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Abstract
Intelligent systems for optimized object placement in medical and biological applications leverage artificial  
intelligence advanced data fusion techniques to enhance precision, efficiency, and patient outcomes. These 
systems tackle a range of issues, including the positioning of surgical tools, deployment of sensors, and 
analysis of diagnostic images. Advanced mathematical modeling has become essential in healthcare and 
biological research, driving innovative solutions for treatment planning and spatial arrangements. This 
paper introduces an intelligent system aimed at optimizing the placement of geometric objects in medical  
and biological contexts. We employ a universal mathematical model that functions as an intelligent agent, 
utilizing parameters  to adapt  to  different  scenarios and optimize outcomes.  We develop mathematical 
models  and  advanced  algorithms  to  ensure  precise  placement,  achieving  the  desired  therapeutic  or 
research outcomes while minimizing adverse effects. The mathematical model is formulated as a knapsack 
problem  and  expressed  as  Mixed  Binary  Non-Linear  Programming (MBNLP).  Problems  related  to 
optimized  object  placement  can  be  addressed  by  selecting  different  model  parameters.  Several 
implementations  demonstrate  this  approach,  including  Gamma  Knife  radiosurgery,  laser  coagulation, 
brachytherapy, and chromosome territory modeling.
These systems tackle a range of issues, including the positioning of surgical tools, deployment of sensors,  
and analysis of diagnostic images. Advanced mathematical modeling has become essential in healthcare  
and biological research, driving innovative solutions for treatment planning and spatial arrangements. This 
paper introduces a smart system aimed at optimizing the placement of geometric objects in medical and  
biological contexts.
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Introduction

AI-powered  intelligent  systems  are  being  implemented  in  the  medical  and  biological  fields  to  
achieve  improved  object  placement  through  artificial  intelligence,  the  Internet  of  Things,  and 
sophisticated  data  integration  methods.  The  systems  are  highly  adaptable,  addressing  various 
practical challenges such as the strategic placement of surgical tools, efficient sensor deployment, 
and thorough analysis of diagnostic images.

The utilization of intelligent systems within the medical field is experiencing a marked increase, 
particularly in medical assessment and treatment design. These systems are invaluable for medical 
professionals,  helping  them  make  more  accurate  decisions,  reduce  errors,  and  improve  the 
effectiveness of therapeutic interventions [1]. Specifically, intelligent systems are used in various 
tasks such as detailed medical image analysis, personalized treatment planning, epidemic prediction 
and modeling, and aiding in drug discovery processes [2].

By adjusting the model's parameters, such systems function as intelligent agents, adapting to 
various scenarios and optimizing their performance. This adaptability and optimization capability 
are key principles of artificial intelligence, demonstrating how these systems leverage AI techniques 
to enhance precision and efficiency [3]. The effectiveness of these systems is significantly enhanced 
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by mathematical modeling, providing the foundation for simulating complex scenarios and refining 
decision-making processes [4].

In medicine,  mathematical  modeling supports  diagnostic  processes  and enhances therapeutic 
approaches. Differential equation-based models simulate biological systems, offering insights into 
disease progression and guiding treatment choices [5]. On the other hand, statistical models analyze 
patient data to forecast disease outcomes and identify the most effective treatments [6]. Advances in 
this  field  have  significantly  transformed  healthcare  and  expanded  biological  knowledge.  More 
sophisticated  systems  are  now  used  to  develop  personalized  treatment  plans,  analyze  medical 
images,  and manage workflows,  thereby enhancing clinical  outcomes and research productivity 
[7,8].

Automating treatment design marks a significant leap in enhancing the precision, speed, and 
effectiveness  of  medical  protocols.  Healthcare  professionals  can  develop  optimized  treatment 
strategies,  shorten  planning  times,  and  improve  patient  outcomes.  Mathematical  modeling  in 
treatment  planning  is  widely  used  across  various  medical  and  biological  fields.  Automated 
treatment systems use complex algorithms and mathematical models to define therapeutic targets, 
ensuring precise delivery of treatments while minimizing harm to healthy tissues.

Gamma Knife radiosurgery is a non-invasive radiotherapy used to treat brain and upper spine 
conditions.  It  employs computer-controlled planning to deliver targeted gamma rays to specific 
areas, minimizing damage to surrounding tissues. This therapy is particularly effective for small 
brain  tumors,  vascular  malformations,  and  trigeminal  neuralgia.  Due  to  its  precision,  patients 
usually require only one treatment session,  reducing the need for  multiple  rounds of  radiation 
therapy. The role of automation and artificial intelligence in radiation therapy planning is further  
explored in reference [9].

