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Abstract
The rapid advancements in generative adversarial networks (GANs) have significantly impacted digital  
content synthesis, presenting both opportunities and challenges in multimedia forensics and cybersecurity. 
We present an Enhanced Adaptive DCGAN (EADC-GAN) for generating high-fidelity synthetic fingerprints, 
addressing core challenges in training stability and sample diversity. By combining Wasserstein loss with 
gradient  penalty  (WGAN-GP),  instance  normalization  in  the  discriminator,  and  tailored  architectural  
refinements, our model achieves strong image realism at reduced training cost. Compared to prior DCGAN-
based methods, EADC-GAN synthesizes more diverse, artifact-free samples in fewer epochs, making it 
suitable for scalable biometric data generation. This has key implications for secure authentication, privacy-
preserving biometric datasets, and adversarial robustness in cybersecurity contexts.
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1. Introduction

In the modern era, artificial intelligence (AI) and information technology (IT) have become deeply 
embedded in nearly every aspect of human activity, driving advancements in automation, decision-
making, and security. From smart homes to autonomous systems, AI-powered solutions enhance 
efficiency and enable novel applications across industries. In particular, AI has revolutionized forensic 
investigations and secure access control systems, where accurate and reliable identification methods 
are crucial [7, 30, 32].

Fingerprint-based  biometric  systems  have  become  a  cornerstone  of  modern  security 
infrastructures,  owing  to  their  robustness  and  uniqueness  in  identifying  individuals.  With 
applications ranging from smartphone authentication to large-scale national identity programs, the 
demand for high-quality, reliable fingerprint data has soared. 

However, the collection of large-scale, diverse, and privacy-preserving fingerprint datasets can be 
both resource-intensive and ethically fraught. This challenge has prompted research into synthetic 
fingerprint  generation  methods  that  can  provide  abundant,  high-fidelity  data  without  exposing 
sensitive personal information [1, 2]. 

Generative Adversarial Networks (GANs) have emerged as efficient tools for synthetic and realistic 
data generation, offering compelling results in various domains including image, video, and audio 
synthesis. Despite their success, early GAN models often suffered from training instabilities and mode 
collapse,  limiting  their  applicability  to  more  sensitive  tasks  such  as  fingerprint  synthesis  [3]. 
Variations like Deep Convolutional GANs (DCGANs) introduced architectures tailored for image 
generation, yet challenges remained, particularly when targeting both high quality and diversity in 
the generated outputs [4].

One promising improvement to the GAN framework is the use of gradient penalty techniques, 
such as those found in Wasserstein GANs with Gradient Penalty (WGAN-GP), which offer enhanced 
training stability. Additionally, normalization layers have a profound impact on the training dynamics 
and generation quality of GANs. Adaptive instance normalization (AIN), for example, has shown the 
capability to improve style consistency and reduce artifacts in image synthesis tasks [5, 6].
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Early approaches to fingerprint image synthesis explored traditional models such as DCGAN. In 
our previous work, Adaptive Deep Convolutional GAN for Fingerprint Sample Synthesis (ADCGAN), 
we demonstrated that a well-tuned DCGAN could generate visually convincing fingerprints [7]. 
However,  the method exhibited two main drawbacks. First,  achieving photorealistic fingerprints 
demanded a large number of epochs — often exceeding 1,000 — to reach acceptable quality. Second, 
despite eventually producing samples with realistic ridge patterns, the model became prone to mode 
collapse at higher epoch counts. This collapse led to repetitive samples and diminished the overall 
diversity of the generated dataset. The need for extensive training time also poses challenges for  
projects with limited computational resources or time-sensitive development cycles [7].

In  this  paper,  we  present  a  Gradient-Penalty  GAN  Framework  for  high-fidelity  fingerprint 
synthesis, leveraging insights from both WGAN-GP and enhanced normalization strategies [8, 9, 10]. 
We build upon the insights gained from ADCGAN, refining the architecture and training strategy to 
yield higher-quality samples in fewer epochs while minimizing mode collapse. 

