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Abstract
The  focus  of  this  research  is  the  creation  of  intelligent  geometric  design  technologies.  The  system 
employs state-of-the-art methods and tools to automate the arrangement and enhance the placement of  
3D  shapes.  Specifically,  the  aim  is  to  resolve  practical  issues  in  optimizing  additive  manufacturing 
processes. This is accomplished by merging artificial intelligence techniques with novel computational 
solutions  for  superior  results.  The article  presents  a  nonlinear  optimization approach for  solving 3D 
irregular  packing  problems  with  arbitrarily  moved  and  rotated  objects.  Phi-functions  and  quasi-Phi-
functions are used to describe interactions between the 3D objects. The following formulation presents 
the packing problem in mathematical terms, along with an analysis of its features. A local optimization 
algorithm is introduced to identify solutions, with a focus on the characteristics that have been delineated.  
The results of computational experiments suggest that the proposed solution method is effective for 3D  
irregular packing optimization.
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1. Introduction

This paper proposes the development of intelligent geometric design technologies that leverage 
advanced methodologies and tools to automate and optimize the placement of geometric objects in 
space.  These  technologies  address  applied  challenges  in  optimizing  additive  manufacturing  by 
integrating artificial intelligence (AI) and innovative computational approaches to achieve optimal 
solutions.

Three-dimensional  packing  problems  are  a  useful  model  for  studying  well-established 
optimization  scenarios  frequently  encountered  in  various  engineering  disciplines.  There  is 
considerable  current  momentum  towards  discovering  efficient  strategies  for  tackling  these 
problems.  These  problems  find  relevance  across  various  real-world  scenarios,  including  the 
efficient  placement  of  geometric  objects,  defined  by  their  shape,  within  constrained  spaces. 
Frequently,  the resolution of  a  3D packing challenge entails  determining the placement  of  all  
provided objects within containers of minimal size.

Packing dilemmas constitute essential elements of mathematical and computational modelling. 
These  problems  are  inherently  challenging  due  to  their  intricate  interplay  with  optimization,  
geometric configuration, and space utilization. These challenges catalyze innovation in the field, 
particularly  in  algorithms  and  computational  methodologies.  These  innovations  are  vital  for 
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providing  solutions  to  sophisticated  real-world  problems  in  the  domains  of  engineering  and 
science.  The advancement and refinement of  methodologies  for  addressing these problems are 
paramount to the continuous development of natural and information-based systems.

Packing problems are prevalent across many scientific and engineering fields. Often, real-world 
tests  are  substituted  with  computer-based  modelling,  which  greatly  minimizes  time,  physical 
materials,  and overall  expenses.  Take,  for  instance,  reference [1];  this  work explores  the most  
effective ways of arranging objects, which can be turned any which way inside a space that has 
limits.  This study highlights noteworthy enhancements in the effectiveness of packing and the 
smart use of available resources. Progress in the field has been accelerated by improvements in 
information technology, specifically when studying particles that vary in size (as is seen in [2]).  
Reference [3] presents a technique that relies on reinforcement learning; it's used to pack odd 3D 
shapes into a storage area. This method considers physics and the turning of the shapes to assist. A  
key feature of this technique is lessening the requirements for learning via the creation of likely  
moves that  aid  in training.  To elaborate,  [4]  presents  a  solver  based on learning,  focusing on 
packing objects of any shape.

Applications are numerous and span various domains,  including biology, geology, medicine, 
nanotechnology,  robotics,  and  pattern  recognition.  These  implementations  also  benefit  control 
systems, vehicle construction, chemistry, power and mechanical engineering, and shipbuilding.

The  inherent  complexity  of  packing  problems,  classified  as  NP-complete,  has  spurred  the 
exploration of approximation methods. These methods frequently exhibit a heuristic character. The 
repertoire  includes  sophisticated  search  rules  [3,4],  the  principles  of  genetic  algorithms  [5], 
algorithms  inspired  by  ant  and  bee  behaviors,  and  simulated  annealing  [6].  Mathematical 
programming methods [7,8] and their hybrid or integrated variants [9] constitute further solution 
approaches.

According  to  reference  [4],  the  progression  of  a  standard  solution  algorithm  is  typically 
characterized by three repeating phases. The initial phase involves the selection of an order for the  
objects. The subsequent phase entails the positioning of the objects based on the selected order. 
The final phase concerns the computation of the objective function's value. It should be noted,  
however,  that  the  positioning  of  these  objects  is  subject  to  several  variations,  primarily  
distinguished by the following elements: the trajectory the objects take, the rotation constraints  
applied, and whether the process tolerates or actively prevents overlap.

Many publications impose restrictions on the rotation of  three-dimensional objects,  limiting 
them to  specific  angles,  such as  45  or  90  degrees,  or  completely  prohibiting  alterations  to  an 
object's  orientation.  For  instance,  reference [11]  utilizes  elementary  translational  movement  to 
arrange  convex  polytopes.  Lamas-Fernandez  et  al.  (2023)  have  also  developed  voxel-based 
approaches to address the 3D irregular packing problem [13]. The research in [12] introduces the  
HAPE3D  algorithm,  which  focuses  on  packing  polyhedra  with  rotations  limited  to  eight 
predetermined angles around the coordinate axes. Finally, the study documented in [14] concludes 
that determining object orientations across a full 360-degree range in 3D is not a practical solution.

In the face of the daunting task of developing meaningful mathematical models, formulating 
equivalent expressions for continuous rotations of three-dimensional geometric figures is a pursuit  
by  a  select  few  researchers.  In  this  context,  techniques  for  ellipsoid  packing  are  examined,  
leveraging both continuous and differentiable nonlinear optimization strategies, as demonstrated in 
[15, 16]. Packaging multiple convex 3D objects is the primary subject of discussion in reference 
[17].

