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Abstract
Predictive control plays a significant role in mobile robotics,  especially in trajectory tracking, obstacle  
avoidance, and real-time decision-making. In this study, we explore how Markov Decision Processes (MDPs) 
can be integrated with predictive control to enhance navigation, particularly in maze-like environments. A  
case  study on MDP-based maze  exploration analyzes  key system limitations,  including computational  
complexity and real-time adaptability.  While  MDPs often struggle to  adapt  to  dynamic environments, 
predictive techniques like Model Predictive Control (MPC) offer improvements in trajectory optimization 
and responsiveness. We also discuss practical applications in areas such as warehouse navigation and multi-
robot coordination, showing the benefits of combining MDPs and predictive control for robust performance 
in real-world scenarios.
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1. Introduction

Autonomous navigation is a fundamental capability in mobile robotics, allowing robots to traverse 
complex and dynamic environments efficiently. Achieving accurate trajectory tracking and efficient 
maze exploration is still challenging due to uncertainties in the environment, sensor limitations, and 
computational constraints.  Addressing these challenges requires robust decision-making frameworks 
and control techniques.

Predictive control techniques, particularly Model Predictive Control (MPC), have demonstrated 
significant  advantages  in  trajectory  tracking  and  obstacle  avoidance  by  enabling  real-time 
adjustments  based on predicted future  states  [1,2].  Its  structured approach has seen success  in 
autonomous driving, industrial automation, and robotic path planning, offering a structured approach 
to  real-time motion optimization while  ensuring the  satisfaction of  the  constraints.  In  parallel, 
Markov Decision Processes (MDPs) offer a robust mathematical  foundation for decision-making 
under uncertainty, widely applied in navigation and mapping tasks [3,4].

Successes of MDPs and MPC are well documented, but their integration in mobile robotics is still 
underexplored. Existing studies primarily focus on standalone MDPs for decision-making or MPC for 
trajectory optimization, yet few works have attempted to bridge the gap between these two methods. 
Most of the literature on MDPs addresses static environments with predefined state transitions, 
limiting their real-time adaptability. Although MPC offers dynamic control it lacks the high-level  
policy  optimization  capabilities  of  MDPs.  To  overcome  the  limitations,  the  article  examines 
integrating MDPs with predictive control techniques.  We aim to combine MDP-based decision-
making with the real-time adaptability  of  MPC to  enhance  mobile  robot  trajectory tracking in 
dynamic and uncertain environments.

This study extends previous work by analyzing the limitations of MDP-based maze exploration 
and demonstrating how predictive control can address these challenges. We highlight the novelty of 
our approach by reviewing existing literature and identifying gaps in current research.  Researchers  
have extensively studied  individual  applications of  MDPs and MPC,  yet  their  combined use to  
enhance real-time adaptability and decision-making in maze exploration remains underexplored. 
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Primarily,  this  article  aims  to  contribute  to  this  area  by  presenting  a  structured  approach  for 
integrating predictive control with MDP-based systems.

The rest of this paper is structured as follows. Section II reviews related work, analyzing existing  
MDP and predictive  control  approaches  in mobile  robotics.  Section III  presents  the case  study, 
discussing the implementation of MDPs for maze exploration. Section IV explores the integration of 
predictive control techniques and their impact on real-time navigation. Finally, Section V outlines  
future research directions and potential improvements in hybrid MDP-MPC frameworks.

2. Background and Related Work

2.1. Markov Decision Processes in Robotics

Markov Decision Processes (MDPs) provide a mathematical framework to model decision-making 
problems in stochastic environments [1]. An MDP is defined as a tuple (S, A, P, R, γ), where:

 S is a finite set of states representing the possible configurations of the environment.
 A is a finite set of actions available to the agent.
 P(s′|s, a) is the state transition probability, which defines the probability of reaching the state.
 R(s, a) is the reward function, which assigns a scalar reward to each state-action pair.
 γ ∈ [0,1] is the discount factor, which determines the importance of future rewards.
The objective in an MDP is to find an optimal policy π(s), which maps state to actions to maximize 

the expected cumulative reward:

V π (s )=E[∑
t=0

∞

γ t R (st , at )],
where Vπ(s) is the value function representing the expected reward when following policy π from 
state  s. The  optimal policy π ∗ maximizes this value, often computed using  Value Iteration or 
Policy Iteration algorithms [15]:

V π¿ (s )=max
a [∑

s'

❑

P (s'|s ,a)R (st , at )+γ
t
V π¿ (s' )].

