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Abstract
Currently, the development of discrete signal filtering methods that are used in computerized biometric  
identification systems is an urgent task. In the case of linear filtering, one of the most popular methods is the 
Kalman filter. A modified Kalman filtering method was proposed to improve the efficiency of digital filtering 
of a discrete signal. This method provides automation of parameter value determination and improves the  
speed and accuracy of Kalman filtering by using fewer parameters and identifying them based on immune 
metaheuristic methods. The proposed metaheuristic methods reduce the probability of convergence to a local 
extremum by using the Cauchy distribution and make parametric identification more accurate. Algorithms 
of immune metaheuristic methods for identifying Kalman filter parameters have been developed, which are 
designed for software implementation on the GPU using CUDA technology, which increases the accuracy of 
Kalman filtering. Further prospects of the study are to utilize the proposed immune metaheuristic methods 
for various general and special purpose intelligent systems.
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1. Introduction 

Currently, it is an urgent task to create digital filtering methods used for noise suppression, which are 
used  in  computerized  biometric  identification  systems  as  well  as  speech  recognition  and 
understanding systems and computer vision [1-2]. 

One of the popular methods of digital filtering is the use of recurrent neural networks. Such neural 
networks include NARMANN, ENN, JNN, GRU, LSTM. The disadvantage of such neural networks is  
the high computational complexity of identifying their parameters due to the lack of the ability to 
parallelize the learning algorithm, a large number of connections between neurons and the correct 
choice of activation functions and the number of neurons in the layers.

Another  popular  digital  filtering  methods  is  smoothing  adaptive  linear  filtering  [3-4].  For 
smoothing adaptive linear filtering, the identification of filter parameters plays an important role.

Approximate methods of determining parameter values based on global search do not guarantee 
convergence. Approximate methods of determining parameter values based on local search have a  
high probability of hitting a local extremum. Exact methods of determining parameter values have 
high computational complexity. Thus, the problem of insufficient quality of parametric identification 
methods arises.

Modern  heuristics  (or  metaheuristics)  are  used  to  increase  the  speed  of  filter  parameter 
identification and reduce the probability of hitting a local extremum [5-6]. Metaheuristics expand the 
capabilities  of  heuristics  by  combining  heuristic  methods  based  on  a  high-level  strategy  [7-8].  
Metaheuristics often use the behavior of evolutionary and immune approaches [9-10]. Metaheuristics 
are approximate and, as a rule, stochastic methods [11-12]. The most effective metaheuristics use 
experience that accumulates during the search process and is stored in memory [13-14].

Object of the study. The process of Kalman filtering of a discrete signal.
Subject of the study. Kalman filtering method for a discrete signal using parametric identification 

based on immune metaheuristic methods.
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The aim of the work is to improve the quality of Kalman filtering of a discrete signal using 
immune metaheuristic methods.

To achieve the stated goal, it is necessary to solve the following tasks: 
1. Create a modified Kalman filtering method. 
2. Develop a continuous optimization method based on an artificial immune network. 
3. Create a continuous optimization method based on a hybrid immune algorithm. 
4. Conduct a numerical study of the proposed methods of continuous optimization and Kalman 
filtering.

2. Literature review

In  the pre-processing units  of  modern computer  systems for  speaker identification,  multimodal 
interface, medical and technical diagnostics, digital filtering methods are implemented that reduce 
noise and allow analyzing the spectral features of the signal. Various digital filtering methods, from 
recurrent  neural  networks  to  linear  digital  filters,  require  the  use  of  methods  for  determining 
parameter values. One of the popular approaches is metaheuristic.

Currently, metaheuristics are divided into evolutionary, biological, non-nature-inspired, immune, 
mathematical, physical, social, chemical. Most metaheuristics use stochastic search, which reduces the 
probability  of  hitting  a  local  extremum.  Metaheuristics  allow  solving  continuous  optimization 
problems (calculating the point at which the objective function reaches a maximum or minimum) and 
discrete  optimization  problems (e.g.,  clustering,  knapsack  problem,  traveling  salesman problem, 
assignment problem).

