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Abstract
This paper focuses on the development of an intelligent driver monitoring system based on adaptive deep  
learning  models  to  enhance  road  safety.  The  research  explores  advanced  deep  learning  techniques,  
particularly convolutional neural networks and their modifications, such as ResNet50 and MobileNetV2.  
Special attention is given to the stages of data preprocessing, augmentation, training and testing dataset 
formation, as well as model training and fine-tuning. A conceptual framework and architecture for an 
intelligent driver monitoring system have been developed, incorporating two modules based on different  
deep learning  models.  An experimental  study  was conducted  to  compare  the  performance  of  various 
convolutional  neural  network  (CNN)  architectures,  including  classical  CNN,  ResNet50,  MobileNetV2, 
EfficientNetB0, and VGG16, in detecting driver fatigue and drowsiness. Signs of overfitting were identified  
in the ResNet50 and MobileNetV2 models when applied to the selected datasets, highlighting the need for 
further hyperparameter optimization. The developed testing scripts enable real-time analysis of behavioral 
indicators of drowsiness and driver distraction. The proposed system is designed for non-invasive and  
high-precision real-time monitoring of driver conditions, including fatigue, drowsiness,  and distraction 
detection. The  findings  confirm  the  effectiveness  of  adaptive  deep  learning  models  for  driver  state 
monitoring. The developed system demonstrates the capability to detect signs of fatigue, drowsiness, and 
distraction, which may help reduce the likelihood of road accidents. Experimental results indicate that the 
choice  of  an  optimal  neural  network architecture  depends  on  the  specific  task  requirements  and the  
available computational resources.
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1. Introduction

The advancement of modern technologies and the increasing computational power make intelligent 
big  data  analysis  systems  essential  tools  for  automating  complex  processes  and  making  well-
founded  decisions  [1].  The  application  of  intelligent  technologies  and  methods  enables  the 
identification of intricate patterns, resource optimization, and enhanced prediction accuracy across 
various scientific and industrial  domains [2].  The growing volume of  data necessitates  efficient 
algorithms for  processing,  interpreting,  and utilizing information in real  time,  emphasizing  the 
significance of developing advanced analytical models. Intelligent data analysis systems contribute 
to the autonomy and adaptability of technological solutions, ensuring their reliability, efficiency, 
and security [3].

So,  in  the  modern  context,  road  traffic  safety  is  becoming  an  increasingly  pressing  issue,  
necessitating the implementation of innovative methodologies and technological solutions aimed at 
minimizing the likelihood of traffic accidents and enhancing driver protection. A crucial aspect of  
this  issue  is  the  physiological  and  psychological  state  of  the  driver,  including  their  level  of  
concentration, degree of fatigue, emotional stability, and ability to respond promptly to changes in 
road  conditions.  Consequently,  the  study  and  development  of  highly  effective  driver  state 
monitoring algorithms have become priority areas in the field of transportation safety.

Traditional driver monitoring approaches based on physiological parameters such as heart rate 
and  galvanic  skin  response  have  significant  limitations.  Their  implementation  in  real-world 
operational conditions is associated with technical challenges, the need for specialized equipment,  
and potential discomfort for the driver. In this context, non-invasive monitoring based on video 
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stream analysis presents a compelling alternative. This approach enables the assessment of driver  
states by examining visual indicators, including facial expressions, head position, blink frequency 
and patterns, as well as other markers of fatigue and decreased attention [4].

With advancements  in  artificial  intelligence  (AI)  and data-driven analysis,  the  accuracy and 
reliability  of  automatic  driver  state  detection  have  significantly  improved.  A  key  role  in  this  
progress is played by machine learning (ML) and deep learning (DL) techniques, particularly deep 
neural networks (DNN), which have demonstrated outstanding performance in computer vision and 
behavioral  pattern recognition. DL enables models to autonomously extract meaningful features 
from  large  datasets,  eliminating  the  need  for  manual  feature  engineering.  State-of-the-art 
architectures, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs),  
and transformers,  ensure efficient  real-time video stream processing,  allowing for  accurate  and 
timely detection of potentially hazardous driver states [1,3,5].