MDPs have been widely used in robotics for path planning, exploration, and navigation [3]. They 
enable robots to compute optimal policies for sequential decision problems, making them particularly 
effective for grid-world environments where the system must balance exploration and exploitation.

However,  one  major  limitation  of  MDPs  is  their  computational  complexity in  real-time 
applications,  especially in large environments.  Since MDPs rely on full  knowledge of transition 
probabilities and rewards, they struggle with dynamic environments where state transitions may 
change  unpredictably.  This  motivates  the  need  for  predictive  control  to  enhance  real-time 
adaptability.

2.2. Predictive Control for Mobile Robots

Predictive control, particularly Model Predictive Control (MPC), has emerged as a powerful approach 
for real-time motion planning and trajectory tracking in robotics [2]. Unlike MDPs, which focus on 
long-term reward optimization, MPC formulates an optimal control problem over a finite prediction 
horizon and continuously updates actions based on real-time sensor data.

MPC solves an optimization problem at  each time step to minimize a cost  function J  while 
satisfying system constraints:

J=∑
k=0

N

[ xkTQ xk+ukT Ruk ]
where: J is the cost function,
xk represents the state vector at time step k,
uk  represents the control input at time step k,
Q and R are weight matrices that penalize state deviation and control effort, respectively,
N is the prediction horizon.



Following [14], we adapt the equation for this context.
MPC predicts future states using the system dynamics:

𝑥 +1 𝑘 =  (𝑓 𝑥𝑘, 𝑢𝑘).
Subject to constraints:

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥.
Having a predictive capability allows MPC to dynamically adjust robot actions, making it highly 
effective for applications such as:

 Obstacle avoidance in dynamic environments [12].
 Multi-robot coordination, ensuring collision-free paths [13].
 Real-time trajectory planning in complex terrains [11].

2.3. Combining MDPs and Predictive Control

Although MDPs provide a structured approach for high-level decision-making, they lack adaptability 
in real time. While MPC excels at short-term control and constraint handling, it lacks an inherent 
ability to model long-term decision-making.

Integrating MDPs with MPC leverages the advantages of both:
 MDPs generate an optimal policy for global navigation based on reward optimization.
 MPC executes the policy in real time while adapting to dynamic changes.
Hybrid approach allows for robust decision-making and efficient trajectory execution, particularly 

in dynamic maze exploration and autonomous navigation scenarios. The following sections explore 
how this integration can enhance mobile robot performance.

3. Case Study: Maze Exploration with MDPs

3.1. System Description

A mobile  robot  explores  a  maze  autonomously  in  a  grid  world  environment,  where  each  cell  
represents a state. Markov Decision Process (MDP)-based algorithms define the transitions between 
states, guiding the robot’s decision-making [4]. The objective is to enable efficient navigation from a 
starting position to a goal while avoiding obstacles and optimizing movement based on predefined 
rewards.

 Hardware Setup: The physical robot consists of different components, as shown in Fig. 1,  
mainly:

Microcontroller: The ESP32 microcontroller processes the MDP algorithm and controls the 
robot’s movement.
 Sensors:

1. Ultrasonic sensor: Obstacle detection relies on the HC-SR04 sensor.
2. Camera module: A separate Sony IMX298 camera module connects to the Raspberry 
Pi using the MIPI CSI-2 interface, then transmits data to the ESP32 microcontroller via Wi-Fi 
for processing.

Object detection techniques were employed to distinguish the robot from the environment, and a 
localization module processed this data for accurate mapping [7].



Figure 1: Physical mobile robot used for MDP-based maze exploration. The legend highlights key 
components: (1) ESP32 -controller, (2) Ultrasonic-sensor, (3) Servo-motor, (4) Two caster wheels, and𝜇  
(5) Two primary dual shaft DC motor-driven wheels.