This research is devoted to developing an intelligent system that will optimize the 3D printing 
process of many industrial parts using unique intellectual tools and technologies for modelling and 
solving optimization problems of geometric design. The proposed approach involves modelling and 
solving the optimization problem of packing non-convex geometric objects. 

 To this  end,  a  multifaceted approach is  employed,  integrating mathematical  and computer 
simulation methodologies. These methodologies are meticulously designed to accurately capture 
the  interactions  (non-intersection conditions)  between geometric  objects.  This  strategy enables 
formulating  the  primary  problem  as  a  nonlinear  optimization  problem.  The  mathematical 
underpinnings of our methodology are rooted in the phi-functions method, exhaustively delineated 
in [17].  This method provides a rigorous analytical  representation of both the constraints that 
prevent intersection and the constraints that ensure the location of objects in the container. A 
critical aspect of our methodology is the incorporation of continuous rotational transformations 



and parallel translational motions of objects, ensuring a comprehensive and precise representation 
of the geometric constraints.

The primary goal of this research is  to develop an intelligent geometric design system that 
enhances  the  automation  and  optimization  of  3d  shape  arrangement,  particularly  for  additive 
manufacturing  (3d  printing)  applications.  The  work  seeks  to  improve  packing  efficiency  by 
integrating artificial intelligence (AI) with advanced computational geometry techniques.

This  research  advances  the  field  of intelligent  geometric  design by  introducing  a novel 
optimization framework for 3d irregular  packing.  Combining AI  techniques with computational 
geometry provides a viable additive manufacturing solution, demonstrating theoretical innovation 
and industrial applicability. The computational experiments confirm the method’s effectiveness,  
paving the way for smarter, more efficient manufacturing processes.

2. Problem definition

The proposed intellectual system is predicated on a distinctive universal mathematical model of 
optimization geometric design, constructed with specialized intellectual means of modelling this 
category of problems. These intellectual means encompass specific functions designated as "phi-
functions" [18].  These functions facilitate the construction of a generalized universal mathematical  
model in the form of a nonlinear optimization problem.
Let there be the following convex geometric objects: 

 a convex polyhedron J 1 given by vertices p1 t=( p1 t
1 , p1 t

2 , p1 t
3 ) , t∈ T 1={1,2 , ... , ϱ1}; .

 a circular cylinder J 2={X∈ R3 , x2+ y2−R2
2≤0,0≤ z≤ H 2}; 

 a sphere J 3={X∈ R3 , x2+ y2+ z2−R3
2≤0 };

 a circular cone J 4={X∈ R3 , x2+ y2−c4
2 ( z−E4 )

2≤0 , z ≥0 , E4>0 };
 a truncated circular cone J 5={X∈ R3 , x2+ y2−c5

2( z−E5 )
2≤0 , E5≥H 5≥0 ,0≤ z≤ H 5 };

 
 a spherical segment J 6={X∈ R3 , x2+ y2+( z+H 6 )

2−R6
2≤0 , z−H 6≤0,0<H 6<R6 }; 

 a half-space J 7={X∈ R3 , z ≤0 }. 
We suppose that each concave geometric objects  Qi , i∈ I={1,2 , ... , n }, is a finite union of 

convex geometric objects  Oi=∑
k=1

κ i

Oik where  Oik are geometric objects of kind  J r , r=1,2 , ... ,7 . 

The location of each object  Oik with respect to the local coordinate system of  Oi is given with 
placement parameters uik=( v ik ,θik ) , k∈ K i={1,2 , ... , κ i } .

A  container  C  can  be  a  rectangular  parallelepiped   (rectangular  prism  or  cuboid) 

C1={X∈ R3 ,w1≤ x≤w2 , l1≤ x≤ l2 , η1≤ x≤η2},  where  w1≥0 , l1≥0 , η1≥0 ,or  a  right  circular 

cylinder  C2 with  height  h=h2−h1 (h2≥h1)  and  radius  r , or  a  solid  sphere 

C3={X∈ R3 , x2+ y2+ z2−R2≤0.

Basic  problem.  Pack  geometric  objects  O j , i∈ I , without  their  mutual  overlapping  in  the 
container C  so that its volume will reach the minimum value.

We assume

ℏ ={(w1 ,w2 , l1 , l2 , η1 , η2)∈ R6 if C=C1 ,
(r ,h )∈ R2 if C=C2 ,
r∈ R1 if C=C3 .

Geometric objects  Oi (in what follows objects) both are allowed to be translated by a vector 
v i=( xi , y i , zi ) and  to  rotate  by  angles  θi=(φi ,ψ i ,ωi ) . Hence,  a  vector 
ui=( v i ,θi )=( xi , y i , zi , φi ,ψ i ,ωi ) gives  a  location  of  Oi in  R3 . Thus,  the  vector 

u=(u1 ,u2 , ... ,un )∈ R6n gives the location of all Oi , i∈ I , in R3 .



Then, components of the vector (u ,ℏ )=(u1 ,u2 , ... ,un ,ℏ )∈ R6n+m , where m can be either 1 

or 3 or 6, form a complete set of variables. In addition, an object Oi translated by a vector v i and 
rotated  through angles  θi is  designated by  Oi(ui ) and a  container  C  with  variable  size  ℏ  is 
denoted as C ( ℏ ) .