By optimizing the instance normalization layers and incorporating gradient penalty, we aim to 
address training instability and mode diversity issues that often hinder fingerprint GAN models. Our 
experimental evaluations demonstrate that this architecture not only produces more realistic and 
varied fingerprint images but also reduces the computational overhead commonly associated with 
GAN enhancements. 

Crucially, the synthesized fingerprints can bolster biometric research by providing large-scale 
datasets  and  facilitating  the  development  of  advanced,  secure  authentication  systems  without 
compromising user privacy.

Despite advances in GAN-based fingerprint synthesis, existing models often struggle with training 
instability,  mode  collapse,  and  insufficient  diversity  in  generated  samples.  Additionally,  many 
methods require extensive computational resources and training time, limiting their practical use in 
scalable biometric systems. This work addresses these limitations by proposing a more stable, efficient 
GAN framework capable of producing realistic, high-resolution fingerprint images with minimal 
redundancy.

2. Related Work

2.1. GAN-Based Image Synthesis Approaches

GANs have become a central method for synthesizing diverse image datasets, including biometric 
images such as fingerprints. Early efforts often relied on the DCGAN framework, which demonstrated 
that  transposed convolution layers  could  capture  essential  fingerprint  patterns.  However,  these 
classical DCGANs typically require extensive training, and they remain susceptible to mode collapse 
— where the generator converges to limited variations of the same fingerprint. Recent approaches 
have aimed to mitigate these issues by integrating more advanced loss functions and architectural  
refinements,  making  GAN-based  finger-print  synthesis  both  more  efficient  and  more  robust  in 
capturing fine ridge details [5, 6].

2.2. Fingerprint Synthesis Techniques

Early fingerprint generation efforts often employed parametric and procedural models, focusing on 
ridge flow simulation and minutiae placement through mathematical functions. Techniques such as 
Gabor-based filters, Fourier transforms, and partial differential equations (PDEs) aimed to replicate 
key fingerprint structures without relying on large training sets. Although these methods can yield 
convincing ridge patterns and minutiae distributions, they sometimes lack the capacity to produce the 
extensive variability needed for modern biometric applications.

In contrast, deep learning–driven approaches like GANs learn distributional properties directly 
from real data, offering greater flexibility and diversity in synthesized outputs. Beyond standard 
DCGAN-based solutions, advanced architectures — such as StyleGAN and CycleGAN — further refine 
texture details, enhance global coherence, and address common pitfalls like mode collapse. Together, 
both classical (model-based) and deep learning–based techniques enrich the toolbox for generating 
comprehensive, privacy-friendly fingerprint datasets [7, 11, 12].



2.3. Normalization in GANs

Normalization layers are crucial for stabilizing GAN training, and adaptive instance normalization 
offers particular benefits for image synthesis tasks that depend on local texture fidelity. While batch 
normalization averages statistics across a mini-batch, instance normalization normalizes each sample 
independently, helping preserve distinctive ridges and fine details in synthetic fingerprints. Instance 
normalization can reduce style variations within a single batch — an advantage when the primary goal 
is to maintain consistent textural cues. As a result, integrating instance normalization, especially in 
the discriminator, can sharpen feature detection and further mitigate common GAN pitfalls such as 
training instability and overly uniform outputs [13, 14].

2.4. Gradient Penalty Methods (WGAN-GP and Beyond)

The Wasserstein GAN (WGAN) framework addresses two key shortcomings in conventional GANs: 
vanishing gradients and unstable training. By replacing the standard generator-discriminator loss 
with the Wasserstein distance, WGAN provides a meaningful gradient signal that promotes better  
convergence. To further stabilize training, WGAN with Gradient Penalty (WGAN-GP) incorporates a 
gradient penalty term that enforces Lipschitz continuity without resorting to weight clipping. This 
penalty term substantially reduces mode collapse and improves sample diversity. In the context of  
fingerprint  synthesis,  WGAN-GP’s  training  stability  helps  produce  more  varied  and  realistic 
fingerprint ridges over fewer epochs [8, 9].