 Motors Driver: Dual-shaft DC motors with a motor driver for precise motion control over  
movement [1]. Along with two caster wheels, a freely rotating wheel supports the robot’s weight 
and enables smooth, multi-directional movement.
 Software Algorithm Implementation:

MDP-Based Decision Making: The robot uses an MDP framework to determine optimal 
actions in each state.
Policy Iteration Value Iteration Algorithms: These methods compute the best navigation 
policy based on state transitions and rewards.
Localization Mapping:  A vision-based system helps in state estimation and tracking the 
robot’s movement.
Combine a left-hand rule maze exploration algorithm to optimize performance and minimize 
the robot's rotation time.

 Grid-World Representation:
The environment is modeled as a 3x4 discrete grid-world maze with defined start,  goal,  and 

obstacle states, as shown in Fig. 2. The goal was to determine an optimal policy for the robot to  
navigate from the start state to the goal state while avoiding obstacles and maximizing rewards where:

1.Each cell  represents  a  state  (position  in  the  maze).  ∗  State  transitions  are  probabilistic, 
accounting for uncertainties in movement.
2.An agent assigns rewards to different states:

 +1 for reaching the goal,
 -1 for entering an obstacle,
 0 for intermediate steps



3.2. Experimental Results

We conducted experiments in physical and virtual environments to validate the implementation of 
MDP-based maze exploration. We tested the robot in a 3x4 grid-world maze and a more extensive 
virtual 6x8 grid-world environment. The key results are summarized below:

3.2.1. 3x4 Grid-World Environment

In  the  physical  setup,  the  robot  successfully  navigated  the  3x4  maze,  which  associates  one 
obstacle(inaccessible) state and two terminal states where the episode ends (reward of +1 or -1) out of 
the twelve states (cells of the grid) in total, achieving the following outcomes:

 Convergence of Policy: Figure 3 shows that the MDP policy iteration algorithm converged 
after 11 iterations, demonstrating efficient policy computation in small environments [2].
 Optimal Navigation Path: The robot followed the computed optimal policy, avoiding obstacles 

and reaching the goal state. The resulting path minimized cumulative costs and maximized 
rewards.

 Localization  Performance:  Localization  performance  was  enhanced  by  the  vision-based 
localization  module,  which  accurately  identified  the  robot's  position  in  most  cases  and 
facilitated smooth navigation.

Figure 2: 3x4 Grid-World Environment with different states (Created by the authors based on [15])

3.2.2. 6x8 Grid-World Environment

To evaluate  the  scalability  of  the  proposed  Markov  Decision  Process  (MDP)-based  exploration 
strategy. We tested the system in a more enormous 6×8 virtual maze. The environment consists of 48 
states, incorporating:

 There are nine obstacle (inaccessible) states, which refer to areas with obstacles (walls) where 
the robot cannot traverse.
 There are three terminal states, each with assigned rewards: one positive goal state and two 
negative penalty states.
Virtually, the robot explored the maze using MDP as its primary algorithm to decide the motion 

from the current cell to the next potential cell,  along with the Left-hand Rule maze exploration 
algorithm to guide the robot during unwanted maneuvers. The Maze exploration algorithm does not 
affect either the optimal policy that emerged or the efficiency matrix. Overall, after a short time stamp, 
the optimal policy generated the as shown in Fig. 4. The final policies for both setups are included to 
provide a visual understanding which demonstrated the following key observations:

 Policy  Convergence:  The  optimal  policy  was  computed  after  19  iterations,  indicating 
increased computational demands for larger environments [4].  Since the 6×8 grid-world is 4 times 
larger than the 3×4 grid-world (48 states vs. 12 states), if the system scaled linearly, we would  



expect  44 iterations.  However,  with the help of  the maze exploration algorithm, the system 
converged into 19 iterations instead of 44. The percentage optimization is 56.82%.
 Optimal Policy Map: The computed policy effectively directed the robot to navigate the maze 
while avoiding prohibited cells. The policy map provided apparent direction vectors for each state. 
As a result, the optimal policy demonstrates the final, accepted flow that guides the robot reaching 
the goal state from any permissible cell in the maze.
 Efficiency Metrics: Increasing the maze size resulted in a corresponding increase in total  
computation time, highlighting the necessity for optimization techniques to enhance performance 
in larger-scale environments. A better strategy emerges from the need to achieve optimal flow 
convergence in a maze containing various cell types.
We included figures to illustrate the convergence plots, reward values, and final policies for both 

setups, helping to provide a clear visual understanding of the results.