Laser coagulation, also known as laser photocoagulation, is a surgical technique used to treat 
various eye conditions. It works by cauterizing blood vessels within the eye, commonly used for 
issues like diabetic retinopathy and retinal tears. The procedure involves using a laser to create tiny  
burns in the targeted tissues,  promoting scar tissue formation that seals the edges of tears and 
prevents  detachment.  Laser  coagulation  effectively  slows  the  progression  of  retinal  disorders,  
reducing the risk of future vision loss. The article [10] discusses the use of artificial intelligence in  
diagnostic screening, predicting disease progression, and assessing treatment effectiveness through 
quantitative methods.

Brachytherapy is a type of internal radiation therapy that treats cancer by placing radioactive 
materials directly in or near the affected tissue. This method delivers high doses of radiation to the  
tumor while protecting healthy tissues from excessive exposure. Brachytherapy is used for various 
cancers, such as prostate, cervical, and breast cancer. Treatments can be temporary or permanent,  
depending on the type of cancer and the treatment plan. A study in article [11] describes a genetic 
algorithm that  optimizes  the  placement  of  radiation  seeds,  ensuring  complete  coverage  of  the 
prostate  and  reducing  radiation  'hotspots'  in  the  urethra.  The  accuracy  of  placing  cylindrical 
radioactive capsules in brachytherapy depends on their orientation and distance from the target 
tissue. These factors are essential for delivering the radiation dose precisely to the tumor while  
minimizing exposure to healthy tissues. Proper alignment of the capsules directs the radiation to the 
tumor, avoiding unnecessary exposure of healthy tissues and improving treatment effectiveness.  
Additionally, the distance between the capsule and the tumor significantly affects the radiation dose 
distribution.

Chromosome  territory  modeling  studies  the  3D  arrangement  of  chromosomes  in  the  cell's 
nucleus during interphase. Chromosomes occupy specific areas called chromosome territories and 
usually arrange themselves in a radial pattern within the nucleus. This organization varies by cell  
and tissue type and is a conserved trait across evolution. A research paper [12] explores the spatial 
organization of  CTs in mammalian cell  nuclei,  highlighting the non-random, probability-driven 
nature  of  CT  arrangement.  Researchers  model  chromosome  territories  to  study  their  spatial 
arrangement in the nuclear space. Packing algorithms can adjust the arrangement of overlapping 
ellipses  representing  chromosome  territories,  helping  to  simulate  random  or  non-random 
chromosome distribution patterns. This approach enhances understanding of genomic regulation 
and function.

Packing problems, particularly those requiring optimal arrangement of items within containers 
without any overlap, frequently rely on nonlinear optimization techniques [13]. These approaches 
are  beneficial  for  dealing  with  the  complex  limitations  inherent  in  these  problems.  They  are 
designed to determine numerical solutions for arranging various shapes, including circles, spheres, 



ellipses,  and ovals.  Due to the inherent intricacy of  such packing scenarios,  finding completely 
accurate  solutions  is  typically  unfeasible.  Consequently,  researchers  and  practitioners  focus  on 
deriving approximate or numerical solutions.

Employing heuristic approaches, which encompass strategies like genetic algorithms, simulated 
annealing, and tree search methods, is a common practice to refine the quality of numerical results  
[14].  These  heuristic  approaches  capitalize  on  specific  problem  knowledge  and  operational 
guidelines to identify approximate solutions for packing scenarios. They are exceptionally useful in 
handling the intricate nature and computational hurdles of applying non-overlap and containment 
requirements.

Whether linear or nonlinear, mixed-integer programming models address both the continuous 
and discrete facets inherent in packing problems [15]. They integrate diverse methodologies such as 
constraint  programming  and  tailored  heuristics  to  ascertain  optimal  or  near-optimal  solutions, 
specifically for standard allocation, cutting, and packing applications.