Figure 1: Flowchart illustrating the workflow of the WGAN-GP architecture

Unlike classical DCGAN-based approaches that rely heavily on batch normalization and often 
exhibit  mode  collapse,  our  method  introduces  instance  normalization  in  the  discriminator  and 
leverages WGAN-GP for improved gradient flow. This combination enhances both training stability 
and output diversity. While models like StyleGAN and CycleGAN achieve high visual fidelity, they 
often require complex tuning and are not specifically tailored to biometric features [5, 15, 17]. In  
contrast, our architecture is optimized for fingerprint synthesis, balancing computational efficiency 
with domain-specific texture preservation.



3. Proposed Methodology

3.1. Normalized DCGAN Architecture

The proposed model builds upon the standard DCGAN framework — originally designed to generate 
high-quality images through transposed convolutions in the generator and strided convolutions in the 
discriminator. 

However, instead of using batch normalization throughout, we use instance normalization in the 
discriminator to improve training stability and capture finer textures critical for biometric features.

DCGAN was  chosen  as  the  foundation  due  to  its  proven  effectiveness  in  structured  image 
generation, including biometric textures. Its simplicity and modularity make it highly adaptable for 
fingerprint synthesis. By replacing batch normalization with instance normalization and integrating 
WGAN-GP, we retain DCGAN’s strengths while resolving its typical weaknesses — namely, training 
instability and low sample diversity. This adapted framework strikes a practical balance between 
architectural simplicity, computational efficiency, and output quality.

Generator follows a classic DCGAN-like upsampling pipeline, which transforms a latent noise 
vector into a full-resolution fingerprint image through stacked transposed convolutional layers, batch 
normalization, and ReLU activations.

Discriminator mirrors the generator’s structure in a downsampling fashion but replaces batch 
normalization with instance normalization layers. LeakyReLU activations are retained to preserve 
gradient flow. Instead of normalizing over the entire batch, instance normalization (IN) scales and 
shifts each sample independently. Fingerprint images demand precise ridge patterns. IN helps retain 
such fine-grained textures without inadvertently averaging them out across a mini-batch [13, 15, 16, 
17]. 

By combining instance normalization with the WGAN-GP training strategy, the model is less 
prone to collapsing to repetitive samples. Empirical observations show that instance normalization 
can better capture local variations, which are paramount for realistic fingerprint synthesis. In the 
following sections, we detail how gradient penalty is integrated to further stabilize training and 
discuss the specific loss functions and optimization protocol that tie into the model architecture.

Table 1
Model Configuration

Layer Type Configurations
Fully Connected (Generator) #units: 512×8×8
Reshape & BatchNorm #features: 512, BN, ReLU
Transposed Convolution #filters: 256, k: 4×4, s: 2, p: 1
BatchNormalization + ReLU #features: 256, BN, ReLU
Transposed Convolution #filters: 128, k: 4×4, s: 2, p: 1
BatchNormalization + ReLU #features: 128, BN, ReLU
Transposed Convolution #filters: 64, k: 4×4, s: 2, p: 1
BatchNormalization + ReLU #features: 64, BN, ReLU
Transposed Convolution (Output) #filters: 1, k: 4×4, s: 2, p: 1, activation: Tanh
Input (Discriminator) 1×128×128 grayscale images
Convolution #filters:  64,  k:  4×4,  s:  2,  p:  1,  activation: 

LeakyReLU(0.2)
Convolution + InstanceNorm #filters: 128, k:  4×4, s: 2,  p: 1, activation: 

LeakyReLU(0.2)
Convolution + InstanceNorm #filters: 256, k:  4×4, s: 2,  p: 1, activation: 

LeakyReLU(0.2)
Convolution + InstanceNorm #filters: 512, k:  4×4, s: 2,  p: 1, activation: 

LeakyReLU(0.2)
Convolution (Output) #filters: 1, k: 4×4, s: 1, p: 0, activation: Linear



3.2. Integration of Gradient Penalty

To stabilize training and mitigate mode collapse, we adopt the WGAN-GP framework, which enforces 
Lipschitz continuity through a gradient penalty on the discriminator's output. Unlike weight clipping 
used in early WGANs, this penalty regularizes gradient norms for interpolated real and fake samples, 
improving convergence without harming model capacity [8, 9].

In each training iteration, the algorithm samples a random scalar α  from a uniform distribution 
U (0,1). A point x̂ is then created by interpolating between a real sample xreal and a generated sample 
x fake. The discriminator’s gradient is computed on x̂.

