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Abstract
A neuro-fuzzy counterpropagation network is introduced that employs a modified fuzzy C-means clustering 
procedure in an online mode, enhancing both learning rate and accuracy while maintaining the same simple 
architecture as traditional CPN networks. This modification allows handling of overlapping classes, when an 
observation can belong to multiple classes simultaneously. Consequently, several output layer neurons can  
be activated at once. An optimized algorithm is introduced for the output layer tuning with a better control  
over its filtering and following characteristics through the use of a special adjustable parameter. Experiments 
demonstrate that this innovative approach outperforms traditional counterpropagation networks in various 
performance metrics.
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1. Introduction

In  recent  years,  artificial  neural  networks  (ANN)  have  become  a  popular  solution  to  various 
information processing challenges. These include tasks such as pattern recognition (classification), 
clustering, and forecasting (extrapolation). The success of ANNs can be attributed to their ability to  
approximate complex functions (universal approximation properties) and learn by adjusting their 
parameters based on optimization procedures. 

Deep neural networks (DNNs), a subset of ANNs, have demonstrated remarkable results in solving 
numerous data  analysis  problems.  However,  DNNs also have significant drawbacks.  One major 
limitation is the requirement for large amounts of training data, which may not always be available.  
Additionally, DNNs can be slow during parameter adjustment in multi-epoch learning mode. DNNs 
also face challenges when tackling real-time data stream mining tasks under conditions of non-
stationarity and limited input information. Similar limitations apply to classic multilayer perceptron 
(MLP) models trained using the error backpropagation procedure.

It is worth noting that classic radial basis function networks (RBFN) [1, 2] exhibit a higher learning 
rate but may encounter issues related to the “curse of dimensionality” as the number of input signals 
increases.

In today’s data-driven world, there is a growing need for neural networks that can efficiently 
handle data stream mining tasks in online mode with limited training data. Among various neural 
network models, the counterpropagation neural network (CPN), introduced by R. Hecht-Nielsen [3-5], 
stands out as a viable solution despite its architectural simplicity.

Advantages of CPNs:

 High learning rate: CPNs are known for their ability to learn quickly.
 Simple architecture:  only two layers formed by simple nodes,  CPNs offer computational 

efficiency.
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However, there is an inherent trade-off. While CPNs excel in learning rate, their approximation 
properties – the ability to model complex functions – are inferior compared to traditional MLPs and 
RBFNs, and of course modern DNNs, which are generally more powerful in function approximation.

Despite these limitations, ongoing research focuses on enhancing the approximation capabilities 
of CPNs while maintaining their high learning and processing rates. These efforts aim to bridge the 
gap between performance and efficiency without compromising on speed. Recent applications of 
CPNs include but are not limited to classification [6-9], prediction [10], parameter identification [11], 
structural optimization [12], extreme learning machine optimization [13], digital image watermarking 
[14], navigation systems development [15] and others. One promising direction for improvement 
involves  integrating hybrid systems of  computational  intelligence [16].  Specifically,  neuro-fuzzy 
approaches, which combine neural networks with fuzzy logic, offer a potential solution. By leveraging 
these methods [2, 17, 18] it may be possible to enhance the characteristics of CPNs. In conclusion, 
while CPNs present unique challenges compared to more sophisticated neural architectures like 
DNNs  and  MLPs,  ongoing  research  explores  innovative  solutions  that  could  unlock  their  full  
potential.

2. Counterpropagation network basics

From a theoretical  point of view, the counterpropagation network is  intended for restoring the 
nonlinear mapping y=F (x ) (forward-only CPN architecture shown in Fig. 1 is sufficient), as well as 
the inverse mapping  x=F−1 ( y ) (full  CPN architecture is required, see Fig. 2),  i.e.  identifying a 
nonlinear transform 

F : X→Y (Rn→Rm)

from  the  training  samples  x (1) , y (1) ,…, x (k ) , y (k ) ,…, x (N ) , y (N ),  where 

x (k )=(x1 (k ) ,…, xi (k ) ,…, xn (k ))T∈ Rn,  y (k )=( y1 (k ) ,…, y i (k ) ,…, ym (k ))T∈ Rm, 

k=1,2 ,…,N  is the observation index in the dataset, or the index of the current discrete time, if the 
data is being processed in online mode. 