This paper introduces an intelligent system designed to simulate the arrangement of geometric  
entities. This system makes use of a universal model grounded in the phi-functions method [16]. 
Expressly, normalized phi-functions allows calculating distance between these objects. The method 
considers object orientation, thereby affording fine-grained control over positioning. By adjusting 
the model's parameters, the system operates as an intelligent agent, adapting to various scenarios  
and optimizing object placement. Furthermore, by modulating the model's parameters, users can 
simulate  object  placement  at  defined  distances  or  achieve  carefully  managed  overlaps.  The 
intelligent  system's  ability  to  refine  and  optimize  based  on  input  parameters  aligns  with  AI 
methodologies,  providing  a  robust  tool  for  complex  medical  and  biological  applications.  This 
approach transforms placement challenges into the framework of MBNLP [13, 15].

Examples of the system's applicability include optimizing the positioning of radioactive seeds in 
brachytherapy treatments, planning the arrangement of laser spots in laser coagulation procedures, 
and modeling the spatial organization of chromosome territories. 

Special Universal Mathematical Model and its Characteristics

The foundation of the proposed intellectual system is a distinctive universal mathematical model of 
optimization geometric  design constructed  with  specialized  intellectual  means  of  modeling  this 
category of problems. These intellectual means encompass specific functions designated as "phi-
functions" [16]. These functions facilitate the construction of a generalized universal mathematical 
model in the form of a nonlinear optimization problem.

Let   ( ) be objects with given metric characteristics ,  . We 

define  the  location  of  objects  in  Euclidean  space  as   where   

 (or  ) are coordinates of the poles of   and   are angles, specifying 

orientations of , . We denote the object  with placement parameters  as , . 

The  placement  region   is  specified by given metric  characteristics  .  Objects  ,   
should be packed in  in one of two ways:

 At the minimum admissible distances  ,  ,  between themselves and the 

minimum admissible distances ,  to the frontier of 

 With  allowing  overlap  of  objects,  regulated  by  parameters  ,  ,  and 

allowing objects to extend beyond the frontier of  , regulated by parameters  , .  

We aim to define a subset from the set , , that maximizes the total volume of the objects 
when placed in . The mathematical model of the problem is as follows:

 s.t. (1)

where 



(2)

.
(3)

Here,  ,  ,  are  binary  variables  that  determine  whether  an  object  belongs  to  .  The 

inequality   specifies whether the object  satisfies the placement condition relative to 

the frontier of . At the same time, the inequality  checks whether the conditions 
for the mutual placement of objects hold.

To solve the problem (1) – (3), it is necessary to construct normalized phi-functions. Generally,  
this is a complex task, but researchers have already developed such phi-functions for some basic 
objects [17,18]. 

MBNLP problems is  inherently  complex due  to  the  combination of  continuous and  discrete 
variables  and  nonlinear  constraints.  Solving  such  problems  often  involves  techniques  such  as 
branch-and-bound,  which systematically  explores  the solution space by dividing it  into smaller 
subproblems.  However,  given  the  number  of  variables  and  constraints,  such  exhaustive 
enumeration is impractical. Therefore, we employ heuristic approaches, selecting subsets of objects 
from the given set that meet the objective function criteria.  Subsequently,  a block optimization 
algorithm is applied, which has significantly lower computational complexity compared to branch-
and-bound algorithms.

The problem (1) – (3) divides into two stages. In the first stage, we enumerate subsets from the 
set of all objects. In the second stage, the placement of each subset in  . Then, the placement with 
the best objective function value is an approximate solution of the problem (1)–(3). According to the 
typology  of  Cutting  and  Packing  Problems  [19],  the  problem  relates  to  Knapsack  Problem  or 
Identical Item Packing Problem depending on the metric characteristics of the objects. Therefore, to 
obtain a solution, a sequential addition scheme [20,21] is usually performed, also known as block 
optimization  [22,23].  A  method  to  solve  the  Knapsack  Problem  considered  in  [24]  allows  for 
collective rearrangement within the sequential addition scheme. Another challenge is the presence 
of angles, which specify the orientation of the objects.

Next, we implement the model for some applications in medicine and biology.

Applications in medicine and biology

Planning of Gamma Knife radiosurgery therapy

Gamma knife treatment involves directing beams to a common center to create a radiation dose. 
The primary geometric difficulty in this treatment involves precisely positioning a series of spheres 
within  a  three-dimensional  tumor  of  varying  shapes.  Significant  sphere  overlap  can  lead  to 
excessive dosages, whereas controlled, minor overlap is generally acceptable.

