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Abstract
This research focuses on developing an evolutionary neo-fuzzy system for online learning of non-stationary 
processes. During  the  study,  structural  and  functional  schemes  of  the  system  were  designed  and 
substantiated. Epanechnikov kernels were proposed as membership functions. Experimental verification of 
the  developed  approach  demonstrated  its  effectiveness  for  forecasting  problems  under  conditions  of  
uncertainty.
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1. Introduction

The problem of mathematical forecasting of time series data has been well studied. Today, there is a 
vast number of publications dedicated to this topic, including both theoretical works and practical 
studies aimed at solving applied problems. Currently, there are many time series forecasting methods, 
ranging from the simplest, such as regression, correlation, spectral, and exponential smoothing, to  
more advanced intelligent methods that sometimes rely on rather complex mathematical frameworks 
[1,2]. The forecasting task becomes significantly more complicated if the analyzed sequences contain 
trends of an a priori unknown nature, are nonlinear and non-stationary, and include quasi-periodic  
components, stochastic and chaotic elements, anomalous outliers, and sudden trend jumps. In such 
situations, nonlinear predictors based on computational intelligence techniques, particularly neuro-
fuzzy systems [3–5], have proven highly effective due to their strong approximation and extrapolation 
capabilities and ability to adjust parameters based on training data, which is typically given a priori. 
At the same time, it is assumed that the structure of such a neuro-fuzzy predictor is predefined and  
does not change during operation and forecasting. The situation becomes significantly more complex 
when data is received sequentially at a high frequency in the form of a stream, and there is no 
predefined training set. At the same time the internal structure of the analyzed sequence is a priori  
unknown and may change over time. Additionally, the internal structure of the analyzed sequence is a 
priori unknown and may change over time [6,7]. This situation is considered within the theory of 
evolutionary computational intelligence systems.

Existing evolutionary systems, particularly neuro-fuzzy systems, are still not well adapted for real-
time  operation  under  conditions  of  significant  non-stationarity  [8–10].  The  performance  of  a 
forecasting  system can  be  improved  by  using  the  so-called  neo-fuzzy  approach  instead  of  the 
traditional neuro-fuzzy approach, which has proven effective in time series forecasting tasks [3,11].  
However, it was assumed that this sequence changes within a predefined range. At the same time, 
there is  a relatively broad class of  real-world processes,  primarily in energy,  medicine,  finance, 
control, and moving object tracking, where determining the range of the analyzed signal a priori is 
problematic. This range, in turn, defines the placement of membership functions at the inputs of a 
neo-fuzzy system. 
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Therefore,  this  work proposes an architecture and a fast  adaptive learning algorithm for an 
evolutionary neo-fuzzy system for forecasting significantly non-stationary sequences,  where the 
possible range of variation is a priori unknown, and data is processed sequentially online.

2. The architecture of forecasting neo-fuzzy system

As the basic architecture of the nonlinear predictor, it is convenient to use the so-called ANARX 
model (Additive Nonlinear Autoregressive with Exogenous inputs) [12], which has the form (1):

(1)
and is a generalization to the nonlinear case of specific Box-Jenkins predictors.

Here  is the forecast of the analyzed sequence at the current discrete time moment 

;   is a specific nonlinear transformation, usually implemented either by an artificial 

neural network or a neuro-fuzzy system;  is an observed exogenous factor that determines the 

behavior of the analyzed sequence ;  is the model order.
The advantage of model (1) is that the general task of constructing a nonlinear adaptive predictor is 

decomposed into  subtasks  of  synthesizing  two-input  models,  where  the  input  signals  are

,  , while  the  local  predictors  can  be  adjusted 
independently of each other. Furthermore, the model order  can be conveniently adjusted directly in 
the learning (evolution) process.

Predicator (1)  can  be  easily  generalized  to  the  case  of  multiple  exogenous  variables 

, in which case such a multi-input predictor takes the form

,
(2)

where each of the local predictors  has  inputs.
In the case of data stream processing, when information arrives in online mode, the primary focus 

is  on  the  speed  of  data  processing  and  the  simplicity  of  numerical  implementation  of  the  
computational  intelligence  system.  Instead of  neural  networks  and  neuro-fuzzy systems,  which 
require significant computational resources for their  training,  it  is  advisable to use a neo-fuzzy 
approach  [13],  which  is  characterized  by  high  learning  speed,  computational  simplicity,  good 
approximation properties, and the ability to be tuned in an online mode with maximum possible 
speed. Figure 1 presents the scheme of a neo-fuzzy system designed for real-time prediction of non-
stationary processes. 