Let’s formulate the loss. If D denotes the discriminator, its Wasserstein distance–based objective 
incorporates an added penalty term:

λgp⋅(∥ ∇ D ( x̂ )∥ 2−1)
2 (1)

where λgp is a hyperparameter dictating the penalty’s strength. 
By penalizing large deviations of ∥ ∇ D ( x̂ )∥ 2 from 1, the discriminator remains closer to a valid 

1-Lipschitz function, leading to more reliable gradients for the generator [8, 9].
The gradient penalty term mitigates abrupt updates in the discriminator that commonly cause 

training to diverge. By preserving a stable gradient flow, the generator avoids collapsing to a narrow 
subset of fingerprints. Because the discriminator’s updates remain well-conditioned, the model can 
converge to realistic fingerprint patterns in fewer epochs compared to weight-clipped or standard 
DCGAN setups [8, 9].

In the next sections, we detail how this WGAN-GP loss formulation is combined with instance 
normalization,  specialized  generator  and  discriminator  architectures,  and  the  overall  training 
workflow to produce high-quality, diverse fingerprint images.

3.3. Loss Functions and Optimization Strategy

The training process adopts the WGAN-GP framework, which replaces the traditional adversarial loss 
with an objective based on the Wasserstein distance. Below are the key components [8, 9].

Discriminator (Critic) Loss:

LD=Ex∼ pdata [D ( x )]−E z∼ pz [D (G ( z ))]+ λgpE x̂ [(∥ ∇ x̂D ( x̂ )∥ 2−1)
2] (2)

where LD is the discriminator loss, E is expectation, D is the discriminator, G is the generator, 
x are real samples, z are noise vectors from a prior distribution (e.g., N (0,1)), x̂ is an interpolated 
sample between real and generated data, and λgp scales the gradient penalty.

Generator Loss:

LG=−E z∼ pz [D (G ( z ))] (3)

where LG is the generator loss.
Adam is employed for both generator and discriminator, with learning rate ≈ 2×10−4, β1 = 0.5, 

and  β2 =  0.999.  These  parameters  promote  stable  convergence  in  convolutional  architectures, 
particularly with the gradient penalty term. 

A common strategy in WGAN-based setups is to update the discriminator more often than the  
generator (e.g., 5:1 ratio), ensuring the critic remains sufficiently accurate to guide generator updates. 

Gradient penalty enforces a smooth, 1-Lipschitz constraint without resorting to weight clipping.  
Instance normalization in the discriminator helps preserve detailed ridge features in fingerprints and 
ensures stable gradient flow [8, 9]. 

By combining WGAN-GP loss functions, careful hyperparameter tuning, and selective update 
frequencies, the model converges faster and produces higher-fidelity fingerprint images than standard 
DCGAN-based methods.



3.4. Algorithmic Workflow

The training pipeline, informed by the enhanced EADC-GAN implementation, proceeds through a 
structured sequence of steps designed to systematically refine both the generator and discriminator 
networks. Initially, the model configurations and hyperparameters are defined, including the number 
of epochs, batch size, latent dimension, learning rate, and the gradient penalty coefficient. Fingerprint 
images,  resized to 128×128 pixels  and normalized to the [−1,1],  are loaded through a  shuffling 
mechanism that ensures an unbiased sampling process across mini-batches.

Once the data is loaded, the generator and discriminator networks are initialized. The generator 
uses DCGAN-like architecture to transform a latent vector z∈ R100 into a 128×128 image. It applies 
transposed convolutions, batch normalization, ReLU activations, and ends with a Tanh layer. The 
discriminator  mirrors  a  downsampling  approach,  incorporating  instance  normalization  and 
LeakyReLU  activations.  To  enable  stable  convergence,  both  networks  initialize  their  learnable 
parameters with random values drawn from a normal distribution centered at zero with a standard 
deviation of 0.02.