According  to  the  problem  (1)  –  (3),   are  spheres  with  given  radius  , 

. . There is no need to account for rotation angles . We set 

the parameters , , and ,  and consider the placement region  as a 

convex  polyhedron defined  by  a  system  of  inequalities  .  Here, 

, are the normal equations of planes.
The problem (1) – (3) takes the following form:

 s.t. (4)

where 

(5)



, (6)

The sequential addition scheme is realized to solve the problem (4) – (6). 
We consider a polyhedron with 12 vertices. Table 1 provides the coordinates of the vertices.

Table 1
Coordinates of vertices of 

No. 1 2 3 4 5 6 7 8 9 10 11 12
12.14 4.64 -4.64 12.1

4
-15 -12.14 -4.64 4.64 12.1

4
15 0 0

7.5 -7.5 -7.5 -7.5 7.5 -7.5 7.5 7.5 7.5 -7.5 16.
8

-16.8

8.82 14.63 14.63 8.82 0 8.82 -14.63-14.63 -8.82 0 0 0

The number of faces of  is . Faces are defined by three vertices with numbers 1-11-3, 3-
11-5, 5-11-7, 7-11-9, 9-11-1, 1-3-2, 2-3-4, 3-5-4, 4-5-6, 5-7-6, 6-7-8, 7-9-8, 8-9-10, 9-1-10, 10-1-2, 2-12-

10,  4-12-2,  6-12-4,  8-12-6,  10-12-8.  In  this  example,  we set  parameters    to  ensure 
controlled overlapping of spheres and their overhanging beyond the treatment area.

Table 2 presents the radii and coordinates of the spheres. Figure 1 illustrates the placement of 15 
spheres.

Table 2
Radii and coordinates of spheres in 

No.

1 6.0000 6.0862 9.4494 13.1205
2 6.0000 14.455

5
13.8876 6.5106

3 4.0000 11.170
4

3.2400 9.5100

4 4.0000 15.476
9

7.7476 12.7806

5 4.0000 8.7643 18.0687 11.7612
6 4.0000 5.8567 15.6307 5.8312
7 4.0000 7.9100 8.9659 3.2636
8 4.0000 13.324

7
13.9842 15.2371

9 3.0000 13.553
0

6.7428 2.1862

10 3.0000 1.8558 15.6172 10.5151
11 3.0000 7.8793 15.8433 17.4366
12 3.0000 15.930

3
6.1139 6.858569

13 3.0000 12.126
3

7.7394 17.9496

14 3.0000 2.3720
7

9.8437 6.0495

15 3.0000 5.7261
4

4.5232 6.9294



Figure 1: Illustration of target placement

Planning of laser coagulation treatment 

Accurately  placing  photocoagulates  (microburns)  on  the  retina  is  a  key  geometric  task.  The 
photocoagulates must be evenly distributed within the edematous area, avoiding contact with blood 
vessels and healthy regions. Significant overlap of photocoagulates can lead to excessive dosages, 
whereas controlled, minor overlap is acceptable.

We model microburns on the retina as equal circles with a given radius and specify a minimum 
allowable distance between the circles.  The placement region consists of convex polygons. This 
way, the problem can be reduced to solving several subproblems.

According  to  the  problem  (1)  –  (3),  are  equal  circles with  given  radius  , 

. The vectors   do not involve  . The parameters  , 

, represent the minimum admissible distance between circles whereas the parameter 

.  We  consider  the  placement  region  as  a  convex  polygon  defined  by  the  system  of 

inequalities  where  are the normal equations.
The problem (1) – (3) takes the following form:

 s. t. (7)

where 

(8)

, (9)

,

.
To solve the problem (7)  – (9),  we implement the sequential  addition scheme. The selected 

placement subregion is quadrilateral with vertices (10,0), (90,5), (69,40), (10,45). Figure 2 shows the 

treatment  region.  We  set  the  parameter   to  avoid  closely  spaced  microburns.  Figure  3 
illustrates the placement of 21 circles within the marked convex polyhedron in the placement region 
shown in Figure 2. Table 3 provides the radii and coordinates of the placed circles. 