Modern metaheuristics have one or more of the following disadvantages: 
 the convergence of the method may not be ensured [15-16]; 
 the iteration number does not affect the solution finding process [17-18]; 
 only binary potential solutions are used [19-20]; 
 the metaheuristic method is associated with solving only one problem or there is only an 
abstract set of operators of this method available [21-22]; 
 low accuracy of the method [23-24]; 
 there is no automation of the procedure of identification of method parameters [25-26]; 
 the method is not intended for solving problems of conditional optimization [27-28].
Based on this, the problem of constructing high quality metaheuristic optimization methods needs 

to be addressed. One of the most popular ones are immune metaheuristics.

3. Modified Kalman filtering method

In this paper, it is assumed that for each moment of time n  the state matrix A (n )=A , the control 

matrix B (n )=0 , the control vector u(n )=0 , the process covariance matrix Q (n )=Q=IQ σQ
2

, the 

observation matrix  H (n )  are replaced by the vector  h=1H σH
2

,  the observed noise covariance 

matrix  R (n )  is replaced by the scalar  σ R
2

, the observation vector  z (n )  is replaced by the scalar 
z (n ) , the observation vector estimate z (n )  is replaced by the scalar z (n ) , the error vector e (n )  is 

replaced by the scalar  e (n ) ,  the error vector covariance matrix  D (n )  is replaced by the scalar 
d (n ) , and the optimal Kalman gain matrix G (n )  is replaced by the vector g(n ) . This reduces the 
amount of computation and the amount of specified data.

The modified Kalman filtering method for a discrete signal consists of the following stages:
1. Initialization.

The initial estimation of the state vector s(0 )  of length m  (in this work s(0 )=0 ) is set. The 

covariance matrix of the state vector estimate  C (0 )  is set with a size of  mxm  (in this work, 
C (0 )  is filled with uniformly distributed values). In this work, the state matrix A  of size mxm , 



dispersion  σ R
2

, dispersion  σQ
2

 for calculating the matrix  Q  of size  mxm , dispersion  σH
2

 for 
calculating the vector h  of length m  are set.
2. Forecast stage.
2.1. Calculating the state vector estimate 

s(n−1)=A (n )s(n−2)+B (n )u(n ). (1)

In this work s(n−1)=A⋅s(n−2) .
2.2. Calculating the covariance matrix of the state vector estimate 

C (n−1)=A (n )C (n−2)AT (n )+Q (n ) . (2)

In this work C (n−1)=A⋅C (n−2)⋅AT+Q , where Q=IQ σQ
2

.
3. Update stage.
3.1. Calculating the estimate of the observation vector 

z (n )=H (n )s(n−1). (3)

In this work z (n )=h⋅s(n−1) , where h=1H σH
2

.
3.2. Calculating the error vector 

e (n )=z (n )−z (n ). (4)

In this work e (n )=z (n )−z (n ) .
3.3. Calculating the error vector covariance matrix 

D (n )=H (n )C (n−1)HT (n )+R (n ). (5)

In this work d (n )=h⋅C (n−1)⋅hT+σ R
2

, whereh=1H σH
2

.
3.4. Calculating the optimal Kalman gain matrix 

G (n )=
C (n−1)HT (n )

D (n ) . 
(6)

In this work 
g(n )=

C (n−1)hT

d (n ) , where h=1H σH
2

.
3.5. Updating the state vector estimate 

s(n )=s(n−1)+G (n )e (n ) . (7)

In this work s(n )=s(n−1)+g(n )e (n ) .
3.6. Updating the covariance matrix of the state vector estimate

C (n )=C (n−1)−G (n )H (n )C (n−1) . (8)

In this work C (n )=C (n−1)−g(n )⋅h⋅C (n−1) , where h=1H σH
2

.



4. Selection of criteria for evaluating the effectiveness of the modified 
Kalman filtering method

In this paper, to evaluate the effectiveness of the modified Kalman filtering method, the accuracy 

criterion is chosen, which means choosing such values of the parameters  A ,  σQ
2

,  σH
2

,  σ R
2

, that 
provide a minimum root mean square error

F=√ 1

nmax
∑
n=1

nmac

( y (n )−z (n ))2→ min
A ,σQ

2 , σH
2 , σR

2
, 

(9)

where y (n )  – noise-free countdown, 
z (n )  – observation evaluation,
nmax  – number of observations.

In  accordance  with  the  selected  criterion,  immune  metaheuristic  methods  for  identifying 

parameters A , σQ
2

, σH
2

, σ R
2

 are proposed in this paper.