3. Mathematical model

On  the  ground  of  phi-functions  [17,18]  and  quasi-phi-functions  [19,20],  a  mathematical 
formulation of the problem can be stated as follows:

(u¿ ,ℏ ¿ , Z¿)=argmin H ( ℏ ) s . t .(u ,ℏ , Z )∈ Λ⊂ RN                                      (1)

Λ={(u ,ℏ , Z )∈ RN :Φij(ui ,u j , Z ij )≥0 , i< j∈ I ,                                         (1)

Φi(ui ,ℏ )≥0 , i∈ I , L( ℏ )≥0 }
where

H (ℏ )={( (w2−w1)(l2−l1)(η2−η1) if C=C1 ,

h2−h1)r
2 if C=C2 ,

r3 if C=C3 ,

L( ℏ )={w1≥0 , l1≥0 , η1≥0 ,w2−w1≥0 , l2−l1≥0 , η2−η1≥0 if C=C1 ,
h2−h1≥0 , h1≥0 , r ≥0 if C=C2 ,

r ≥0 if C=C3 ,

N ≥6n+m, m={6 if C=C1 ,
3 if C=C2 ,
1 if C=C3 .

Here, the inequality Φij(ui ,u j , Z ij )≥0 ensures non-overlapping Oi and O j while the inequality 
Φi(ui ,ℏ )≥0 guarantees a containment of Oi within C ( ℏ ) i.e. Φi(ui ,ℏ ) is a phi-function for Oi 

and B ( ℏ )=R3¿C ( ℏ ) where ∫C ( ℏ ) is the interior of C . A vector Z ij can consist of at most q 
components. 

Let us examine the fundamental properties of the mathematical model.

Since  Oi=∪
s=1

ϵ i

Ois and  O j=∪
p=1

ϵ j

O jp,  then  Oi∩O j=⌀ if  Ois∩O jp=⌀ , s∈ K i , p∈ K j . 

Consequently  Φij(ui ,u j , Z ij )=min {Φij
sp(ui ,u j , Z ij

sp ) , s∈ K i , p∈ K j } where  Φij
sp(ui ,u j , Z ij

sp ) is 

either a Φ-function or a quasi-phi-function for Ois and O jp . Thus, Φij(ui ,u jZ ij )≥0 if 

min {Φij
sp(ui ,u j , Z ij

sp ) , s∈ K i , p∈ K j }≥0.
Each  quasi  Φ-function  Φij

sp(ui ,u j , Z ij
sp ) in  general,  is  a  function  of  the  kind 

Φij
sp(ui ,u j , Z ij

sp )=max {Ψ ij
spa(ui ,u j , Z ij

sp ) , a∈ A ij
sp=Bij

sp∪ C ij
sp={1,2 , ... , aij

sp+1 , aij
sp+2 , ... ,ϰij

sp }}. 

Thus,  Φij
sp(ui ,u j , Z ij

sp )≥0 if  no  fewer  than  one  of  the  inequality  systems 

{Ψ ij
spa(ui ,u j , Z ij

sp )≥0 , a∈ A ij
sp , holds true.  It  is  evident  Φij(ui ,u j , Z ij )≥0 if  at least  one of the 

inequality  systems  {Ψ ij
spa(ui ,u j , Z ij

sp )≥0 , s∈ K i , p∈ K j , where  a∈ A ij
sp is  satisfied.  So,  the 

number  of  systems  is  ς ij=∏
s=1

κ i

∏
p=1

κ j

ϰij
sp .For  the  sake  of  convenience,  we  rename the  inequality 

systems as 

{Ψ ij
t (ui ,u j , Z ij

t )≥0 , t∈ T ij={1,2 , ... , ς ij }.



It  follows  from the  previous  items  that  Φij(ui ,u j , Z ij )≥0 , i< j∈ I , if  at  least  one  of  the 

inequality  systems  {Ψ ij
t (ui ,u j , Z ij

t )≥0 , i< j∈ I , where  t∈ T ij , holds  true.  For  the  sake  of 
convenience, we rename the inequality systems as 
Gτ (u , Z )≥0 , τ∈ Υ={1,2 , ... ,ϑ }

where ϑ=∏
i=1

n

∏
j

n

ς ij .

Each  function  of  the  family  Ψ ij
spa(ui ,u j , Z ij

sp ) , a∈ C ij
sp contains  an  additional  vector  Z ij

sp 
consisting in general of several components. This means that each inequality system contains at 

most ∏
i=1

κ i

∏
j=1

κ i

κ iκ j variables. 

Each function Φi (ui ,ℏ )is presented as

Φi(ui ,ℏ )=min {Φis(ui ,ℏ ) , s∈ K i={1,2 , ... , κ i }}
where Φis(ui ,ℏ ) is the Φ-function for Ois and C ( ℏ )=R3¿C ( ℏ ).
Based on items 3 and 4 we draw a very important conclusion: the feasible region  Λ can be 

presented as follows:

Λ=∪
τ=1

ϑ

Λ τ ,

where Λ τ is specified by the inequality system 
F τ (u ,ℏ , Z τ )=¿

where ξ τ t consists of components of vectors u and Z τ , ϵ>∏
i=1

κ i

∏
j=1

κ i

κ iκ j+n∏
i=1

n

κ i.

Note that the functions f τ j(ξ τ j ) , j=1,2 , ... , ϵ , are smooth with respect to their variables.
Consequently, solving the problem (1) – (2) can be reduced to solving step by step the following  

subproblems:
(u¿ τ ,ℏ ¿ τ )=argminH ( ℏ )s . t .(u ,ℏ )∈ Λ τ⊂ RN , τ∈ Υ .

This means we have a theoretical chance to compute a global minimum solution of the problem 
(1) – (2).

4. Solution algorithm

Since the solution space of the stated problem is defined by many inequalities, we propose solving  
the problem (1)–(2) in stages to obtain a local minimum point within a reasonable time.