CPN contains two layers of neurons: the first hidden layer, called the T. Kohonen layer, and the  
output  layer,  called  the  S.  Grossberg  layer.  In  this  paper,  we  will  focus  on  the  forward-only 
architecture, but the proposed methods are equally applicable to the full CPN architecture as well.

The input signals x (k ) arrive sequentially from the receptive layer to the first hidden layer, which 
is usually a Kohonen’s self-organizing map (SOM) [19, 20] designed to solve the crisp clustering 
problem, i.e. dividing the data set into h non-overlapping classes/clusters in the self-learning mode. 
SOM implements the following “Winner Takes All” mapping

ul (k )={¿1 , if wl
K (k ) is awinner , i .e .‖x (k )−wl

K (k )‖≤‖x (k )−wi
K (k )‖∀ i=1,2 ,…,h

¿0otherwise
(1)

where u (k )=(u1 (k ) ,… ,ul (k ) ,… ,uh (k ))T , W K={w liK } – (h×n ) tuned matrix of synaptic weights 
that define centroids of the clusters.

The Kohonen layer learning is based on the same “Winner Takes All” (WTA) principle, when only 
one winning neuron is tuned at each iteration k=1,2 ,… When observation x (k ) is received, the 
closest to x (k ) neuron is determined (in the Euclidean metrics sense), which is called a “winner” (1). 

Then only this “winner” neuron’s vector of weights w l
K (k ) is being tuned according to the rule:

w l
K (k+1)={¿w lK (k )+ηK (k )(x (k )−w l

K (k )) , if w lK (k ) is awinner ,
¿w l

K (k )otherwise
(2)



(here  0<ηK (k )<1 is  the  Kohonen  layer  learning  rate  parameter,  which  is  usually  chosen 

empirically). Note also that when ηK (k )=k−1 procedure (2) calculates the arithmetic mean (centroid) 
of the lth cluster, i.e. it actually implements the popular crisp K-means clustering algorithm.

Figure 1: Forward-only counterpropagation network architecture

Figure 2: Full counterpropagation network architecture

The output layer is formed by the so-called Grossberg outstars, which are essentially modifications 
of the standard linear element (Adaline) and implement the mapping

ŷ (k )=W Gu (k ) , (3)

where W G={w jl
G} – (m×h ) matrix of synaptic weights tuned in the controlled learning mode.

Outstar neurons of the output (Grossberg) layer are usually trained using a fairly simple algorithm
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w jl
G (k+1)=w jl

G (k )+ηG (k )ul (k )( y l (k )−w jl
G (k ))

or using vector notation,

w j
G (k+1)=w j

G (k )+ηG (k )uT (k )⊙ ( y l (k )Eh−w l
G (k )) , (4)

where 0<ηG (k )<1 is the Grossberg layer learning rate parameter, Eh is a (1×h ) vector of ones, ⊙ 
is the element-wise product symbol

So, this neural network acts like a simple lookup table. It gives outputs in steps rather than 
smoothly, which limits its ability to model complex relationships. Furthermore, using a “Winner 
Takes All” approach in the Kohonen layer means that during training, only one outstar is adjusted at a 
time. This makes the overall training process slower.

Given  these  limitations,  modifying  the  Counterpropagation  Neural  Network  along  with  its 
learning methods could enhance its ability to model functions more accurately while speeding up the 
training process.

3. Neuro-fuzzy counterpropagation network (NFCPN)

The proposed NFCPN maintains the same architecture as traditional CPN networks, but introduces 
key improvements. Instead of employing a traditional Self-Organizing Map within the Kohonen layer, 
which traditionally uses a recurrent version of the crisp K-means clustering algorithm, our approach 
utilizes a modified fuzzy C-means clustering procedure (FCM) [21, 22] in the recurrent form [23],  
enhancing both learning efficiency and approximation accuracy.