Thus, the development of driver state assessment approaches based on video analysis using DL 
techniques represents a promising direction in transportation safety. Intelligent monitoring systems 
built upon these technologies can promptly respond to changes in driver conditions, mitigating the 
risk of accidents. Their integration into modern vehicles has the potential to significantly enhance 
overall road traffic safety.

2. Description of Problem in Literature Review 

According to the analysis of a number of literary sources and the opinion of authoritative authors, 
in practice there are various methods for determining the driver's condition, the most priority and 
promising of which are based on: wearable sensors, processing the driver's visual conditions and the 
acoustic environment.

2.1. Methods based on processing biometric information and classic hardware 
sensors

One  of  the  first  and  main  areas  of  focus  for  many  researchers  and  organizations,  including 
automobile  companies,  is  the  development  of  sensors  for  collecting  biometric  information. 
Biometric information about a driver allows us to understand his condition and ability to drive a 
vehicle.  Biometric  information  includes  information  such  as  electrocardiogram,  electrodermal 
activity, blood pressure levels and visceral fat levels, as well as exercise levels, sleep patterns and 
diet. An important factor is also the correct interpretation of all the above parameters [6].

For  a  example,  the  authors  of  paper  [7]  conduct  a  study  demonstrating  the  significant 
effectiveness of electroencephalography data in monitoring driver states, particularly in detecting 
drowsiness and loss of  attention.  To achieve this,  they developed a system comprising an EEG 
recording device, a computational unit capable of signal processing and classification, and a real-
time feedback mechanism that alerts the driver and wakes them up by emitting an audio signal. 
Drawing upon the analysis of the authors' perspectives existing classical methods of measuring  
heart rate limit or interfere with driver performance. In addition to the completeness and accuracy  
of measurements, it is very important that the driver monitoring system does not limit or interfere 
with the driver's performance [8]. Therefore, traditional methods are not suitable for measuring 
heart rate in a vehicle, and a non-wearable monitoring system is desirable, although the reliability 
of the data obtained is inferior to that of wearable systems. Such driver monitoring systems should 
be able to correctly determine the driver's state of readiness without limiting his or her movement 
[9].

It is worth noting that driver state monitoring using MEMS (Micro-Electro-Mechanical Systems) 
sensors  represents  an  innovative  approach  to  enhancing  road  safety.  MEMS  sensors  are 
characterized by their small size, high sensitivity, and precision, making them ideal for integration 
into  driver  monitoring  systems.  According  to  [10-12],  MEMS continuously  collect  data  on  the 
driver's  physiological  parameters  and movements.  The gathered information is  processed using 
machine learning algorithms to detect anomalies or patterns indicative of  potential  danger.  For 
instance,  the system can identify patterns associated with drowsiness or driver distraction.  If  a  
potential risk is detected, the system can issue auditory or visual alerts, as well as haptic warnings 
via seat or steering wheel vibrations. Some advanced systems may also implement active safety 
measures, such as engaging autopilot functions or initiating an automatic vehicle stop if the driver  



fails  to  respond  to  warnings  [13].  A  key  aspect  of  all  the  reviewed  scientific  studies  is  the  
complexity of their technical reproducibility due to the necessity of multiple integrations and the 
non-trivial  process  of  configuring  operational  modes  of  technical  devices,  combined  with  the 
consideration  of  individual  characteristics  and  predispositions  of  specific  drivers.  However, 
collectively, the results obtained by the authors indicate the promising potential of MEMS sensors  
for driver state monitoring.