1. Derivation of starting points from the feasible region.
 First of all, we cover objects Oi by spheres Si of minimum radii  r i

0 , i∈ I .
 Then we pack in pairs of objects Oi , i∈ I , into clusters to be either cuboids or spheres of 
minimum volumes. (If the number n of geometric objects is less than 30, then we cover Oi by 
spheres  Si of  minimum  radii  r i , i∈ I , and  pack  the  spheres  into  the  container  C  with 
minimum volume). 
 We solve a packing problem of the clusters into a container C  with minimum volume.
 Next, we take appropriate objects Oi , i∈ I , instead of spheres Si , i∈ I , (in addition, we 
give rotation angles of  Oi , i∈ I , randomly) or clusters  Qt , t∈ T , and form a starting point 
belonging to the feasible region.
2. Calculation of a local minimum. 
 We solve the packing problem of objects  Oi , i∈ I ,with fixed angle parameters, obtain a 
local minimum point. 
 On the ground of the point and given angle parameters, a starting point is formed, and a  
local minimum point of the problem (1) – (2) is calculated. 
Let us consider the stages in detail.



5. Constructing feasible starting points

5.1. Covering geometric objects with spheres

In order to cover objects Oi with spheres Si={X∈ R3 , x2+ y2+ z2−r i
2≤0 } of minimum radii r i , 

with placement parameters v i=( xi , y i , zi ). i∈ I , we solve the following problems:

r i
0=minr i s . t .(r i , v i )∈ Di⊂ R4 , i∈ I ,

Di={(r i
0 , v i

0 )∈ R4 ,Φi(r i , v i )≥0 }.
Here, Φi(r i , v i )≥0 provides non-overlapping Oi and a set

C i={X∈ R3 ,−( x−xi )
2−( y− y i )

2−( z−zi )2+r i2≥0}.
As a result of solving the problem, a point (r i

0 , v i
0 ) is calculated. In what follows, we remove the 

origins of the incoordinate systems of Oi so that they coincide with the centers of spheres Si , i∈ I . 
This means that a translation vector of Oi in R3 is a vector v i=( xi , y i , zi ) which coincides with 
the centre coordinates of the sphere C i .

After that,  we solve a packing problem of spheres  Si , i∈ I , into a sphere  C3 of minimum 
volume if  n≤30. The problem is solved just as presented in [18]. Consequently, a point ( v¿ , R¿) 
close to a global minimum point is identified. Randomly given rotation angles φi=φi

0 ,ψ i=ψ i
0and 

ωi=ωi
0 of Oi , i∈ I , we form a starting point (u0 ,θ0 )=( v¿ , φ0 ,ψ0 ,ω0 )∈ Λ for the problem (1) – 

(2) for C=C3 .

5.2. Pairwise packing of objects into clusters

Let Oi , i∈ I , consist of k  groups each containing lk identical geometric objects. We pack in pairs 
Oi , i∈ I , into cuboids Qij of the minimum volumes V ij

C , i< j∈ K={1,2 , ...k }. To this end, we 
solve the problems 

V ij
C=F ij( ℏ

⋄ )=min F ij( ℏ ) s . t .(ui ,u j ,ℏ )∈ Ωij⊂ R18 , i< j∈ I ,                 (1)
where

F ij( ℏ )=(w2
ij−w1

ij )( l2
ij−l1

ij )(η2
ij−η1

ij ) ,
Ωij={(ui ,u j ,ℏ )∈ R18 :Φij(ui ,u j )≥0 ,Φi(ui ,ℏ )≥0 ,Φ j(u j ,ℏ )≥0 , Lij( ℏ )≥0 },

Lij( ℏ )=(w1
ij≥0 , l1

ij≥0 , η1
ij≥0 ,w2

ij−w1
ij≥0 , l2

ij−l1
ij≥0 , η2

ij−η1
ij≥0 ) .

The  inequality  Φij(ui ,u j )≥0 insures  ∫Oi∩∫O j=⌀ while  Φi(ui ,ℏ )≥0 guarantees  a 

placement of Oi within Qij.
Consequently, a local minimum point (ui

¿ ,u j
¿ ,ℏ ¿)  close to a global minimum for the problem 

(3) is computed. 
After  that,  we  pack  in  pairs  Oi , i∈ I , into  spheres  Sij of  the  minimum  radius   Rij

¿ , 
i< j∈ K={1,2 , ... , k }, i.e. we solve the following problems:

V S= 4
3
π min {Rij

3 , i< j∈ I }s . t . (ui ,u j , Rij)∈ Ωij⊂ R13 ,

where
Ωij={(ui ,u j , Rij )∈ R16 :Φij(ui ,u j )≥0 ,Φi(ui , Rij )≥0 ,Φ j(u j , Rij )≥0 , Rij≥0 }.

The  inequality  Φij(ui ,u j )≥0 provides  ∫Oi∩∫O j=⌀ while  Φi(ui ,ℏ )≥0 insures 

arrangement of Oi within Sij.
Let point (ui

¿ ,u j
¿ , Rij

¿ ) be an approximate point to a global minimum point of the problem.
To derive a starting point belonging to Ωij, we introduce homothetic coefficients hi of objects Oi 

and O j and assume that the coefficients are variable. Thus, we have the opportunity to enlarge or 
diminish sizes of objects Oi and O j changing their homothetic coefficients. Consequently, the phi-



function for  Oi(ui , hi ) and  O j(u j , h j ) depends on  hi and  h j , i.e. the  -function takes the form 

Φij(ui ,u j , hi , h j ) , and the  -function for  Oi(ui , hi ) and  cl (R3 {C ¿ij ) where  C ij is either  Qij or 
Sij , depends on hi , i.e. the -function has the kind Φi(ui ,ℏ , hi ) . Since for any 0<hi<∞ , objects 
Oi(ui , hi ) are homothetic, then  Φij(ui ,u j , hi , h j ) and  Φi(ui , hi ,ℏ ) have the same form for any 