This modification allows for effective handling of situations where classes overlap in feature space, 
enabling an observation to belong to multiple classes simultaneously. Furthermore, by applying a 
nonlinear strategy, the network can activate several output layer neurons at once. In contrast, classic 
CPN networks only trigger one Grossberg outstar during learning, which inherently slows down the 
process.

Overall,  these  changes  significantly  improve  the  network’s  performance  and  adaptability  in 
complex scenarios.

3.1. Kohonen layer learning

To improve the quality and speed of the SOM clustering, we use the so-called “Winner Takes More” 
(WTM)  rule,  instead  of  WTA.  This  approach  utilizes  a  neighborhood  function  ψ (l , g , k ) that 

determines the proximity of all other neurons wg
K (k ) , g=1,2 ,…,l−1 , l+1 ,…,h to the “winner” 

w l
K (k ). For g=l, ψ (l , l , k )=1, and the value of ψ (l , g , k ) decreases with the increase of the distance 

between vectors w l
K (k ) and wg

K (k ).
All centroids – vectors of synaptic weights are tuned according to the modified learning rule

w l
K (k+1)=w l

K (k )+ηK (k )ψ (l , g , k )(x (k )−w l
K (k ))∀ l=1,2 ,…,h (5)

It is readily seen that (5) is a generalization of the WTA algorithm (2), for which the neighborhood 
function is  a  singleton.  Unfortunately,  there are  no formal  rules  for  determining neighborhood 
functions ψ (l , g , k ), hence their selection is based on empirical considerations.

Considering a more practical situation, when each observation can belong to several or all clusters 
simultaneously, it is beneficial to use a recurrent modification of J.C. Bezdek’s FCM algorithm [21] 
related to optimization of the following objective function

J (μl (k ) ,w l
K )=∑

k=1

N

∑
l=1

h

μl
β (k )‖x (k )−w l

K‖2

subject to constraints



∑
l=1

h

μl (k )=1∀ k=1,2 ,…,N ,

0<∑
k=1

N

μl (k )<N∀ l=1,2 ,…,h .

Here μl (k ) –  degree of fuzzy membership of observation  x (k ) to lth cluster,  β>0 –  fuzzifier 

(usually β=2), w l
K  – centroid of lth cluster.

Solving the optimization problem based on finding the saddle point of the Lagrange function

L (μl (k ) ,w l
K , λ (k ))=∑

k=1

N

∑
l=1

h

μl
β (k )‖x (k )−w l

K‖2
+∑
k=1

N

λ (k )(∑
l=1

h

μl (k )−1) (6)

(here λ (k ) – Lagrange multipliers) for β=2 leads to the standard FCM algorithm

{¿ μl (k )=
‖x (k )−w l

K‖−2

∑
g=1

h

‖x (k )−wg
K‖−2

,

¿w l
K=

∑
k=1

N

μl
2 (k ) x (k )

∑
k=1

N

μl
2 (k )

.

To solve the fuzzy clustering problem in online mode, i.e.  training the fuzzy Kohonen map,  
consider a local modification of the Lagrange function (6) in the form [24, 25]

L (μl (k ) ,w l
K (k ) , λ (k ))=∑

l=1

h

μl
β (k )‖x (k )−w l

K (k )‖2
+ λ (k )(∑

l=1

h

μl (k )−1).
Optimizing it with the K.J. Arrow, L. Hurwitz, H. Uzawa procedure [26], we obtain the following 

result

{ ¿ μl (k )=
‖x (k )−w l

K (k )‖−β

∑
g=1

h

‖x (k )−wg
K (k )‖−β

,

¿w l
K (k+1)=w l

K (k )+ηK (k ) μl
β (k )(x (k )−w l

K (k )) ,

(7)

which coincides with the D.C. Park, I. Dagher algorithm [27] when β=2:

{ ¿ μl (k )=
‖x (k )−w l

K (k )‖−2

∑
g=1

h

‖x (k )−wg
K (k )‖−2

,

¿w l
K (k+1)=w l

K (k )+ηK (k ) μl
2 (k )(x (k )−w l

K (k )) .