Figure 2: Illustration of the treatment region

Figure 3: Location of 21 circles

Table 3
Radii and coordinates of circles

No. 5.200 48.505 36.507
1 5.200 26.626 16.626
2 5.200 25.906 35.356
3 5.200 63.776 19.136
4 5.200 16.106 27.791
5 5.200 52.391 18.006
6 5.200 32.094 6.603
7 5.200 44.190 25.944
8 5.200 69.379 29.226
9 5.200 59.874 35.537
10 5.200 37.129 37.436
11 5.200 75.223 19.426
12 5.200 69.710 9.105
13 5.200 46.687 7.618
14 5.200 15.215 16.268
15 5.200 20.309 5.952
16 5.200 15.209 39.319
17 5.200 32.780 26.242
18 5.200 58.312 8.247
19 5.200 81.126 9.663
20 5.200 38.695 15.928
21 5.200 48.505 36.507

Planning of brachytherapy

To achieve  precise  placement  of  cylindrical  radioactive  capsules  during  brachytherapy,  it  is 
necessary to evaluate their location and orientation relative to the target tissue. Correct positioning 
ensures that the radiation is concentrated on the tumor, avoiding unnecessary exposure of healthy 
tissues and improving treatment effectiveness.

According to the problem (1) – (3),   are equal cylinders with given radius  , and 

height  , ,   ,  . We set  the  parameters 



,  ,  as  the  minimum  admissible  distance  between  the  cylinders  and 

, , as the minimum admissible distance to the frontier of . The placement region 

 is  a  convex polyhedron defined by the inequality system  ,  where 

, are the normal equations.
The problem (1) – (3) takes the following form: 

 s.t. (10)
where 

(11)

. (12)
For the problem (10) – (12), we realize the sequential addition scheme as well. We approximate 

the  cylinders  with  convex  polyhedrons  and  use  the  normalized  phi-functions  [17,25].  Figure  4 
illustrates the placement of 20 cylinders in a cuboid with dimensions 13.88x12.03x13.65.

Figure 4: Location of 20 cylinders

Modeling of chromosome territories

Chromosome territories can be represented as overlapping ellipses within the nucleus, which is  
approximated by a convex polygon. To model these territories, it is necessary to accurately simulate 
the spatial distribution and interactions of these ellipses. This involves evaluating their positions 
and overlaps to reflect the actual behavior of chromosomes during interphase.

According  to  the  problem  (1)  –  (3),   are  ellipses  with  half-axes   and  , 

,  where  and . We set the parameters  , 

, and , , and consider the placement region  as a convex polygon defined 

by  the  system  of  inequalities  . Here,   is  the  normal 
equation.

The problem (1)–(3) takes the following form: 

 s.t. (13)
where 

(14)

. (15)



Table 4
Coordinates and orientation angles for cylinders placed in 

No.

1
2 12.64

5 8.588 5.777 0.014 1.547
3 9.554 5.454 9.421 0.723 -1.206
4 13.63

7 5.593 13.998 1.585 4.719
5 3.802 5.874 4.351 -1.585 1.578
6 6.797 11.150 10.248 0.643 -1.777
7 4.788 12.608 13.977 -3.142 1.557
8 9.651 5.593 13.656 1.557 1.307
9 3.782 8.463 9.300 0.057 3.142
10 12.65

1 12.333 4.371 0.000 -1.557
11 13.65

8 11.584 13.000 1.519 -34.559
12 4.786 4.587 9.257 -3.142 3.364
13 9.782 11.601 13.992 -1.585 1.307
14 12.65

1 12.608 8.506 3.142 1.557
15 12.75

1 7.885 9.820 0.792 -1.645
16 8.627 4.587 5.086 -3.142 -0.995
17 3.782 11.660 5.467 -2.519 0.000
18 7.641 8.601 5.357 -3.132 -0.010
19 13.65

8 4.608 5.357 -3.156 0.000
20 5.691 7.601 13.998 -1.558 61.254

We set the parameters to   to allow controlled overlapping of ellipses.  Papers [17,18] 
consider  the  construction  of  normalized  phi-functions.  For  the  problem  (13)  –  (15),  we  also 
implement the sequential addition scheme with collective rearrangement.

Figure 5 illustrates the placement of 10 ellipses within the polyhedron , with their coordinates 

presented in Table 5. We consider  as a composition of two convex polyhedrons. Table 6 shows 
the coordinates and orientation angles of ellipses illustrated in Figure 5.

Table 5
Coordinates of vertices of 

No. 1 2 3 4 5 6 7 8 9 10
22 37 47 42 95 91 73 59 12 6
9 14 12 4 3 9 27 32 33 32



Figure 5. Illustration of placement of 10 ellipses 

Table 6
Coordinates and orientation angles for ellipses placed in 

No.