5. Modified artificial immune network method

The artificial immune network was proposed by Timmis, Neal, Hunt and later modified by de Castro, 
von Zuben and is based on the hypothesis of representing the immune system as an idiotypic network. 
The disadvantage of the clonal selection theory is that it assumes that a set of cells remains unexcited 
when there is no antigen.

Scientist  Erne proposed a  hypothesis  according to which the immune system is  a  regulated 
network of molecules and cells that recognize each other even in the absence of an antigen. Such 
structures are often called idiotypic networks, they serve as a basis for studying the behavior of the 
immune system. Erne's theory is interpreted as a system of differential equations describing the 
dynamics  of  the  concentration  of  lymphocyte  clones  and  the  corresponding  immunoglobulin 
molecules. The theory of idiotypic regulation is based on the assumption that different lymphocyte 
clones are not isolated from each other, but maintain communication through interactions of their 
receptors located on the surface of the lymphocyte.

In  formulating  the  foundations  of  his  theory,  Jerne  introduced  the  concepts  of  formal  and 
functional networks. Formal networks serve to study issues of repertoire (recruitment), dualism and 
suppression. When considering functional networks, a quantitative picture of the theory is presented.

A probabilistic approach to studying idiotypic networks based on the work of Jerne was proposed 
by the scientist Perelson. This approach is extremely formalized and is mainly associated with the 
description of phase transitions. Perelson divided the plane of phase variables of the considered 
system of equations into a subcritical region, a transition region, and a postcritical region. Over the  
past 20 years, Jerne's proposed immune network theory has received considerable attention, which 
has led to a detailed study of many computational aspects of the corresponding mathematical models.

The modified artificial immune network method consists of the following steps:
1. Initialization.
1.1. Setting the search area: cell length M , minimum and maximum values of cell components 

x j
min , x j

max
, j∈1 , M . Setting the maximum number of iterations N , population size K , number 

of clones LC .

1.2.  Setting  the  cost  function  (target  function)  
F ( x )→min

x ,  where  x  –  cell  (real  vector 

containing A , σQ
2

, σH
2

, σ R
2

).



1.3. Setting search parameters: mutation parameter α , compression threshold ε , where α>0  
(the higher the α , the lower the mutation probability),  ε>0 . The paper it is proposed to use 

δ ( x j
max−x j

min ) ,0<δ<1  , instead of parameter α .
1.4. Creating an initial population P .

1.4.1. Cell number k=1 , P=∅ .

1.4.2.  Generating  a  random  cell  xk=( xk 1 , . . . , xkM ) ,  xkj=x j
min+( x j

max−x j
min )U (0,1) ,  where 

U (0,1)  – a function that returns a standard uniformly distributed random number.

1.4.3. If xk∉P , then P=P∪{xk}, k=k+1 .
1.4.4. If k≤K , then move to step 1.4.2.
1.5. Determine the best cell by the target function 

x¿=argmin
xk

F ( xk )
, k∈1 , K . 

(10)

2. Iteration number n=0 .
3. Calculating the affinity of population cells P

Φ( xk )=1−
F ( xk )− min

i∈1 , K
F ( xi )

max
i∈1 , K

F ( xi )− min
i∈1 , K

F ( xi )
, Φ( xk )∈[0,1 ] , k∈1 , K . 

(11)

4. Order the population P  by the target function, i.e. F ( xk )<F ( xk+1) .
5. Determine the best cell by the target function 

k¿=argmin
k

F ( xk )
, k∈1 , K . (12)

6. Determining the global best cell. If 
F ( xk ¿)<F ( x¿ )

, then 
x¿=xk ¿

.
7. Calculating the average cost value 

F̄ source= 1
K
∑
k=1

K

F ( xk )
. 

(13)

8. Creating the best mutated clones set H .

8.1. Set k=1 , H=∅ .

8.2. Creating clones set 
~Pk={~x kl} for a population cell xk .

8.3. Creating mutated clones set Pk .

8.3.1. Clone number l=1 , Pk=∅ .
8.3.2. Creating a cell (the paper proposes to use the Cauchy distribution) 

xklj=
~x klj+δ ( x j

max−x j
min )e

−Φ(~x kl )Cauchy (0,1) , j∈1 , M , (14)

where Cauchy (0,1)  – a function that returns a standard Cauchy distributed random number.