0<hi<∞. The homothetic coefficients hi , i∈ T , form a vector h=(hi , h j )∈ R2 . Furthermore, we 

select such sizes  ℏ ' of container  C ij( ℏ
' ) which guarantees placement of objects  Oi and  O j into 

C ij( ℏ
' ) and fix ℏ ' . It permits to formulation the helper problem

∑
i=1

g

hi
¿=max∑

i=1

g

hi s . t . (u ,h )∈ Δ⊂ R14 ,                                          (1)

where 
Δ={(u ,h )∈ R14 ,Φij(ui ,u j , hi , h j )≥0 ,Φk (uk , hk )≥0 ,

hk≥0 , hk−1≥0 , k=i , j }.
A starting point (ui' ,u j' , h' )for the problem is formed in the following manner. We set hk

' =0.01, 

k=i , j , and randomly assign u' so that νk
' ∈ C ij( ℏ

' ) , k=i , j . Note that due to hk
' =0.01 , k∈ i , j , 

we generally have the point (ui
' ,u j

' , h' )∈ Δ.

It is evident if hk
¿=1 , k=i , j , then (ui

¿ ,u j
¿ , h¿) is a global maximum point of the problem (4), 

ensuring objects Oi and O j are packed into C ij( ℏ
' ) .

Now taking the point (ui
' ,u j

' , h' ) as a starting one, we tackle the problem (4) and obtain a global 

maximum point (ui
¿ ,u j

¿ ,1) . 

6. Local optimization

6.1. Packing geometric objects without rotations

The stage involves packing objects under fixed rotation angles.
Firstly, we fix the values of the rotation angles φi=φi

0 ,ψ i=ψ i
0 and ωi=ωi

0 , i∈ I . This means 

that only translations of objects Oi , i∈ I  are allowed. In this case, the problem (1) – (2) takes the 
form 

H ( ℏ ¿)=minH ( ℏ ) s . t . X∈ Θ⊂ RD                                                   (1)
where

Θ={X=( v ,ℏ , Z )∈ RD :Φij( v i , v j , Z ij )≥0,0<i< j∈ I ,
Φi( v i ,ℏ )≥0 , i∈ I , L( ℏ )≥0 }, D≥3n+m.

For computing a local minimum point ( v0∗¿ ,ℏ 0∗¿ , Z0∗¿)¿¿¿ of the problem, the same solution scheme is 
applied to solving the problem (1) – (2).

6.2. Searching for a local minimum point of the basic problem

Now we continue to search for a  local  minimum point  (u0∗¿ ,ℏ 0∗¿ , Z0∗¿)¿¿¿ of  the problem (1)  – (2), 

beginning  with  a  starting  point  (u0 ,ℏ 0 , Z0 )=( v0∗¿ ,θ0 ,ℏ 0∗¿ , Zκ
0∗¿)∈ Λ ¿¿¿ where  rotation  angles  θ0 and 

( v0∗¿ ,ℏ 0∗¿ , Zκ
0∗¿)¿¿¿ are taken from a local  minimum point  of  the problem (5).  This stage consists of  

several  steps,  which  are  reduced  to  solving  a  sequence  of  substantially  simpler  subproblems 
regarding the number of inequalities and the dimensions of the solution space. 

Computing a local  minimum point  ( v¿ ,ℏ ¿ , Z¿) of  the problem (1)  – (2)  can be reduced to 
solving a sequence of subproblems



H ( ℏ (κ+1)∗¿)=minH ( ℏ )s . t .X∈ Λκ ,ϰ=0,1,2 , .. .¿.                                 (1)

For each starting point (uκ∗¿ ,ℏ κ∗¿ , Zϰ
¿ )∈ Λ ¿¿  a subregion Λκ containing the point (uκ∗¿ ,ℏ κ∗¿ , Zϰ

¿ )¿¿ is singled 

out. A starting point is (u0∗¿ ,ℏ 0∗¿ , Z0
¿ )=(u0 ,ℏ 0 , Z0

0) .¿¿ A vector Zϰ
¿  is constructed specially.

The computational process proceeds until  H ( ℏ (κ+1)∗¿)=H ( ℏ κ∗¿)¿¿ is fulfilled. This indicates that 

the point (uκ∗¿ ,ℏ κ∗¿ , Zϰ
¿ )¿¿ is a local minimum point of the problem (1) – (2).

6.3. Transition between feasible subregions

Since  (uκ∗¿ ,ℏ κ∗¿ , Zϰ
¿ )¿¿ being a local minimum point of the problem H ( ℏ κ∗¿)=minH ( ℏ )¿ s.t.  X∈ Λκ is 

not in generally a local minimum point of the problem (1) – (2), we need to transition to another 
region Λκ+1 which ensures the value of H ( ℏ ) does not worsen at the local minimum point ¿n the 
new region Λκ+1 .

Let  f i jiκ (ξ i j )≥0 , j∈ N κ , be  active  inequalities  at  the  point  (uκ∗¿ ,ℏ κ∗¿ , Zϰ
¿ ) .¿¿ We  single  out 

inequality subsystems  Ψ ij
spA (ui ,u j , Z ij

spa )≥0 , i∈ E1κ , j∈ E2κ , s∈ K i κ , p∈ K j κ , a=aij
sp , where 

t ij
sp is  from  the  index  set  A ij

sp,  which  contain  the  active  inequalities.  Note  that 

Ψ ij
spa(ui

κ ,u j
κ , Z ij

spa )=0 , i∈ E1κ , j∈ E2κ , s∈ K i κ , p∈ K j κ .