(8)

It is easy to see that (7),  (8) structurally coincide with the WTM algorithm (5),  but here the 
neighborhood function is being chosen automatically.

Next, the calculated membership degrees μl (k )∀ l=1,2 ,…,h are fed to the output layer of the 
network, i.e. vector u (k ) is formed not by a single one and a set of zeros, but by membership degrees 
μl (k ), which activate all neurons of the Grossberg output layer.



3.2. Grossberg layer learning

As described above, the Grossberg layer receives the vector μ (k )=(μ1 (k ) ,…, μl (k ) ,…, μh (k ))T  as 

input, instead of  u (k ) in classic CPN. This leads to acceleration of the Grossberg layer learning, 
because all weights are being updated at each iteration, not only the ones connected to the “winner” of 
the Kohonen layer. Hence, instead of (2), the learning process of this layer can be rewritten as

w j
G (k+1)=w j

G (k )+ηG (k ) μT (k )⊙ ( y l (k )Eh−w l
G (k )) . (9)

The output layer learning rate  parameter  ηG (k ) can be optimized,  considering the objective 
function

J (w j
G)=1

2
( y l (k )−w l

G μ (k ))2

and its gradient optimization procedure

w j
G (k+1)=w j

G (k )+ηG (k )( y l (k )−w l
G (k ) μ (k ))μT (k ) . (10)

Optimizing (10) for speed leads to the Kaczmarz-Widrow-Hoff algorithm [28-30] in a form

w j
G (k+1)=w j

G (k )+
y l (k )−w l

G (k ) μ (k )

‖μ (k )‖2 μT (k ) . (11)

The balance between filtering and following properties of (11) can be chosen by the following 
modification [31, 32]:

{¿w j
G (k+1)=w j

G (k )+α−1 (k )( y l (k )−w l
G (k ) μ (k ))μT (k ) ,

¿α (k )=γα (k−1)+‖μ (k )‖2
,0≤ γ ≤1 ,

(12)

which coincides with (11)  when γ=0, and becomes a stochastic approximation procedure when 
γ=1.

4. Experimental results

4.1. Experimental setup

For the sake of comparison between classic counterpropagation network (CPN) and the proposed 
neuro-fuzzy counterpropagation network (NFCPN), we use a simple test case with  n=2 inputs, 
h=9 neurons in the Kohonen layer, and  m=1 output. Inputs  x1 (k ) , x2 (k ) are sampled from the 
uniform  distribution  over  the  interval  [0,1 ],  the  corresponding  output  is  calculated  as 

y (k )=(x1 (k )2+x2 (k )2)
1
2 . 

The first N=1000 observations form the training set, another T=1000 observations form the 
test set. Both networks operate in online mode, processing all N  training observations sequentially 
and only once, updating their parameters after each step k . Also, after each step, the mean absolute 
error (MAE) is calculated over the entire test set, i.e. we monitor how the out-of-sample error changes 
during the online training process. 

First, both networks are trained under the same conditions ηK (k )=ηG (k )=0.1∀ k=1,2 ,…,N , 
hence we compare WTA principle in CPN versus WTM in NFCPN (Fig. 3).  Then, an optimized 
learning algorithm (12) with various values of parameter γ  is used for NFCPN in order to further 
improve its performance (Fig. 4). Numerical results are presented in Table 1.



Table 1
Effectiveness comparison

Network type and parameters MAE = 0.1 at k=¿ MAE at k=1000
CPN, ηK (k )=ηG (k )=0.1 399 0.085

NFCPN, ηK (k )=ηG (k )=0.1 264 0.065

NFCPN, ηK (k )=0.1 , γ=0 23 0.07–0.12

NFCPN, ηK (k )=0.1 , γ=0.9 118 0.065

NFCPN, ηK (k )=0.1 , γ=0.99 695 0.081

NFCPN, ηK (k )=0.1 , γ=1.0 – 0.184

Figure 3: CPN vs NFCPN errors

Figure 4: NFCPN errors at different levels of γ



The  analysis  conducted  on  the  results  reveals  significant  differences  between  traditional 
counterpropagation networks (CPN) and neuro-fuzzy counterpropagation networks (NFCPN). These 
findings highlight the advantages of using NFCPN in achieving faster learning rates and improved 
accuracy.