8.3.3. Cell correction xkl

xklj=max {x j
min , xklj}, xklj=min {x j

max , xklj}, j∈1 , M .

8.3.4. Calculating Pk=Pk∪{xkl}.



8.3.5. If l<LC , then l=l+1 , go to step 8.3.2.

8.4. Determining the best element of set Pk  by the target function 
hk=argmin

xkl

F ( xkl )
.

8.5. Calculating H=H∪{hk}.
8.6. If k<K , then k=k+1 , go to step 8.2.
9. Calculating the average cost value 

F̄mutate= 1
K
∑
i=1

K

F (hk )
.

(15)

10. If F̄
mutate≥F̄ source

, then move to step 8.
11. Compressing the set H  and replacing population cells P  with elements of the set H .
11.1. Set k=1 , m=1 .
11.2. Forming the ε - neighborhood of the m th element of the set H

U hm , ε
=¿¿

, (16)

where ρ  – the distance between hm  and hl  (e.g. Euclidean distance).

11.3. If 
|U hm , ε

|=∅
 or 
maxU hm , ε

=hm , then xk=hm , k=k+1 .
11.4. If m<K , then m=m+1 , go to step 11.2.
12. If k=K , then move to step 14.
13. Initialization of the last population cells P .

13.1. Calculating xk=( xk 1 , . . . , xkM ) , xkj=x j
min+( x j

max−x j
min )U (0,1) .

13.2. If k<K , then k=k+1 , go to step 13.1.
14. If n<N−1 , then n=n+1 , go to step 3.

The result is x
¿

.

6. Algorithm of the modified artificial immune network method

The algorithm of the modified artificial immune network method, designed for implementation on 
GPU using CUDA technology, is shown in Figure 1. 

This block diagram functions as follows.

Step 1 – Set the maximum number of iterations N , population size K , number of clones LC , 

parameter δ  for generating a new solution, compression threshold ε , where 0<δ<1 , ε>0 .
Step 2 – Create an initial population  P , using  K⋅M  threads that are grouped into  K  one-

dimensional blocks. Each thread calculates xkj=x j
min+( x j

max−x j
min )U (0,1) .

Step 3 – Determine the best cell by the target function 
x¿=argmin

xk

F ( xk )
, k∈1 , K .

Step 4 – Set the iteration number n=0 .
Step 5 – Calculate the minimum value of the target function a  in the current population P , using 

K  threads that are grouped into one one-dimensional block. In this block, the minimum of  K  

elements of the form F ( xk )  is calculated based on the reduction.

Step 6 – Calculate the maximum value of the target function b  in the current population P , using 
K  threads that are grouped into one one-dimensional block. In this block, the maximum of  K  

elements of the form F ( xk )  is calculated based on the reduction. 



Step 7 – Calculate the affinity Φ( xk )  for each cell xk  of population P , using K  threads that are 

grouped into one one-dimensional block 
Φ( xk )=

b−F ( xk )
b−a .

Step 8 – Order population P  by the target function, i.e. F ( xk )<F ( xk+1) .

Step 9 – Determine the best cell by the target function 
k¿=argmin

k
F ( xk )

, k∈1 , K .

Step 10 – Determine the global best cell. If 
F ( xk ¿)<F ( x¿ )

, then 
x¿=xk ¿

.

Figure 1: Block diagram of the algorithm of the modified artificial immune network method

Step 11 – Calculate the average cost value F̄
source

, using K  threads that are grouped into one one-

dimensional block. In this block, the sum of K  elements of type 

F ( xk )
K  is calculated based on the 

reduction.
Step 12 – Set the cell number k=1 .

Step 13 – Create clones set 
~Pk={~x kl} for population cell xk .

Step 14 – Generate a mutant clones set Pk  for a population cell xk , using LC⋅M  threads that are 

grouped  into  LC  one-dimensional  blocks.  Each  thread  calculates 

xklj=
~x klj+

1
α
e
−Φ(~x kl )Cauchy (0,1)

.

Step 15 – Perform the correction of the mutant clones set Pk  for the population cell xk , using 
LC⋅M  threads,  that  are  grouped  into  LC  one-dimensional  blocks.  Each  thread  calculates 

xklj=max {x j
min , xklj}, xklj=min {x j

max , xklj}.