Next,  we  single  out  inequalities  Φij
sp(ui ,u j , Z ij

sp )≥0 from  the  inequality  system  (2),  which 

incorporates  the  inequality  subsystems  Ψ ij
spa(ui ,u j , Z ij

spa )≥0 , 
i∈ E1κ

0 ⊂ E1κ , j∈ E2κ
0 ⊂ E2κ , s∈ K i κ

0 ⊂ K i κ , p∈ K j κ
0 ⊂ K j κ , t=t ij

sp . Then,  we  compute  the 

components  Z ij
spa , i∈ E1κ

0 , j∈ E2κ
0 , s∈ K i κ

0 , p∈ K j κ
0 , a∈ C ij

sp , as the solution to the problems 

and select components Z ij
spt , t∈ C ijϰ

sp ⊂ C ij
sp for which Ψ ij

spa(ui
κ∗¿ ,u j

κ∗¿ , Z ij
sa∗¿)

ij
sp∗¿>0 ¿ ¿

¿¿.

After  that,  we  compute  Φij
sp(ui

κ ,u j
κ , Z ij

spa )=k ij
spa , i∈ E1κ , j∈ E2κ , s∈ K i κ , 

p∈ K j κ , a∈ Bij
sp∪ C ijϰ

sp . Since  each  of  Φij
sp(ui ,u j , Z ij

spa ) , i∈ E1κ , j∈ E2κ , s∈ K i κ , p∈ K j κ , 

includes operation  max then some of  k ij
spt , i∈ E1κ , j∈ E2κ , s∈ K i κ , p∈ K j κ , t∈ Bijϰ

sp ∪ C ijϰ
sp  (

Bijϰ
sp ⊂ Bij

sp)  can  be  found  strictly  positive.  Let  Φij
sp(ui

κ ,u j
κ , Z ij

spq )=Ψ ij
spq(ui

κ ,u j
κ , Z ij

spq )=k ij
spq>0 , 

i∈ E1κ
0 ⊂ E1κ

1 , j∈ E2κ
0 ⊂ E2κ

0 , s∈ K i κ
0 ⊂ K i κ , p∈ K j κ

0 ⊂ K j κ , q∈ Bijϰ
sp ∪ C ijϰ

sp  where  Bijϰ
sp ⊂ Bij

sp. 

Since  a≠q for  all  i∈ E1κ
0 , j∈ E2κ

0 , s∈ K i κ
0 , p∈ K j κ

0 , a∈ Bijϰ
sp ∪ C ijϰ

sp , we  can  derive  a  new 

inequality system Fκ+1(u ,ℏ , Zϰ+1)≥0 specifying a new feasible subregion Λκ+1 by substituting 

the inequality subsystems Ψ ij
spa(ui ,u j , Z ij

spa )≥0 , i∈ E1κ
0 , j∈ E2κ

0 , s∈ K i κ
0 , p∈ K j κ

0 , t=t ij
sp , in the 

system  Fκ (u ,ℏ , Zϰ )≥0 for  the  inequality  subsystems  Ψ ij
qrq(ui ,u j , Z ij

spq )≥0 , 
i∈ E1κ

0 , j∈ E2κ
0 , q∈ K i κ

0 , r∈ K j κ
0 , q=qij

sp . Furthermore, a new vector  Zϰ
¿  which includes new 

components of the set Z ij
spq , q∈ Bijϰ

sp ∪ C ijϰ
sp , is formed. It is evident that (uκ∗¿ ,ℏ κ∗¿ , Zϰ

¿ )∈ Θκ+1 .¿¿ Thus, if at 

least one  k ij
spq>0, then we obtain a new inequality system  Fκ+1(u ,ℏ , Zκ+1)≥0 specifying a set 

Λκ+1≠ Λκ and  a  new  starting  point  ¿ where  a  new  vector  Zκ
¿  includes  components  Z ij

spt , 

t∈ Bijϰ
sp ∪ C ijϰ

sp . It  follows  from  the  construction  that  a  starting  point  (uκ∗¿ ,ℏ κ∗¿ , Zκ
¿ )¿¿ provides 

H ( ℏ (κ+1)∗¿)≤H ( ℏ ϰ∗¿)¿¿.

6.4. Computing a local minimum point on a feasible subregion 

Since inequality system Fκ (u ,ℏ , Z )≥0 consists in general of a huge number of inequalities, the 
computation of local minimum point (u¿ ,ℏ ¿ , Z¿) of the problem 

Ϝ ( ℏ (κ+1)∗¿)=minϜ ( ℏ )s . t .(u ,ℏ , Z )∈ Λκ ,¿                                               (1)
is also derived in stages.



Let a point  (uκ∗¿ ,ℏ κ∗¿ , Zκ
¿ )∈ Λκ ¿¿ and some  δ>0. Making use of spheres  Si with radii  r i

0 , i∈ I , we 

select Ψ ij
spt (ui ,u j , Z ij

spt )≥0 , i∈ A1κ
t , j∈ A2κ

t , s∈ K i , p∈ K j , t=t ij
sp , from an inequality system 

Fκ ( v ,ℏ , Zϰ )≥0 for which the inequalities ¿ hold true.