2.2. Methods based on processing the driver's visual state

Modern DNN generally outperform traditional methods in accuracy and automation. However, they 
require large datasets, have limited interpretability, and demand high computational resources [14, 
15].  These  challenges  drive  the  development  of  hybrid  models  that  combine  the  strengths  of 
traditional  approaches  with  deep  learning  techniques.  The  increasing  prevalence  of  in-vehicle 
information systems significantly impacts road safety, as their use contributes to visual, manual, 
and cognitive driver distraction, potentially impairing driving performance. Additionally, drivers 
frequently engage in secondary activities such as eating, drinking, adjusting the radio, and using 
mobile  devices.  These  distractions  reduce  their  focus  on  the  road  and  increase  cognitive  load, 
thereby  heightening  the  risk  of  traffic  accidents.  One  effective  method  for  detecting  driver 
distraction involves analyzing facial orientation and gaze direction. Most modern driver monitoring 
systems follow a multi-step approach [16]:

1. Face recognition and head tracking – initially, a face detection algorithm is applied, and 
its results serve as input for a more precise head-tracking system.

2. Facial landmark localization – this step involves identifying key facial features such as 
the eyes, enabling anthropometric analysis of both the face and head.

One of the most widely used face recognition algorithms is the Viola-Jones method, which has 
inspired several enhanced versions, such as PICO [17]. This approach refines the standard Viola-
Jones object detection framework by employing a cascade of binary classifiers to scan images at  
multiple scales, achieving high processing speed while maintaining accuracy.

Furthermore,  head  position  in  three-dimensional  space  can  be  assessed  by analyzing its  tilt 
relative to the camera. This evaluation allows for the estimation of head rotation angles, tilt levels,  
and deviations, providing insights into the driver’s gaze direction. Advanced facial analysis methods 
also incorporate more sophisticated algorithms capable of generating a 3D model of the head and 
face using a single camera. One of the most well-known systems in this category is based on 49 
tracked 2D facial landmarks utilizing the supervised descent method (SDM). In this context, it is also 
important to note that many modern approaches incorporate tree-based models, Deformable Part 
Models (DPM), SDM, explicit shape regression, and local binary feature extraction techniques [18].  
However,  these  methods  often  suffer  from  performance  limitations  when  exposed  to  varying 
lighting conditions. Uneven light sources, asymmetric shadowing on the face and eye region, and 
abrupt changes in illumination—caused by factors such as shadows from buildings, bridges, and 
trees—pose  significant  challenges  for  accurate  facial  feature  detection.  Consequently,  further 
research is  required to adapt these algorithms for  real-world driving conditions,  enhancing the 
reliability and precision of driver monitoring systems.

2.3. Methods based on the acoustic environment

Previously, one of the primary challenges in studying and developing voice analysis algorithms was 
the  limited  availability  of  training  datasets.  However,  with  the  advent  of  voice  assistants, 
researchers and developers have gained access to an almost unlimited variety of speech data from 
diverse speakers, significantly enhancing the potential for speech analysis.

Acoustic characteristics of speech can be classified according to auditory-perceptual prosodic 
concepts, including prosody (pitch, intensity, rhythm, pauses, and speech rate), articulation (clarity 
of  speech),  and  voice  quality  (e.g.,  breathy,  tense,  harsh,  hoarse,  or  modal  voice).  Modern 
approaches to speech emotion recognition rely on precise temporal modeling of acoustic feature 
contours, known as feature level dynamics (FLD). This method results in the extraction of hundreds 
or even thousands of features used for classification. The process follows a four-step framework 
[19]:



 The speech signal is segmented into small  time frames and smoothed using windowing 
functions such as the Hamming window.
 Signal processing is  performed, including speaker recognition and feature extraction for 
each individual frame.
 The values of each frame-level feature are aggregated into FLD contours.
 The one-dimensional temporal sequence is projected onto a scalar feature that captures the 
temporal dynamics of the acoustic contour.
A key advantage of this sequential approach is its enhanced ability to model the contribution of 

both smaller units (words) and larger segments (phrases) to the prosodic structure of an utterance 
[20].