Step 16 – Determine the best mutated clone by the target function for each population cell xk  
hk=argmin

xkl

F ( xkl )
, 
l∈1 , LC .

Step 17 – If k<K , then k=k+1 , go to step 13.

Step 18 – Calculate the average cost value F̄
mutate

, using K  threads that are grouped into one one-

dimensional block. In this block, the sum of K  elements of the form 

F (hk )
K  is calculated based on the 

reduction.

Step 19 – If F̄
mutate≥F̄ source

, then go to step 12.

Step 20 – Compute a distances set {ρ(hm , hl )}, using K⋅K  threads that are grouped into K  one-

dimensional blocks. Each thread computes ρ(hm , hl ) .
Step 21 – Compress set H  and replace population cells P  with elements of set  H .
Step 22 – If k=K , then go to step 24.

Step 23 – Initialize the last K−k  population cells P , using (K−k )⋅M  threads that are grouped 

intoK−k  one-dimensional blocks. Each thread calculates xkj=x j
min+( x j

max−x j
min )U (0,1) .

Step 24 – If n<N−1 , then n=n+1 , go to step 5.

7. Modified hybrid immune algorithm method

The  hybrid  immune  algorithm  was  proposed  by  scientists  Lucinska  and  Wierzchon  and  is  a 
modification of the artificial  immune network.  Its  distinctive feature is the use of  two types of 
mutations.

The modified hybrid immune algorithm method consists of the following steps:
1. Initialization.
1.1. Setting the search area: cell length M , minimum and maximum values of cell components 

x j
min , x j

max
, j∈1 , M . Setting the maximum number of iterations N , population size K , number 

of clones LC , memory size LM . 

1.2. Setting the cost function (target function) 
F ( x )→min

x , where x  – cell (real vector).

11.3. Setting the search parameters: compression threshold ε , maximum cell age a
max

, memory 

size excess coefficient α , where ε>0 , a
max

 – is a natural number, α>1 .
1.4. Creating an initial population P .

1.4.1. Cell number k=1 , P=∅ .

1.4.2.  Generating a  random cell  xk=( xk 1 , . . . , xkM ) ,  xkj=x j
min+( x j

max−x j
min )U (0,1) ,  where 

U (0,1)  – a function that returns a standard uniformly distributed random number.

1.4.3. Setting the age of cell ak=1 .

1.4.4. If ( xk , ak )∉P , then P=P∪{( xk , ak )}, k=k+1 .
1.4.5. If k≤K , then move to step 1.4.2.

1.5. Creating the initial set of sets of mutated clones {P1 , . . . , PK }.
1.5.1. Cell number k=1 .

1.5.2. Mutated clone number l=1 , Pk=∅ .

1.5.3.  Creating  a  randomly  mutated  clone  xkl=( xkl1 , . . . , xklM ) , 

xklj=x j
min+( x j

max−x j
min )U (0,1) .



1.5.4. Generating a random vector of standard deviations σ klj=(σ kl1 , . . . , σ klM ) , σ klj=U (0,1) .

1.5.5. If xkl∉Pk∧xkl≠xk , then Pk=Pk∪{( xkl , σ kl )}, l=l+1 .

1.5.6. If l≤LC , then move to step 1.5.3.
1.5.7. If k<K , то k=k+1 , go to step 1.5.2.

1.6 Initializing a set of memory cells Q=∅ .
2. Iteration number n=0 .

3. Creating the best mutated clones set H .

3.1. Cell number k=1 , H=∅ .

3.2. Creating a set of clones 
~Pk={(~x kl ,

~a kl )} for a population cell ( xk , ak ) .

3.3. Modification of a set of mutated clones Pk .
3.3.1. Clone number l=1 .

3.3.2. Set λ=U (0,1) .

3.3.3. If λ>0 .2 , then calculation of the vector of standard deviations

σ klj={2(~x lkj−xklj ) , F ( xklj )<F (~x klj )
σ klj , F ( xklj )≥F (~x klj ) , j∈1 , M ,

(17)

creation of a cell (the work suggests using the Cauchy distribution) 

xklj=σ kljCauchy (0,1)+
~x klj , j∈1 , M , (18)

where Cauchy (0,1)  – a function that returns a standard Cauchy distributed random number.