The core training cycle repeats for each epoch and processes one mini-batch of fingerprint data at 
a time. In each iteration, the discriminator is first updated by sampling real fingerprint images xreal 
from the dataset and generating fake images x fake=G ( z ) from randomly sampled noise vectors z. The 
Wasserstein distance is then computed as the difference in discriminator outputs on real and fake 
samples, and the gradient penalty term is imposed through an interpolation strategy that regularizes 
the norm of the discriminator’s gradients. These gradient-based objectives are combined, and the 
discriminator parameters are updated accordingly via backpropagation with an Adam optimizer, 
using momentum parameters β=(0.5 ,0.999 ).

After the discriminator update, the generator is refined at a reduced frequency (for instance, every 
five discriminator iterations) to maintain a reliable critic. In this phase, fresh noise vectors are drawn 
from the latent distribution, passed through the generator, and evaluated by the discriminator. The 
generator’s loss function aims to maximize the discriminator’s output on these synthesized images, 
effectively  minimizing  the  negative  Wasserstein  distance.  By  backpropagating  this  signal,  the 
generator weights are adjusted to create more plausible and diverse fingerprint images in subsequent 
iterations.

Throughout training, the system periodically saves both model checkpoints and synthetic images 
generated from a fixed set of noise vectors. These outputs allow for consistent evaluation of the  
generator’s progression over time and facilitate direct comparison across epochs. Upon completion,  
the final weights of the generator and discriminator are stored for downstream usage, such as bulk  
synthetic fingerprint generation or further fine-tuning. By blending frequent discriminator updates, a 
gradient penalty mechanism, and controlled generator refinement,  the workflow produces high-
fidelity and structurally diverse fingerprint images within a stable and computationally efficient  
training regime.

Below is a comparison table that presents architectural differences between the models — our 
previous ADC-GAN and EADC-GAN [7].

3.1. Theoretical Contribution and Novelty

This work presents a novel synthesis of two stabilizing strategies — gradient penalty from WGAN-GP 
and instance normalization in the discriminator — to improve the fidelity and diversity of fingerprint 
generation. While both techniques have been explored separately in GAN literature, their combined 
use and fine-tuning in a domain-specific architecture for fingerprint synthesis is new, and, to our 
knowledge,  no  prior  fingerprint-synthesis  study  combines  IN  and  WGAN-GP.  Our  results 
demonstrate  that  this  hybrid  strategy  enables  faster  convergence,  reduces  mode  collapse,  and 
preserves  fine-grained  biometric  details  more  effectively  than  conventional  batch-normalized 
DCGANs or standard WGAN-GP models.



Table 2
Comparison Table of ADC-GAN and EADC-GAN

Feature ADC-GAN EADC-GAN
Image Size 64 × 64 pixels (images are resized 

and center-cropped to 64×64).
128 × 128 pixels (images are 
resized to 128×128).

Latent Dimension 100 (input noise vector size is 100). 100 (input noise vector size is 
100).

Training Epochs 1200 epochs. 200 epochs.
Loss Function GAN loss and Binary Cross-Entropy 

(BCE) loss for both generator and 
discriminator.

Wasserstein GAN loss with 
gradient penalty (WGAN-GP): the 
discriminator loss is computed as 
the negative difference between 
real and fake outputs plus a 
gradient penalty term (λ = 10).

Normalization (G) Batch normalization is used after 
each deconvolution 
(ConvTranspose2d) layer except 
the output layer.

Batch normalization is applied in 
the generator after the fully 
connected layer and during 
deconvolution.

Normalization (D) Batch normalization is applied 
(after the first Conv2d layer).

Instance normalization is used 
instead of batch normalization in 
most layers, which may help 
stabilize training when combined 
with gradient penalty.

Optimizer & Learning 
Rate

Adam optimizer with separate 
learning rates: Generator lr = 
0.0001, Discriminator lr = 0.0002; 
β₁ = 0.5, β₂ = 0.999.

Adam optimizer for both networks 
with a common learning rate of 
0.0002; β₁ = 0.5, β₂ = 0.999.

Generator 
Architecture

A sequential model that uses a 
series of ConvTranspose2d layers 
to upsample the latent vector 
directly into a 64×64 image; final 
activation is Tanh.

Starts with a fully connected (fc) 
layer that projects the latent 
vector into a feature map 
(reshaped to an 8×8 spatial size) 
followed by several 
ConvTranspose2d layers to 
upscale to 128×128; final 
activation is Tanh.