2.4. Focus and goal of work

Current methods for assessing driver states based on sensor data and acoustic environment analysis  
have several  limitations  that  reduce their  effectiveness  in  real-world applications.  Physiological  
sensor-based technologies (e.g.,  heart rate monitoring or galvanic skin response) face challenges 
related  to  invasiveness,  complex  calibration  requirements,  and  high  sensitivity  to  individual 
physiological variations. Furthermore, these systems require continuous physical contact with the  
driver,  which can cause discomfort  and limit  usability.  Acoustic analysis-based approaches also 
exhibit constraints, such as susceptibility to high background noise levels within the vehicle cabin, 
variations in individual speech patterns, and the need for complex signal processing to achieve high 
detection accuracy. 
Additionally, these methods are less effective when the driver remains silent or exhibits minimal 
speech activity.

Given these limitations, hybrid approaches that combine computer vision with biometric data 
analysis  present  a  promising  direction  for  improving  driver  state  monitoring.  Specifically, 
integrating face recognition, head and body posture assessment, and MEMS sensor data enables the 
development of more robust monitoring systems. Video-based analysis offers a non-invasive means 
of evaluating driver behavior, while MEMS sensors provide physiological and behavioral insights, 
enhancing the accuracy of fatigue, drowsiness, and distraction detection.

Thus, the aim of this paper is to develop intelligent monitoring system for analyzing vehicle  
drivers state based on adaptive deep learning models.

3. System’s concept development

3.1. Main functions formalization 

To  address  the  outlined  problem,  the  following  concept  of  intelligent  monitoring  system  for  
analyzing vehicle drivers state on can be proposed:

 Development system’s first module (M1) with a DNNs, adapted from existing DL models,  
for  detecting  key  points  on  the  face  and  head  with  the  purpose  of  binary  or  multiclass 
classification, aimed at assessing the driver’s level of fatigue.
 Development  system’s  second module  (M2),  also  adapted  from existing  DL models,  for 
detecting distractions affecting the driver during driving.
 Aggregation of the outputs from M1 and M2 to enhance result accuracy and reduce the 
number of false positives.
To comprehensively assess the condition of a vehicle driver for drowsiness detection through 

automated recognition and classification of video stream images, followed by an analysis of the 
driver's focus level or distraction from the traffic process, it is proposed to develop and use two 
separate modules that implement different DL models, which have models to handle the processing 
and  analysis  of  data  for  assessing  driver  drowsiness:  by  analyzing  head  posture  considering 
distractions and by analyzing eye condition. A generalized scheme of the project stages is presented 
in Figure 1. 



Figure 1: Intelligent system consept stages scheme

The key aspects of the implementation are as follows:
 Data selection and loading. At this stage, a dataset containing images and data regarding the 
driver’s  condition  (head  posture,  eye  condition)  is  chosen  and  loaded  into  the  working 
environment. For deep learning models like ResNet and MobileNet, high-resolution video frames 
are loaded, as both models have been pre-trained on large image datasets.
 Data  preparation  and preprocessing.  This  step  involves  standardizing  the  input  format, 
including resizing images, normalizing pixel values, and augmenting the data. For ResNet and 
MobileNet, images are resized to a fixed format (e.g., 224×224), and augmentation techniques 
such as rotation, mirroring, and brightness adjustment are applied.
 Forming training and testing subsets. Based on the size of the data, the dataset is split into 
training and testing subsets in an 80/20 or 70/30 ratio. Cross-validation is used to enhance the 
robustness of the models.
 Creating and loading DL models. Pre-trained DL architectures, such as ResNet-50, can be 
used, with the last fully connected layer being replaced for driver condition classification tasks. 
The MobileNet model can also be used for lightweight and fast classification, followed by fine-
tuning and adding fully connected layers to process specific data.
 Training and fine-tuning models. The training process includes adjusting hyperparameters 
such as learning rate (0.001-0.01), number of epochs (10-30), and optimization functions (such as 
Adam or SGD).