The first layer of the system consists of  delay elements (time delay)  ,  which form the 

historical context of the predicted process . If the predictor structure (2) is used, then 

the number of delay elements is .

Figure 1: Neo-fuzzy system for non-stationary process forecasting



The second hidden layer consists of neo-fuzzy elements , each of which is essentially a 

neo-fuzzy neuron with two nonlinear synapses  (q+1 nonlinear synapses for the predictor 

(2))  and forms the forecast components .  Finally, the output layer consists of a 

single summator, where the final prediction  is computed.

The key elements of the system are the nonlinear synapses , which directly solve the 
problem of approximating the historical data of the analyzed sequence. Figure 2 shows the structure of 

a neo-fuzzy element ,  which consists of two nonlinear synapses. However, it is important to 
note that for the predictor (2), each neo-fuzzy element contains q+1 nonlinear synapses.

Figure 2: Neo-fuzzy element with two nonlinear synapses

It is important to note that each nonlinear synapse essentially performs an  F-transform in an 
adaptive form [14, 15], which makes it a universal approximator of the historical sequence.

Each  of  the  nonlinear  synapses   contains  membership  functions

, where  as well as  adjustable synaptic weights , which 
must be continuously updated during the processing of the predicted signal.

Upon receiving the input values  the output of  forms the value given by 
equation (3)

,
(3)

which is a component of the required forecast (4):

.
(4)

Triangular functions are typically used as membership functions in neo-fuzzy neurons, as they 
satisfy the conditions of unity partitioning (Ruspini partitioning). [16]. The advantage of triangular 

functions is that at each training step , only two neighboring membership functions are activated, 

meaning that only  synaptic weights require adjustment, which simplifies the learning process. A 
drawback of these functions is that they allow only piecewise linear approximation, which reduces 
prediction  accuracy.  In  [17],  B-splines  were  used  as  membership  functions,  which  improved 



prediction accuracy but complicated the learning process, as at each discrete time step , all  
weights required to be updated.

In our opinion,  a reasonable compromise between these functions is the use of Epanechnikov 
kernels, which have proven to be highly effective in regression and pattern recognition tasks [18].

Figure  3  presents  the  system  of  membership  functions  of  a  nonlinear  synapse  based  on 
Epanechnikov kernels:

Figure 3: Epanechnikov kernels as membership functions

To construct this system, it is necessary to define the range of the controlled sequence and the 
number of these functions, which is usually chosen based on purely empirical considerations. The 
number of these functions does not affect the learning process, as only two neighboring functions

 are  activated  at  any  moment.  The  distance  between  the  extrema  of  two 
neighboring functions is determined as shown in equation (5):

.
(5)

The functions themselves can be expressed as equation (6):

,
(6)

where , .

3. Adaptive learning of the predictive neo-fuzzy system

The placement of membership functions in nonlinear synapses  significantly depends on 

the a priori defined boundary values , , , , which are usually determined based on 
purely empirical considerations.  When forecasting non-stationary sequences, sudden signal jumps 
and the emergence of rapidly increasing and decreasing trends that extend beyond the predefined 

range  may occur. Of course, it would be possible to set a sufficiently wide range initially, 
but this would lead to a significant increase in the number of membership functions and adjustable  
synaptic weights,  making the system excessively complex.  We believe that this problem can be 
addressed by leveraging ideas from evolutionary systems, where not only synaptic weights but also 
the system's architecture are adjusted during the learning process. Reconfiguring the architecture in 



real time is quite challenging; therefore, it is advisable to limit modifications to the evolution of the  
membership function system while preserving their number and the number of synaptic weights. 

Suppose that at a specific moment in time, the predicted sequence takes a value , as shown in 
Figure 4.

Figure 4: Evolution of the membership function system when 

Based on this value, a new membership function is formed with the center , and the 
function becomes asymmetric, meaning that (7) holds:

, ,
(7)

(where the indices hL, hR indicate the left and right branches of the bell-shaped membership function 

), .

If a new predicted signal value  appears,  then,  similarly, the following membership 

function  is  formed,  while  the  function  is  supplemented  by  the  right  branch 

.
The  emergence  of  new  membership  functions  theoretically  should  change  the  structure  of 

nonlinear synapses  and increase the number of adjustable synaptic weights.  To prevent this 

undesirable effect, one can simply replace the function  with center  in each synapse 

with the function  centered at  and continue the process of system forecasting-tuning, 
where evolution occurs only at the level of nonlinear synapses.

In the case where the analyzed sequence exhibits a decreasing trend, the system’s evolution 
proceeds similarly.