Let  C=C1 . In  this  case,  we  single  out  the  inequalities  Φik
f (ui ,ℏ )≥0 , i∈ I f κ , s∈ K i , 

f ∈ Υ={1,2 , .. ,6 }, where  Φik
l (ui ,ℏ ) is a  -function for an object  Ois and  f -th half space, for 

which the inequalities 

w1−xi
κ∗¿−r i

0≤
δ
2
, i∈ I 1κ , x i

κ∗¿+r i
0−w2≤

δ
2
, i∈ I 2κ ,¿

¿

l1− y i
κ∗¿−r i

0≤
δ
2
, i∈ I 3κ , y i

κ∗¿+r i
0−l2≤

δ
2
, i∈ I 4 κ ,¿

¿

η1−zi
κ∗¿−r i

0≤
δ
2
, i∈ I 5κ , zi

κ∗¿+r i
0−η2≤

δ
2
, i∈ I 6κ ¿

¿

are fulfilled.
Next,  we  cover  convex  objects  Oik with  spheres  C ik of  minimum  radii  ρik and  centers 

v ik=( xik , y ik , zik ) , i∈ I , k∈ K i . We suppose that the origins of the local coordinate systems of 
Oik coincide with the centers C ik , i∈ I , k∈ K i. Then, the coordinates of centers of circles C ik with 
respect  to  the  global  coordinate  systems  of  Oi are 

v ik (ui )=( xik (ui ) , y ik (ui ) , zik (ui ))=Ri
T ( v ik+v i ) , i∈ I , k∈ K i .

Now  let  us  choose  inequalities  Ψ ij
spt (ui ,u j , Z ij

spt )≥0 , i∈ A1κ
0 t ⊂ A1κ

t , j∈ A2κ
0 t ⊂ A2κ

t , 

s∈ K i
t⊂ K i , p∈ K j

t ⊂ K j , and  Φik
f (ui ,ℏ )≥0 , i∈ I f κ , s∈ K ϰi

f ⊂ K i , f ∈ Υ , for  which  the 
inequalities 

¿
w1−xik ¿
l1− y i¿
η1−xi¿

are satisfied respectively.
Taking  inequalities  Ψ ij

spt (ui ,u j , Z ij )≥0 , i∈ A1κ
0 t , j∈ A2κ

0 t , s∈ K i
t , p∈ K j

t , Φik
f (ui ,ℏ )≥0 , 

i∈ I f κ , s∈ K ϰi
f ⊂ K i , f ∈ Υ , and  L( ℏ )≥0,  we  form  the  inequality  subsystem 

Fκ t (u ,ℏ , Zϰ )=¿
which describes a subregion Λκ t such that X κ∈ (uκ∗¿ ,ℏ κ∗¿ , Zκ

¿ )∈ Λκ t⊂ Λκ .¿¿

Consequently,  searching  for  a  local  minimum  point  of  the  problem  (1)  –  (2)
can be reduced to solving a sequence of subproblems

Ϝ (ℏ κ (t+1))=minϜ (ℏ ) s . t . (u ,ℏ )∈ Λκ t , t=0,1,2 , ... ,                         (8)

where a local minimum point  (uκ t ,ℏ κ t , Zκ t ) of the  ( t−1)-th problem is taken as a starting 

point for the t-th problem, and the point (uκ∗¿ ,ℏ κ∗¿ , Zκ
¿ )¿¿ is taken as a starting point for t=0.

The problems are solved until Ϝ ( ℏ κ ( t+1))=Ϝ ( ℏ κ t ) is met, and the point (uκ∗¿ ,ℏ κ∗¿ , Zκ
¿ )¿¿ is taken 

as a local minimum point of the problem (8).
 We can diminish the problem dimension for each t . Considering a starting point (uκ l ,ℏ κ l , Zκ l ) 

for  the  problem  Ϝ ( ℏ κ ( t+1))=minϜ ( ℏ )  s.t.   ( v ,ℏ )∈ Λκ t,  we  fix   Zκ t (i.e.,  appropriate 

components of  Zϰt do not vary). This means that  Γ κ t (u ,ℏ )=Fκ t (u ,ℏ , Z
κ t ) and specifies the 

feasible subregion Λκ t
z  whose dimension is less than that of  Λκ t. It evident that  (uκ t ,ℏ κ t )∈ Δκ t

z  

and all  points of  Δκ l
z  ensure non-overlapping objects  Oi , i∈ I . Thus,  we solve a sequence of 

problems H ( ℏ κ ( t+1))=minH ( ℏ )s . t .(u ,ℏ )∈ Δκ t
z , t=1,2 , ... , until H ( ℏ κ ( t+1))=H ( ℏ κ t ) 



is met. Obviously, the point  (uκ ( t+1) ,ℏ κ ( t+1) , Zκ t ) is not generally a local minimum point of the 
problem (8).

Taking the point (uκ ( t+1) ,ℏ κ ( t+1) , Zκ t ) as a starting one, we continue to solve the problems (8) 
until a local minimum point (u¿ ,ℏ ¿ , Z¿) of the problem (1) is obtained.

7. Computational modelling and numerical results 

The efficacy of the proposed methodology is substantiated through the presentation of several  
case  studies.  The experiments  were conducted on an Intel  Core i5-750 computer,  utilizing the 
IPOPT code for local optimization developed by [20]. 

IPOPT  (Interior  Point  Optimiser)  is  a  distinguished  open-source  solution  for  nonlinear 
optimization problems (NLPS), particularly when dealing with substantial datasets. The subsequent 
points highlight IPOPT's strengths, substantiated by insights gleaned from the given points:

1.  Effective Performance with Large-Scale Challenges. 
Utilization of Sparse Matrices:  IPOPT employs sparse linear algebra techniques (MUMPS) to 

address extensive NLPS efficiently. This approach leads to a reduction in memory requirements and 
an acceleration in processing times.

Parallel linear solvers: The capacity to integrate with parallel solvers, such as HSL MA97 and 
MUMPS via MPI, provides the scalability necessary for high-dimensional problems.

 Finally,  IPOPT,  an  extension,  reuses  KKT matrix  factorizations  generated  by  IPOPT.  This 
approach  enables  sensitivity  calculations  with  minimal  added  computational  expense,  offering 
gains for parametric analysis and model predictive control.