 Metrics evaluation and results analysis. At this stage, the models’ quality is assessed using 
appropriate metrics to analyze the driver’s condition based on the selected factors.
 Decision making. Based on the data and predictions, decisions are made to adjust system 
actions accordingly.
In the implementation of the described concept, the adaptive feature fusion mechanism is of key 

importance, which includes the following stages:
 weighted fusion of features based on the dynamic confidence coefficient of the model;
 Bayesian aggregation of probabilistic predictions to improve the accuracy of determining 
the driver's state (analysis of the level of drowsiness);
 adaptation of  the attention mechanism to focus on the most informative regions of  the 
video stream images;
 optimization of the final assessment of the driver's state using the retrained VGG16 model.
That  is,  the  deployed  ResNet,  MobileNet  and  CNN  models  extract  features 
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 respectively. Then the final representation of the combined 

features 
F fusion   is defined as:

F fusion=wres⋅Fres+wmob⋅Fmob+wcnn⋅Fcnn , (1)

where  wres , wmob , wcnn– adaptive weights determined through the attention mechanism:

wi=
e
S j

∑ j
e
S j
, S j=MLP(F i )

, (2)

whereMLP (F i )- a multilayer perceptron that learns to predict the importance of each feature 
channel.

Bayesian aggregation of model predictions is based on probabilistic combination of predictions 
of each model:

P( y|X )=∑i
wiPi( y|X )

, (3)

where Pi( y|X )  – the probability of predicting the level of sleepiness produced by each model.
The VGG16 model is used to further validate the output representation by using the following  

model output correction function:
Fopt=σ (WF fusion+b ) , (4)

where W - learnable transformation matrix, b  – bias, σ – activation function (ReLU or softmax).
The final assessment of the driver's condition is calculated as:

P final( y|X )=αP ( y|X )+(1−α )Pvgg( y|X ) , (5)
where α  – weighting factor determined based on the confidence level of the VGG16 model.
Given  the  labor-intensive  nature  of  creating  a  custom dataset,  which  includes  aggregation, 

formatting,  and labeling, the decision has been made to use existing publicly available datasets  
compiled by third-party experts for the training and testing of data analysis models.

3.2. Datasets description

In the development of intelligent system’s module for processing and analyzing data to assess driver 
drowsiness based on head position and distraction factors, the driver-inattention-detection-dataset 
[21] has been selected. This dataset,  presented in grayscale, is highly diverse and includes over 
14,000 labeled images distributed across six different classes,  providing a broad and varied data 
range for training, validation, and testing tasks specifically tailored for grayscale image processing.

The dataset is organized into three main directories: training (11,942 grayscale images that have 
been carefully  selected and labeled across  six  classes),  validation (1,922 images  used for  model  
tuning and performance evaluation during the development process), test (985 images reserved for 
final verification and comparative analysis of the models). This dataset covers six classes of driver 



behavior: dangerous driving, distracted driving, alcohol consumption, safe driving, drowsy driving, 
yawning.

For further exploration of the potential intelligent system’s M2 for a different, more specialized, 
and pre-processed dataset focusing on driver eye images, besides the previously discussed ResNet50  
and MobileNetV2 models, EfficientNetB0 and VGG16 models were selected. The dataset chosen for 
this purpose is the Driver Drowsiness Dataset (DDD) [22], which contains extracted and cropped 
images of drivers' faces from video recordings of real-world cases of drowsiness while driving. 

This dataset is intended for the development and training of machine learning and deep learning 
models capable of detecting signs of drowsiness in drivers by analyzing their eye regions. 

Since  the  data  were  collected  from real  video  recordings,  they  reflect  a  variety  of  lighting 
conditions,  angles,  and  other  factors,  making  them  valuable  for  creating  robust  and  reliable 
drowsiness detection systems. 