3.3. Discussion

The  results  demonstrate  the  effectiveness  of  MDP-based  methods  for  maze  exploration  and 
navigation. However, several challenges and opportunities for improvement were identified:

3.3.1. Strengths

 Policy  Accuracy:  The MDP algorithms generated reliable  policies  that  guided the  robot 
effectively, even in complex environments.
 Scalability: The approach scaled well to larger mazes, demonstrating robustness in generating 
optimal policies for various grid sizes.
 Flexibility:  Integrating  vision-based  localization  and  sensor  data  enables  the  system  to 
successfully facilitate real-world navigation.

Figure 3: Convergence of the MDP policy iteration algorithm in the 3x4 grid-world environment.



Figure 4: MDP-based Maze Exploration in a 6x8 grid-world. The figure shows the reward and policy 
map, where each cell represents the state of the environment. The nine black cells indicate obstacles 
that the robot cannot enter. The green cells represent terminal states, with rewards of -1, 1, and a final 
state with a +1 reward. The policy map displays optimal action for each state, guiding the robot’s  
exploration in the maze.

4. Connecting MDPs to Predictive Control

4.1. Advantages of Predictive Control for Mobile Robots

Predictive control techniques, such as Model Predictive Control (MPC), have demonstrated significant 
advantages in addressing real-time adaptability and constraint handling in mobile robotics. Unlike 
MDPs, which focus on long-term decision-making through reward optimization, MPC excels in short-
term trajectory  planning  by  continuously  predicting  future  states  and  adjusting  control  inputs 
accordingly [1,6].

Many regard MPC as one of the most effective methods for controlling autonomous systems under 
constraints  [9].  Its  ability  to  incorporate  physical  limitations  (e.g.,  motor  torque,  velocity)  and 
maintain smooth trajectories makes it a valuable complement to MDP-based approaches [2].  Its 
predictive nature allows the system to compute optimal control actions at each step by solving a 
constrained optimization problem [10]. It is particularly effective for dynamic environments where 
robots  must  respond  to  changes  such  as  moving  obstacles  or  time-varying  conditions  [16]. 
Applications of MPC in mobile robotics include:

 Obstacle avoidance in dynamic environments plays a critical role in real-time navigation [11].
 Real-time  trajectory  planning  for  autonomous  vehicles  is  crucial  for  ensuring  safe  and 
efficient navigation [12].
 Coordinated control is essential for multi-robot systems to function optimally [13].



4.2. Challenges in MDP-Based Systems

While  MDPs  provide  an  optimal  policy  for  high-level  decision-making,  they  encounter  several 
limitations when applied to real-world robotic systems:

• Real-Time Constraints: The iterative computation of policies in MDPs can lead to delays,  
especially in larger environments, limiting their applicability for fast-changing scenarios [7].

• Dynamic Environments: MDPs lack an inherent design for handling dynamic changes, such 
as moving obstacles or sudden environment updates [2].

• Trajectory  Execution:  Translating  discrete  state-action  policies  into  smooth,  continuous 
motion trajectories can be challenging without additional control layers [9].

4.3. Proposed Integration of MDPs and Predictive Control

Integrating MDPs with predictive control offers a promising approach to leverage the strengths of  
both methods [16]. The proposed framework involves:

 MDP for High-Level Planning: Use MDPs to generate optimal policies based on long-term 
goals and rewards. These policies provide a high-level decision-making framework for robots [4].
 MPC for Low-Level Control: Employ MPC to execute the MDP-generated policies in real time, 
ensuring smooth trajectory tracking and adherence to system constraints [8].
 Feedback Loop: Integrate a feedback mechanism so MPC informs the MDP of environmental 
changes, enabling policy adaptation.

4.4. Potential Benefits of Integration

The integration of MDPs and MPC can address the limitations of standalone methods while enhancing 
overall system performance:

 Real-Time Adaptability: MPC’s predictive capabilities enable rapid responses to dynamic 
changes, complementing MDPs’ high-level planning [10].
 Trajectory Optimization: MPC ensures smooth and efficient trajectory execution, translating 
discrete MDP policies into actionable continuous motion [9].
 Scalability and Robustness: The combined approach allows scalable application to complex 
environments while maintaining robustness to uncertainties and disturbances [11].