2.  A Reliable and Robust Algorithmic Approach
Interior-point methods: IPOPT utilizes a barrier method to address inequality constraints by 

incorporating  logarithmic  penalties.  This  ensures  stability  even  when  confronting  degenerate 
scenarios.

 Hybrid  optimization  methods:  IPOPT  employs  an  intelligent  blend  of  gradient-based 
optimizers,  such  as  the  quasi-Newton  L-BFGS,  with  exact  Hessian  information  to  achieve 
accelerated convergence.

    Finally, the paper discusses penalty methods. Implementing penalty methods enhances the 
robustness  of  the  approach  when  confronted  with  degenerate  nonlinear  programming  (NLP) 
problems.  This  technique  meticulously  balances  feasibility  and  optimality,  yielding  superior 
outcomes compared to standard barrier methodologies in complex scenarios.

3. The flexibility in problem formulation constitutes a significant advantage of IPOPT.
Mathematical Programming with Equilibrium Constraints (MPCC): A notable feature of IPOPT 

is its ability to circumvent the need for mixed-integer formulations when dealing with non-smooth  
problems, such as those involving absolute values. This property of IPOPT serves to streamline the 
implementation process.

Constraint satisfaction: IPOPT can address nonlinear systems by rephrasing them as nonlinear 
programs (NLPS) that utilize a trivial objective function (e.g., maximizing 0 subject to f(x) = 0).

4.  Integration with Contemporary Tools.
Open-source  ecosystem:  IPOPT  offers  seamless  interoperability  with  platforms  like  Julia, 

Python, and MATLAB, which enables antidifferentiation capabilities alongside facilitating higher-
level modelling approaches.

    IPOPT's forte lies in the domain of solving large, sparse NLPs. This is primarily attributable to  
its advanced interior-point framework, efficient sparse linear algebra integration, and adaptability 
in addressing many problem types. Furthermore, its open-source foundation and ease of use with  
modern tools make IPOPT indispensable for chemical engineering, economics, and applications in 
real-time control systems. Optimized outcomes are achieved by pairing it with high-performance 
linear  solvers,  such  as  HSL MA57,  and extensions  like  IPOPT to  facilitate  effective  sensitivity 
analysis.

The  algorithm  was  tested  on  various  benchmark  instances  from  [14],  with  the  results 
summarized below. 

For packing 36 objects (Fig. 1a):  the HAPE3D approach yielded a volume of 12.4 and a runtime  
of 963 seconds, while our method attained a volume of 10.7 and a runtime of 750 seconds. 



For the case of packing 40 objects (Fig. 1b): the HAPE3D approach achieved a volume of 61.9  
and a runtime of 999 seconds, while our method achieved a volume of 56.0 and a runtime of 533  
seconds. The results of this study are illustrated in Figure 1.

           
a                                                        b

Figure 1: Comparison of the results obtained with the results presented in [14]: a) 36 non-convex 
polyhedra; b) 40 non-convex polyhedra. 

As demonstrated in Figure 2, the intelligent system developed for this study successfully packed 
300  non-convex  polyhedra.  This  result  demonstrates  the  system's  capacity  to  address  high-
dimensional problems while effectively maintaining adequate time performance.

Figure 2: Result of packing of 300 objects 

The effectiveness of the proposed approach is confirmed by comparing the results of packing 
non-convex polyhedra with the results presented by the paper's authors [14]. The results of this 
comparison are shown in Figure 3.  

The  results  demonstrate  that  the  proposed  Intelligent  Geometric  Modeling 
Framework significantly reduces computation time and enhances the performance metrics across 
the test cases.



Figure 3: Comparison of results 

8. Conclusions

This article outlines a process for developing an intelligent system focused on geometric design.  
The proposed systems will leverage cutting-edge methods and tools to automate and improve how 
geometric shapes are arranged within a three-dimensional environment. The core benefit of these 
technologies  will  be  their  ability  to  find the  best  possible  solutions  when applied  to  practical  
challenges in additive manufacturing.  Artificial  intelligence and other novel  techniques will  be 
central to achieving optimal results with these systems.

This research introduces a novel method for precisely modelling the three-dimensional irregular 
packing problem. Employing the phi-function method, we can leverage contemporary nonlinear 
optimization techniques  to  address  this  challenge,  including creating initial  configurations  and 
determining local minima.

The clustering technique facilitates starting point generation by solving the packing problem 
involving  half  the  quantity  of  convex  objects  characterized  by  simpler  shapes.  This  strategic 
simplification  notably  diminishes  the  computational  requirements  of  establishing  the  initial 
configurations.

The procedure's computational performance is improved by employing a two-step strategy to 
locate  the  local  optimum.  Initially,  a  linear  problem  is  addressed.  A  nonlinear  problem  then 
succeeds this in the subsequent stage. The displayed results clearly demonstrate the efficacy of this  
method in finding solutions for the particular irregular packing problem being studied.

This approach significantly improves the accuracy and efficiency of solving 3D packing issues, 
which  has  vital  implications  for  the  progress  of  both  natural  and  information  systems.  This 
combination  exemplifies  a  strong  synergy  between  mathematical  modelling  and  advanced 
computational tools. The approach enhances the precision and efficiency of 3D packing solutions,  
essential  for  advancing  natural  and  information  systems.  This  integration  demonstrates  the 
powerful collaboration between mathematical models and computational techniques.

Declaration on Generative AI

During the  preparation of  this  work,  the  authors  used Grammarly  in  order  to:  Grammar  and 
spelling check. After using this tool, the authors reviewed and edited the content as needed and 
take full responsibility for the publication’s content.
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