The DDD includes more than 41,790 images of drivers'  faces, and the dataset structure is as 
follows: RGB images with a size of 227×227 pixels, labeled into two classes — "drowsy" and "alert,"  
involving 28 drivers, each assigned a unique identifier.

3.3. Neural network models development

According to M1 logic implementation all the images uploaded into the system are converted to 
RGB format and resized to 224x224 pixels at the preprocessing stage. The class labels are encoded 
using one-hot encoding.

For  the  experiments,  it  was  decided  to  use  a  classical  convolutional  neural  network  (CNN) 
architecture, as well as compare it with pre-trained models such as ResNet50 and MobileNetV2.

The ResNet50 architecture includes residual blocks, which help address the vanishing gradient 
problem  common  in  deep  neural  networks.  Specifically,  the  model  incorporates 
GlobalAveragePooling2D layers to reduce feature dimensionality,  a fully connected Dense layer 
with 512 neurons and the ReLU activation function, and a final Dense layer with 6 neurons and 
softmax activation. 

The MobileNetV2 architecture employs depthwise separable convolutions, which significantly 
reduce computational complexity. For driver state analysis,  a similar approach to ResNet50 was 
used, where the base layers of MobileNetV2 were frozen (using pre-trained weights from ImageNet), 
and GlobalAveragePooling2D layers, a fully connected Dense layer with 512 neurons and the ReLU 
activation function, as well as the softmax-activated output layer were added.

The training process for both models is similar to that of ResNet50, but MobileNetV2 offers a 
lower computational load, making it  more efficient in environments with limited computational 
resources. 

The CNN model architecture (Figure 2) consists of several Conv2D convolutional layers with 
ReLU  activation,  MaxPooling2D  subsampling  layers,  a  fully  connected  Dense  layer  with  512 
neurons, and Dropout to prevent overfitting, along with an output layer with softmax activation for 
classifying into 6 classes.



Figure 2: Main CNN model structure

In M2 implementation the research followed the subsequent steps:
 Data preprocessing, including normalization of images and resizing them to the required 
dimensions for each model (e.g., 224x224 pixels for most models).
 Data augmentation to increase the diversity of the training set and improve the models' 
robustness (e.g., rotations, shifts, brightness adjustments).
 Model initialization with pre-trained weights, which accelerates the learning process and 
improves accuracy.
 The ReLU activation function was used as the optimizer, and Sigmoid as the loss function,  
with binary cross-entropy applied as the loss function due to the binary classification task.
 Testing was performed by splitting the data into training and testing subsets.
 Model performance evaluation, using metrics similar to those in the previous study, and 
cross-validation to assess the robustness of the models on different data subsets.

4. Experiments and results analysis

In M1 accuracy, F1-score, precision, recall were used as metrics for assessing the accuracy of the 
models,  each of  which was evaluated on a  test  set.  Classic  CNN is  characterized by a  simpler 
architecture, high performance and base accuracy. The ResNet50 model is characterized by higher 
accuracy  due  to  pre-trained  weights,  and  MobileNetV2 demonstrates  moderate  (not  very  high) 
accuracy, but is more efficient in terms of consumption of computing resources. At the same time,  
the ResNet50 model copes best with the "SleepyDriving" and "Yawn" classes.

Comparison of F1 Score and Precision metrics evaluation results for adaprive DL models in M1 is 
shown in Figure 3. It should be noted that there is a consistent decrease in the loss and an increase  
in accuracy for each model, indicating the absence of overfitting. The ResNet50 model demonstrates 
the most stable convergence. Visualization of the results of constructing error matrices for adaptive 
DL models in M1 is shown in Figure 4.



