini:3.8b) achieved higher semantic similarity to clinician 



benchmarks,  smaller  models  like  Qwen2.5:1.5b showed promising performance relative to their 
reduced size, suggesting feasibility for real-world deployment on mobile devices. However, it is 
important to note this research limitations that include the modest sample size of expert-validated 
utterances and the focus on expressive aphasia, which may not fully capture the diversity of aphasic 
speech patterns. Additionally, the study’s reliance on cosine similarity, though widely adopted, may 
overlook nuanced semantic differences critical in clinical contexts.

Future work would expand the dataset to include broader aphasia subtypes and multilingual 
contexts,  while  incorporating  real-time  user  feedback  to  refine  model  outputs  dynamically. 
Investigating hybrid approaches, by combining SLMs with rule-based systems or personalised LLM 
fine-tuning, could further improve the solution accuracy, particularly for complex conversational 
scenarios. Furthermore, participatory design methodologies should integrate stroke survivors as co-
evaluators in assessing system utility, ensuring solutions align with lived experiences of aphasic 
communication challenges. By addressing these challenges, SLM-based assistive tools could evolve 
into  scalable  solutions,  bridging  gaps  in  accessible  communication  support  for  underserved 
populations.
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