Discriminator 
Architecture

A sequential network of Conv2d 
layers with BatchNorm (except the 
first layer) and LeakyReLU 
activations; ends with a Sigmoid to 
output a probability score.

A sequential network of Conv2d 
layers using instance 
normalization and LeakyReLU 
activations; does not use a 
Sigmoid activation in the final 
layer – it outputs a single scalar 
value for WGAN-based loss 
calculation.

Unique Features Implements a modified DCGAN 
architecture with BCE loss, 
adaptive learning rates, robust 
weight initialization, and batch 
normalization techniques.

Incorporates instance 
normalization in the discriminator, 
modified batch normalization, and 
a gradient penalty term in the loss 
(WGAN-GP), improving training 
stability, computational 
effectiveness, and image quality in 
higher resolution settings.



Furthermore, we extend the practical utility of WGAN-GP by applying it to a biometric domain 
with strict texture preservation needs, showing its scalability to higher resolutions (128×128) with 
reduced training costs. This framework can serve as a foundational baseline for synthetic biometric 
data generation, adversarial robustness studies, and privacy-focused authentication system design.

4. Experimental Setup

4.1. Datasets and Preprocessing

The experimental analysis utilizes a curated subset of fingerprint images drawn from a publicly 
available biometric dataset — SOCOFing [18]. The data includes grayscale samples, exhibit variability 
in ridge patterns, and contrast.

To  achieve  consistency  across  samples,  each  fingerprint  image  is  resized  to  a  fixed  spatial 
dimension of 128×128 pixels and normalized to the range [−1,1]. This normalization aligns with the 
output  of  the  generator’s  Tanh  activation,  facilitating  stable  training  dynamics  and  seamless 
comparisons across different batches. 

The  grayscale  format  (single-channel)  not  only  reduces  computational  overhead  but  also 
highlights finer ridge and valley structures, which are central to realistic fingerprint generation. 
Throughout the preprocessing pipeline, data is split into training and validation subsets, although the 
adversarial framework primarily relies on the training partition for iterative updates.

Figure 2: SOCOFing real data — fingerprint scans

4.2. Evaluation Metrics

The model monitors training progress primarily through discriminator and generator loss values, as  
well as periodic visual inspection of generated samples. By regularly printing the Wasserstein-based 
objective for both networks, we were able to quickly identify training instabilities. Meanwhile, saving 
a fixed batch of synthetic fingerprint images over multiple epochs provides a direct,  qualitative 
perspective on improvements in ridge fidelity and overall realism.

Relying on losses and sample outputs offers a lightweight yet effective evaluation strategy. In high-
detail domains like fingerprint synthesis, real-time visual checks can be more intuitive than abstract  
numeric scores, enabling domain experts to spot subtle artifacts or textural inconsistencies. This 



approach also simplifies model development by reducing the computational overhead of advanced 
metrics (e.g., Fréchet Inception Distance), which often require large external classifiers or additional 
memory usage.

If a more robust, quantitative benchmark is desired, metrics like FID or Inception Score can be 
incorporated at a later stage to complement the qualitative insights gained from losses and sample 
images.

4.3. Implementation Details and Hyperparameter Settings

Model  training  is  conducted  using  PyTorch,  leveraging  GPU  acceleration.  Both  generator  and 
discriminator  networks  are  initialized  with  weights  drawn  from  a  normal  distribution  (μ=0, 
σ=0.02),  consistent  with  DCGAN best  practices.  The Adam optimizer  [19]  is  applied  to  each 
network’s parameters.

The discriminator (equipped with instance normalization) is updated for every mini-batch, while 
the generator receives updates at a slightly reduced frequency (e.g., once every five discriminator 
steps), preserving a balanced training signal. 

The gradient penalty coefficient λgp is set to 10, based on prior WGAN-GP literature that suggests 
it effectively constrains the gradient norm [8, 9]. 

Training proceeds for up to 200 epochs — substantially fewer than the 1,000+ epochs sometimes 
required by earlier DCGAN-based methods — owing to the stabilizing influence of gradient penalty 
and the enhanced texture preservation afforded by instance normalization.