Figure 3: Comparison of F1 Score and Precision metrics evaluation results for adaptive DL models 
in M1

 

Figure 4: Constructing error matrices results Visualization for adaptive DL models in M1



Rational approaches to improving the accuracy of  the loaded models include:  fine-tuning by 
unfreezing the upper layers of the ResNet50 base model and retraining them on additional data; 
using  a  smaller  learning  rate  for  the  unfrozen  layers;  increasing  data  variability  by  applying 
augmentation techniques such as rotations, brightness adjustments, and horizontal flipping, as well  
as data mixing (images and labels) to improve model robustness against noise.

Furthermore, there is potential to add additional features, such as the sequence of frames for  
analyzing the fatigue dynamics, and to increase the number of parameters in the dense layers by 
adding more layers or neurons to improve the generalization capability of the models.

It  is  worth noting the consistent  decrease in  loss  and increase  in  accuracy for  each model,  
indicating  the  absence  of  overfitting.  The  ResNet50  model  demonstrates  the  most  stable 
convergence.

To improve the accuracy of the loaded models, several effective strategies can be considered: 
fine-tuning by unfreezing the upper layers of the base ResNet50 model and retraining on additional 
data;  using  a  lower  learning  rate  for  the  unfrozen  layers;  increasing  data  variability  through 
augmentation  (such  as  rotations,  brightness  adjustments,  and  horizontal  flipping),  as  well  as 
employing data mixing techniques (images and labels) to improve model robustness against noise.

Additionally, new features can be introduced, such as the sequence of frames for analyzing the 
dynamics of fatigue, and the number of parameters in the Dense layers can be increased by adding 
additional layers or increasing the number of neurons, which would enhance the generalization 
capabilities of the models. 

Dependence  of  values  on  the  number  of  model  training  epochs  for  custom  CNN,  tuned 
MobileNet and ResNet is shown in Figure 5.

In M2 we can say, that the difference in model error rates between the training and test sets is  
minimal,  ranging from 3% to 7%,  indicating data balance and the high efficiency of fine-tuning 
models on the constructed datasets using cross-validation. 

An analysis  of  the presented dependencies reveals that the accuracy of  the ResNet50 model  
gradually  increases,  reaching  approximately  0.85  by  the  end  of  training,  which  suggests  well-
balanced classes and a successful learning process. However, the validation accuracy exhibits some 
instability: it peaks at around 0.86 during the early epochs but then declines to below 0.80 by the 
200th epoch. 

This trend may indicate overfitting, as training accuracy continues to increase while validation 
accuracy decreases.

The accuracy of the MobileNetV2 model initially increases gradually, reaching 0.82 in the later 
training stages. However, its accuracy improvement is less pronounced compared to other models,  
and its validation accuracy peaks at 0.84 in the early epochs before declining more significantly than 
that of ResNet50. This suggests overfitting or potential issues with generalization.

For the EfficientNetB0 model, accuracy also increases with more training epochs, reaching 0.82 
in the final stages, albeit at a slower rate compared to other models. Notably, its validation accuracy 
steadily improves over time, surpassing the training accuracy in later stages and reaching 0.86. This  
behavior indicates strong generalization capabilities without significant overfitting.

The VGG16 model initially exhibits lower accuracy during training but eventually reaches 0.81. 
At  early  stages,  its  validation accuracy  is  higher  than training accuracy and remains  stable  at 
approximately 0.83 by the end of training. This suggests good overall performance, though possible 
underfitting may need to be addressed.

Summary graph of estimates of training and test accuracies of adaptive DL models is shown in  
Figure 6.

To test the operation of the created modules and serialized models, test scripts were developed  
that run the models on prepared videos. 

This allowed parallel recognition of driver states in console mode. This approach allows for the 
prompt analysis of behavioral signs of drowsiness, distraction, and other factors affecting driving 
safety.