4.2. Learning efficiency: MAE comparison across networks

Mean Absolute Error (MAE),  a key metric for evaluating model performance,  was calculated at 
various stages of training. The results demonstrate that:

 Classic CPN: At k=399 iterations, the classic CPN achieved MAE level of 0.1.
 NFCPN: In comparison, the neuro-fuzzy counterpart reached a similar MAE level of 0.1 at 

k=264 iterations.

This  indicates  that  NFCPN  requires  fewer  training  cycles  to  achieve  comparable  accuracy, 
suggesting  superior  learning  efficiency  compared  to  classic  CPN.  Further  results  reinforce  this 
conclusion.

At k=1000:

 Classic CPN: The MAE stabilized at 0.085.
 NFCPN: Achieved an improved MAE of 0.065, showcasing greater accuracy even as training 

progressed.

These results collectively demonstrate that, with the same training parameters, NFCPN learns 
approximately 1.5 times faster than CPN and is by 24% more accurate in performing the given task.

4.3. Adjusting learning dynamics: the role of gamma parameter (γ)

The study also explored different configurations for enhancing learning performance using algorithm 
(12) and adjusting the gamma parameter (γ ).

Initially, γ  was set to 0. This setting significantly increased the learning rate by over 10 times in 
comparison to the classical learning algorithm with ηK (k )=ηG (k )=0.1. However, this improvement 
came at a cost – training became noisy, lacking effective filtering properties. To address this trade-off 
and improve the filtering characteristics of the algorithm without compromising learning speed, 
gamma was gradually increased. With  γ=0.9, errors comparable to those achieved with a fixed 
ηG (k )=0.1 were observed. Additionally, this configuration maintained an impressive learning rate 
that was about 2.2 times faster than with the classical learning algorithm.

This experimentation underscores the importance of fine-tuning gamma to achieve a balance 
between noise reduction and efficient learning rates. By carefully controlling gamma, it is possible to 
optimize both filtering properties and following characteristics (i.e., adaptability to changes in non-
stationary data streams).

4.4. Key findings summary

 Learning rate: NFCPN consistently outperforms CPN by achieving comparable or better MAE 
with fewer training iterations.

 Accuracy enhancement: The improved performance of NFCPN results in a 24% increase in  
accuracy over classic CPN under the same conditions.

 Parameter optimization: Modifying gamma allows for precise control over learning dynamics, 
balancing between noisy and stable training processes. Adjusting gamma to higher values 
enhances filtering properties without significantly compromising on learning speed.



5. Conclusions

We have introduced a fuzzy modification to a counterpropagation network, enhancing its ability to  
handle situations where data categories overlap. This means an item can belong to multiple classes 
simultaneously, which is common in real-world scenarios.

Our modifications improve the network’s learning efficiency and enable it to address a wider range 
of  problems  in  real-time  data  processing.  Additionally,  this  enhanced  version  is  simpler 
mathematically  and  requires  less  training data  compared  to  traditional  methods.  It  also  adapts 
smoothly as new, varied data arrives, which is crucial for handling dynamic information streams.

Experiments demonstrate that our modified network performs effectively and outperforms the 
standard CPN model.  These results suggest that neuro-fuzzy counterpropagation networks hold 
significant potential in real-time data processing tasks where both efficiency and accuracy are critical. 
The ability to adjust gamma parameter offers flexibility, enabling the network to adapt to varying 
levels of non-stationarity in input data streams.

Further  research  could  explore  additional  parameter  configurations  or  investigate  how  the 
proposed approach generalizes across different tasks. We also aim to explore different clustering 
techniques within the hidden layer of NFCPN to further enhance its capabilities. Such advancements 
would likely enhance the applicability of counterpropagation networks across a broader range of real-
world scenarios. 
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