5. Results and Analysis

5.1. Qualitative Assessment

Generated  fingerprint  samples  display  high-fidelity  ridge  patterns  and  minimal  visual  artifacts, 
particularly in mid-to-late training epochs. Qualitatively, synthetic images exhibit distinct papillary 
lines, consistent contrast levels, and plausible global orientations that resemble real biometric data. By 
periodically saving and reviewing the generator’s outputs, we could observe a steady progression 
from coarse, noisy impressions to well-defined ridge structures.

Figure 3: Synthesized samples — results after 10 epochs (left) and 20 epochs (right) of EADC-GAN 
model training

Notably, improvements occur with only 170—200 epochs compared to 1200 epochs of the earlier 
DCGAN-based  model,  reflecting  the  stabilizing  influence  of  the  gradient  penalty  and  instance 
normalization.

5.2. Normalization and Penalty Variants

Ablation experiments indicate that substituting batch normalization with instance normalization in 
the  discriminator  enhances  texture  preservation  and  mitigates  mode  collapse.  When  batch 
normalization is reintroduced, training exhibits higher variance in discriminator loss and a slight 
decline in sample diversity. Similarly, reducing or removing the gradient penalty coefficient (λgp) 
increases  the likelihood of  training instabilities  and partially  reintroduces repetitive patterns in 
generated outputs.

These findings confirm that both instance normalization and a carefully tuned gradient penalty are 
key contributors to generating varied fingerprints.



5.3. Computational Efficiency and Scalability

Despite  incorporating  gradient  penalty  and  additional  normalization  layers,  the  model  proves 
computationally efficient relative to extended training regimes of-ten required by baseline DCGANs. 

In practical experiments, fewer total epochs are needed to attain comparable — or superior — visual 
fidelity. Moreover, the approach scales well on standard GPU hardware, supporting batch sizes large 
enough to accelerate convergence. This efficiency stems from the stable gradient updates afforded by 
WGAN-GP, which reduce the need for extensive hyperparameter searches and lessen the risk of early 
divergence, making the framework suitable for larger datasets or more complex biometric tasks.

5.4. Evaluation of Results

The  training  dynamics  of  the  model  exhibit  an  initial  phase  of  instability,  particularly  in  the 
discriminator’s  loss,  which starts  at  an excessively high value in the first  epoch.  This behavior 
suggests that the gradient penalty term may have been dominating due to scaling. However, within 
the first  few epochs,  the discriminator  loss rapidly decreases  and stabilizes  around -0.5  to -0.8, 
indicating  that  the  discriminator  quickly  adapts  to  distinguishing real  from generated  samples. 
Simultaneously, the generator loss begins at a low value and progressively increases, demonstrating 
an initial struggle to generate realistic samples. By epochs 10–20, the adversarial balance improves, as 
evidenced by the increasing generator loss and stabilized discriminator loss, suggesting that the 
generator is effectively learning to produce more convincing outputs.

Below are samples of artificial fingerprints generated by EADC-GAN after 170 and 200 epochs, 
respectively.

Figure 4: Synthesized fingerprints — results after 170 epochs (left) and 200 epochs (right) of EADC-
GAN model training

For comparison, the results after 1,000 to 1,300 training epochs are presented below. The samples 
clearly demonstrate mode collapse, along with low-resolution quality.

Figure 5: Generated results obtained from 1000 to 1300 training epochs

Beyond epoch 40, the training stabilizes further, with the generator loss continuing to rise and 
reaching  values  around  4.0  by  epoch  100.  This  steady  increase  indicates  that  the  generator  is 
persistently improving its ability to generate high-quality images, while the discriminator maintains a 
controlled  dominance.  The  gradient  penalty  (λ=10)  appears  to  regulate  training  effectively, 
preventing extreme discriminator outputs and ensuring stable adversarial interactions. However, the 
increasing  generator  loss  may  warrant  further  investigation  to  rule  out  potential  training 
inefficiencies or diminishing discriminator feedback. Overall, the observed loss trends suggest that the 



model is learning effectively, but parameter tuning — especially for the gradient penalty coefficient — 
could further optimize convergence dynamics.