Figure 5: Dependence of values on the number of model training epochs for custom CNN,  tuned 
MobileNet and ResNet

The testing results are presented in Figure 7, where we can see how each module of the system 
process the video stream and classify the driver's state in real time (evaluates the level of driver’s  
state -  drowsiness).  Particular attention is paid to the analysis of  the stability of the models to 
changes in lighting conditions, angles, and differences in the anatomical features of vehicle drivers.  
In summary, the ResNet50 and MobileNetV2 models exhibit signs of overfitting, as the gap between 
training and validation accuracy increases with more training epochs. In contrast, EfficientNetB0 
demonstrates stable performance improvements on both training and validation sets, suggesting its 



advantage  for  this  dataset.  The  VGG16  model  maintains  consistent  but  non-optimal  results, 
indicating a potential need for additional hyperparameter tuning or increased training epochs.

Figure 6: Summary graph of estimates of training and test accuracies of adaptive DL models

Figure 7: Test enviroment for M1 and M2 usage in PyCharm

5. Conclusions 

The  research  results  demonstrate  us  the  effectiveness  of  fine-tuning  and  the  adaptation  of 
existing DL models,  specifically MobileNetV2 and ResNet50, in developed intelligent monitoring 
system for  analyzing  vehicle  drivers  state.  By  leveraging  pre-trained  architectures,  the  models 
achieve high classification accuracy while reducing computational costs and training time.

The scientific novelty of the developed system lies in the hybrid approach, combining several 
adaptive  deep  learning  models  to  improve  the  accuracy  and  reliability  of  real-time  driver 



monitoring. For the first time, an architecture with two modules based on different convolutional 
neural networks was implemented, which made it possible to adapt the system to different scenarios 
and  resource  constraints.  ResNet50,  with  its  residual  learning  framework,  effectively  captures 
complex  feature  representations  but  exhibits  higher  computational  demands.  In  contrast, 
MobileNetV2, optimized for lightweight and efficient deployment, ensures faster inference while 
maintaining competitive accuracy, particularly in tasks focusing on eye-region analysis. The results 
indicate that both models generalize well when fine-tuned on domain-specific datasets, particularly 
in detecting signs of drowsiness and distraction. As observed, the MobileNetV2 model demonstrates 
a  more  accurate  assessment  of  the  driver's  condition,  particularly  when  analyzing  segments 
containing  the  ocular  region.  Moreover,  its  performance  is  2–3  times  faster  than  that  of  the 
ResNet50 model. This can be attributed to the fact that ResNet50 considers a broader feature space 
and possesses a more complex architecture, leading to an increased size of serialized objects and 
weight values.

However, in cases where the driver's eyes are partially closed or the head is significantly tilted 
sideways or downward, both models exhibit high confidence levels in detecting driver drowsiness.  
This finding indicates a high generalization capability of the models and confirms the effectiveness 
of  their  fine-tuning on representative datasets.  These results  suggest  that  MobileNetV2 may be 
preferable  for  resource-constrained  real-time  systems,  whereas  ResNet50,  due  to  its  deeper 
architecture, can provide a more detailed analysis of complex scenarios.

Future research efforts should focus on enhancing the accuracy of DL models by implementing 
the following strategies:

 Integration of multimodal data. Utilizing multiple data sources, such as video recordings, 
voice signals,  biometric  indicators,  and vehicle  movement data,  to  improve the reliability of 
driver state assessment.
 Training on large and representative datasets. Expanding the dataset to include a diverse 
range of drivers across different ages,  genders,  cultural  backgrounds,  and driving conditions, 
ensuring robust generalization.
 Handling rare events. Emphasizing the recognition of rare and critical driver states, such as 
microsleep  episodes  or  sudden  health  deterioration,  to  enhance  safety-critical  detection 
capabilities.
A promising direction for the development of the system is the integration of multimodal data  

and automatic adaptation of the architecture to specific operating conditions.

Declaration on Generative AI

During  the  preparation  of  this  work,  the  authors  used  Grammarly  in  order  to:  Grammar  and 
spelling check. After using this tool, the authors reviewed and edited the content as needed and take 
full responsibility for the publication’s content.
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