4.5. Applications for Combined Methods

The integration of MDPs and predictive control has broad applications in mobile robotics, including:
 Autonomous Navigation: Robots navigating warehouses, hospitals, or urban environments 
can benefit from the combined framework for efficient and adaptive path planning.
 Multi-Robot Coordination: Predictive control can optimize interactions between robots in 
collaborative tasks, while MDPs ensure high-level task allocation [13].
 Dynamic Obstacle Avoidance: The feedback mechanism between MDPs and MPC can handle 
real-time updates to avoid moving obstacles effectively.

5. Future Work and Conclusion

The findings from this study highlight several key areas for further research and improvement. Future 
work  should  focus  on  addressing  the  current  limitations  of  MDP-based  maze  exploration  and 
predictive control integration, including the following aspects:

 Developing Hybrid MDP-MPC Systems: While MDPs provide an effective framework for 
high-level decision-making [1], they lack real-time adaptability. Conversely, Model Predictive 
Control (MPC) excels in trajectory tracking but does not inherently optimize long-term decision-
making [12]. Future work should focus on designing hybrid systems that leverage MDPs for  



strategic  planning  and  MPC  for  real-time  control,  ensuring  a  seamless  balance  between 
computational efficiency and adaptability in dynamic environments.
 Enhancing Localization Accuracy Through Sensor Fusion: One of the primary challenges 
observed in this study is the reliance on vision-based localization, which is susceptible to errors 
under poor lighting conditions. Future research should explore multi-sensor fusion techniques, 
incorporating data from LiDAR, inertial measurement units (IMUs), and ultrasonic sensors to 
improve localization robustness. Advanced filtering techniques, such as Kalman Filters or Particle 
Filters, can further enhance state estimation accuracy [11]. • Optimizing Computational Efficiency 
for Real-Time Applications:  MDP-based decision-making suffers from scalability issues when 
applied to large or dynamic environments. Future efforts should explore reinforcement learning 
approaches, such as Q-learning or Deep Q-Networks (DQNs), to approximate value functions 
efficiently. Additionally, parallel computing and GPU acceleration could be utilized to speed up 
policy computation and real-time adaptability [3].
 Application in Real-World Scenarios: Future studies should validate the proposed hybrid 
MDP-MPC system in real-world environments beyond simulated grid-world setups.  Potential 
applications include warehouse automation, autonomous navigation in urban settings, and search 
and rescue missions, where adaptive decision-making and precise control are crucial [13].
 Improving Obstacle Avoidance Strategies: The current MDP framework assumes a static 
environment. However, real-world navigation often involves dynamic obstacles. Future research 
should focus on integrating dynamic obstacle avoidance mechanisms using predictive models and 
real-time environmental perception [11].

6. Conclusion

This study explored the integration of Markov Decision Processes (MDPs) with predictive control  
techniques for mobile robot trajectory tracking and maze exploration. Through a case study, we 
demonstrated  that  while  MDPs  provide  an  effective  framework  for  navigation  in  structured 
environments [4], they face limitations in real-time adaptability. To address these challenges, we 
examined how Model Predictive Control (MPC) can enhance trajectory tracking performance by 
dynamically adjusting control actions in response to environmental changes [12].

Our findings suggest that combining MDPs with predictive control can significantly improve the 
efficiency and adaptability of autonomous navigation systems. By leveraging the strengths of both 
methods, robots can achieve optimal decision-making while maintaining real-time responsiveness. 
The proposed approach has potential applications in autonomous robotics, warehouse automation, 
and dynamic path planning for mobile robots operating in uncertain environments [13].

Future  research  should  focus  on  enhancing  localization  accuracy,  optimizing  computational 
efficiency,  and  applying  the  hybrid  MDP-MPC  framework  in  real  world  robotic  systems.  The 
integration of reinforcement learning techniques [2] and sensor fusion strategies [11] could further 
improve  performance,  making  mobile  robots  more  capable  of  handling  complex,  real-world 
navigation tasks.

In conclusion, this work revisited MDP-based maze exploration and highlighted its potential when 
combined with predictive control for mobile robot trajectory tracking.
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