Suppose that an input signal value  is received.  In this case, a membership function 

 is formed with the center , as shown in Figure 5.

The membership function  acquires an asymmetric form such that 

,  ,  after  which  a  new  function  is  formed 



,  which replaces the membership function in each nonlinear synapse 

.

Figure 5: Evolution of the membership function system when 

Thus, during the forecasting process of significantly non-stationary sequences, the membership 
function system of  the current  nonlinear  synapse is  continuously adjusted.  In  cases  where the 

exogenous variable   is  also non-stationary,  the system of  nonlinear  synapses  can be 
similarly adjusted.

Once the membership function system has been formed, it is possible to proceed with adjusting the 

synaptic weights of the system. Suppose that by the -th moment in time, the prehistory vector of the 
analyzed sequence and the values of its membership functions are formed as follows (8):

(8)

This vector has a dimension of  and contains  nonzero elements (corresponding to the 
number of activated membership functions). Next, using equation (9), the vector of synaptic weights is 
computed, which has the same dimension.

(9)

Then, the forecast of the sequence at moment k can be written as follows (10):

. (10)

After the actual value  is received by the system, the synaptic weight vector can be refined 
using an adaptive learning algorithm [3]:

(11)

where α is the smoothing parameter.

The newly constructed forecast is then given by .

It is easy to see that when , equation (11) takes the form of the Kaczmarz-Widrow-Hoff 
gradient algorithm, which is optimally fast and best suited for working with non-stationary objects:



.
(12)

Here, the symbol  denotes pseudoinversion.

For ,  we  arrive  at  the  Goodwin-Remediuk-Kaines  stochastic  approximation  procedure, 
designed  for  working  with  noise-contaminated  signals.  The  trade-off  between  speed  and  noise 

robustness is ensured by varying the parameter .

4. Computational experiment

To perform experimental verification and compare the obtained results, we constructed an Evolving 
Neo-Fuzzy System with triangular membership functions and Epanechnikov functions. 

As test data, synthetic time series generated using the following function (13) were used:

, , (13)

where represents the function values at time , is the primary sinusoidal signal, and is 

the noise level, determining the intensity of  Gaussian noise in the data.  Here, is a 
random variable normally distributed with a mean of  0  and a variance of  1.  Three time series 
variations  were  considered:  a  clean  sinusoidal  signal  without  noise,  a  signal  with  low  noise 

,  and  a  signal  with  higher  noise  . The  main  criterion  for  evaluating  forecast 
accuracy was the mean relative error (MRE), which allows for assessing the accuracy of predictions 
for each method.

Initially, forecasting was performed using two  kernel membership functions defined over the 

initial range of time series values ( ). The forecasting results are presented in 
Figures 6-8.

Figure 6: Forecasting results of the time series for  without kernel evolution

Figure 7: Forecasting results of the time series for without kernel evolution



Figure 8: Forecasting results of the time series for  without kernel evolution

As seen in Figures 6-8, both methods demonstrated high accuracy for a pure sinusoidal signal. 
However, in the presence of noise, the functions proved to be less resistant to fluctuations, leading to 
an increase in error. The model utilizing Epanechnikov kernels exhibited slightly better smoothing 
capability at low noise levels, reducing errors compared to triangular functions.

At the next stage, to verify the evolutionary component of the method, the initial interval was 

reduced ( ), allowing for the simulation of the case where the observed values 
exceed the predefined range. The forecasting results for this case are presented in Figures 9-11.

Figure 9: Forecasting results of the time series for  with kernel evolution

Figure 10: Forecasting results of the time series for  with kernel evolution



Figure 11: Forecasting results of the time series for  with kernel evolution

As seen in Figures 9-11, when the initial range of the predicted variable was narrowed, the  
forecasting accuracy deteriorated compared to the previous numerical experiment. However, the 
model utilizing Epanechnikov kernels proved to be more effective.

5. Conclusion

The proposed evolutionary neo-fuzzy system is designed for forecasting significantly non-stationary 
stochastic and chaotic sequences perturbed by noise in an online mode, where data is processed 
sequentially in real-time. A key feature of the proposed system is that, during the learning process, not 
only synaptic weights are adjusted, but also the membership functions, which are represented by  
Epanechnikov kernels. Moreover, the system can be easily reconfigured in cases where the predicted 
sequence changes its structure.

The conducted experimental verification has demonstrated the effectiveness of the developed 
system. Thus, it can be concluded that the proposed approach is characterized by computational  
simplicity and high processing speed under conditions of non-stationarity and structural uncertainty.
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