Figure 6: Generator and discriminator loss during training.

The  model  was  trained  using  the  Kaggle  cloud  environment  with  an  NVIDIA  Tesla  P100-
PCIE-16GB GPU, running CUDA 12.6 and driver version 560.35.03.

Figure 7: System resource utilization during model training on NVIDIA Tesla P100 GPU

6. Cybersecurity and Biometric Implications

6.1. Integration in Biometric Authentication Systems

The capacity to generate high-fidelity synthetic fingerprints raises important considerations for both 
security  researchers  and  practitioners.  On  one  hand,  it  offers  a  privacy-preserving  means  of  
advancing  biometric  systems  by  enabling  robust  testing  and  algorithmic  development  without 
exposing sensitive personal information. On the other hand, it introduces potential vulnerabilities 
that adversaries could exploit if protective measures are not effectively enforced [20, 21].

By accurately capturing the visual and structural attributes of real fingerprints, the proposed 
generative  model  can  supply  large  synthetic  datasets  for  training  and  validation  in  biometric 
authentication systems. These “privacy-friendly” samples minimize the legal and ethical constraints 
associated with collecting user data at scale, while still reflecting realistic ridge patterns crucial for 
ensuring system reliability.

In practice, developers can use this influx of synthetic samples to enhance feature extraction 
methods, improve fingerprint-matching algorithms, and conduct comprehensive stress testing against 
external  conditions  such  as  image  quality  variations  or  sensor  discrepancies.  The  resulting 
improvements  in  accuracy  and  robustness  can  bolster  consumer  confidence  in  biometric 
authentication solutions across various sectors, including mobile devices, secure facility access, and e-
Government initiatives [22].

6.2. Adversarial Vulnerabilities and Mitigation

While  the  generation  of  realistic  fingerprint  images  aids  legitimate  research,  it  concurrently 
highlights potential avenues for adversarial attacks. Malicious actors could use convincing synthetic 



fingerprints to probe or bypass fingerprint recognition systems. This possibility underscores the need 
to develop spoof detection or presentation attack detection mechanisms capable of distinguishing 
artificially generated ridges from authentic biometric inputs.

Countermeasures may include specialized classifiers trained on adversarially generated images, 
advanced liveness detection technologies, or multi-factor authentication procedures that combine 
fingerprint data with other identifiers. By integrating these preventative strategies, security experts 
can leverage the benefits of synthetic biometric training data without compromising user safety and 
privacy [23, 24, 25, 26, 27, 28, 29].

7. Conclusion and Future Directions

High-fidelity synthetic fingerprints offer both opportunities for biometric advancement and risks of 
misuse. They enable privacy-preserving testing and development but also raise security concerns if  
safeguards are lacking.

While  the  proposed  EADC-GAN  framework  outperforms  traditional  DCGANs  in  terms  of 
convergence  speed  and  visual  fidelity,  it  still  requires  substantial  GPU  resources  for  optimal 
performance. Moreover, the current evaluation relies primarily on qualitative assessments, lacking 
explicit  quantitative  metrics  such  as  the  Fréchet  Inception  Distance  or  specialized  fingerprint 
matching scores. Additionally, the model’s ability to generate ultra-high-resolution fingerprints (e.g., 
>256×256 pixels) remains to be fully explored — a critical requirement for certain forensic or high-
security applications.

Future work may focus on scaling the architecture to support higher resolutions and embedding 
domain-specific fingerprint features tailored for forensic or advanced biometric scenarios [30–32].  
Exploring alternative normalization strategies, such as hybrid or adaptive instance normalization [33-
35], could further enhance ridge style consistency. Incorporating quantitative evaluation metrics 
specific to fingerprint quality — potentially benchmarked against live-capture datasets — would also 
strengthen the model’s practical utility. 

Finally, integrating spoof-detection modules directly into the training loop may help preemptively 
mitigate adversarial vulnerabilities [36-39]. By pursuing these directions, the proposed framework 
can evolve into a robust and versatile tool for both secure biometric authentication [40, 41] and  
adversarial AI research [42, 43].

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling 
check. After using this tool, the authors reviewed and edited the content as needed and take full 
responsibility for the publication’s content.
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