1 9.578 7.786 -0.267 30.764 20.135
2 5.023 10.000 1.788 18.494 27.563
3 3.765 10.000 1.620 32.820 28.783
4 10.00

0 3.250 3.358 59.166 28.264
5 10.00

0 10.000 -1.518 47.175 22.163
6 10.00

0 6.165 3.357 64.030 21.106
7 10.00

0 2.801 0.661 73.084 22.612
8 10.00

0 7.582 0.011 58.580 11.271
9 3.571 10.000 2.472 19.935 18.303
10 10.00

0 8.262 0.065 75.553 11.635

Discussion

Computational  experiments  have  demonstrated  the  high  adaptability  and  flexibility  of  the 
intelligent system, attributed to its parameterization as an intelligent agent. This adaptability allows 
the system to optimize object placement across various scenarios effectively.

The computational complexity of the algorithm depends not only on the number of objects being 
placed but also on the type of phi-functions used. For instance, when placing circles or spheres, the  
phi-functions are relatively simple, enabling the placement and local reorganization of hundreds of 
objects.  In  contrast,  when describing interactions between ellipses  (or  ellipsoids)  and cylinders,  
which are non-oriented and whose placement depends on rotation angles (involving trigonometric 
functions), the phi-functions have a significantly more complex structure and logical operators. This 
complexity can substantially impact computational efficiency.

Additionally,  the  geometric  shape  of  the  placement  region  significantly  influences  the 
complexity  of  phi-functions  and,  consequently,  the  computational  complexity.  For  example, 
irregular or complex-shaped regions require more intricate phi-functions to accurately describe the 
spatial relationships and constraints.

In the case of approximating cylinders with polyhedra,  the computational complexity is also 
affected  by  the  accuracy  of  the  approximation,  which  depends  on  the  number  of  faces  of  the 
polyhedra.  Higher  accuracy  requires  more  faces,  leading  to  increased  computational  demands. 



Therefore, the algorithm can handle the placement of dozens of objects when using the sequential  
addition scheme (block optimization) and local reorganization (optimization) of placements. This 
approach  ensures  that  the  system remains  efficient  and  effective,  even  when  dealing  with  the 
intricate nature of three-dimensional space and the associated computational challenges.

The sequential addition scheme (block optimization) is effective for managing the placement of 
objects,  especially  when  combined  with  local  reorganization.  The  ability  to  perform collective 
rearrangement within this scheme further enhances the system's effectiveness.

Conclusion

This paper puts forth a proposal for the development of intelligent technologies in the domain of  
geometric  design.  These  technologies  utilize  advanced  methodologies  and  instruments  for 
automating and optimizing the processes of placing geometric objects  in space.  Optimization is 
achieved by applying these technologies in the context of solving applied problems in medicine and 
biology. 

The  proposed  universal  mathematical  model,  which  utilizes  normalized  phi-functions, 
encompasses continuous and combinatorial facets of packaging problems. The model's formulation 
encompasses the movement and orientations of geometric objects, enabling the modeling of object 
placement at a distance or their controlled overlap. This model possesses characteristics inherent to 
AI systems, such as adaptability, automation, and intelligent modeling methods and can be applied 
for decision-making.

The  model's  capacity  to  operate  with  diverse  geometric  shapes  and  placement  constraints 
underscores  its  potential  for  addressing  a  broad  spectrum  of  problems.  Employing  linear  and 
nonlinear mixed-binary programming methods, in conjunction with constraint programming and 
heuristics, facilitates the identification of near-optimal solutions for cutting and packing problems. 
The  model  enhances  the  efficiency  of  medical  treatment  and  facilitates  a  more  profound 
comprehension of biological processes. 

Examples of application include optimizing the placement of radioactive seeds in brachytherapy, 
determining  optimal  laser  impact  points  in  laser  coagulation,  and  predicting  the  behavior  of 
chromosomes in chromosome territory modeling. These applications demonstrate the practical use 
of  the  model  in  medical  and  biological  contexts,  highlighting  its  potential  to  improve  clinical 
outcomes and research efficiency.

Declaration on Generative AI

During  the  preparation  of  this  work,  the  authors  used  Grammarly  in  order  to:  Grammar  and 
spelling check. After using this tool, the authors reviewed and edited the content as needed and take 
full responsibility for the publication’s content.
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