3.3.4. Cell correction xkl  

xklj=max {x j
min , xklj}, xklj=min {x j

max , xklj}, j∈1 , M .

3.3.5.  If  λ≤0 .2 ,  then   xkl=
~x kl ,  j=round (1+(M−1)U (0,1)) , 

xklj=x j
min+( x j

max−x j
min )U (0,1) .

3.3.6. If l<LC , then l=l+1 , go to step 3.3.2.

3.4. Determining the best mutated clone of set Pk  by the target function 

hk=argmin
xkl

F ( xkl )
.

(19)

3.5. Calculating H=H∪{hk}.
3.6. If k<K , then k=k+1 , go to step 3.2.
4. Modification of population P .
4.1. Cell number k=1 .

4.2. If F (hk )<F ( xk ) , then xk=hk , ak=1 .

4.3. If F (hk )≥F ( xk ) , then ak=ak+1 .
4.4. If k<K , then k=k+1 , go to step 4.2.

5. Adding cells from population P , that have reached age a
max

, to the set of memory cells Q .

5.1. Set k=1 , i=|Q|+1 .



5.2. If  ak≥amax , then qi=xk ,  Q=Q∪{qi},  i=i+1 , and in population P  pair ( xk , ak )  is 

initialized, i.e. xkj=x j
min+( x j

max−x j
min )U (0,1) , j∈1 , M , ak=1 .

5.3. If k<K , then k=k+1 , go to step 5.2.

6. If |Q|<α⋅LM , then move to step 8.

7. Set compression Q .

7.1. Set i=1 , m=1 , Q̆=∅
7.2. Formation of the ε -neighborhood of the i th element of the set Q

U qi , ε
=¿¿

, (20)

where ρ  – the distance between qi  and q j  (e.g. Euclidean distance).

7.3. If 
|U qi , ε

|=∅
 or 
maxU qi , ε

=qi , then q̆m=qi , m=m+1 , Q̆=Q̆∪{q̆m}.

7.4. If i<LM , then i=i+1 , go to step 7.2.

7.5. Set Q=Q̆ .

7.6. Order the set Q  by the target function, i.e. F (qi )<F (qi+1) .

7.7. If |Q|>LM , then remove from the ordered set Q  the last worst |Q|−LM  cells by the target 
function.

8. Determining the best memory cell of the set Q  by the target function 

x¿=argmin
qi

F (qi )
.

(21)

9. If n<N−1 , then n=n+1 , go to step 3.

The result is x
¿

.

8. Algorithm of the modified hybrid immune algorithm method

The algorithm of the modified hybrid immune algorithm method, designed for implementation on 
GPU using CUDA technology, is shown in Figure 2. 

This block diagram functions as follows.

Step 1 – Set the maximum number of iterations N , population size K , number of clones LC , 

memory size  LM , compression threshold  ε , maximum cell age  a
max

, memory oversize factor  α , 

where  ε>0 , a
max

 is a natural number, α>1 .

Step 2 – Create an initial population P={( xk , ak )}, using K⋅M  threads that are grouped into 
K  one-dimensional  blocks.  Each  thread  of  each  k th block  calculates 

xkj=x j
min+( x j

max−x j
min )U (0,1) , ak=1 .

Step 3 – Set the cell number k=1 .

Step 4 – Generate a set of mutated clones Pk={( xkl , σ kl )}, using  LC⋅M  threads that are 

grouped  into  LC one-dimensional  blocks.  Each  thread  calculates 

xklj=x j
min+( x j

max−x j
min )U (0,1) , σ klj=U (0,1) .



Figure 2: Block diagram of the algorithm of the modified hybrid immune algorithm method

Step 5 – If k<K , then k=k+1 , go to step 4.

Step 6 – Initialize a set of memory cells Q=∅ .
Step 7 – Set the iteration number n=0 .
Step 8 – Set the cell number k=1 .

Step 9 – Create clone set 
~Pk={~x kl} for population cell ( xk , ak ) .

Step 10 – Calculate λl=U (0,1) , 
l∈1 , LC .

Step 11 – Modify the set of mutated clones Pk  for population cell ( xk , ak ) , using LC⋅M  strands 

that are grouped into LC one-dimensional blocks. Each strand of each l th block calculates:

If λl>0 .2 , then 

σ klj={2(~x lkj−xklj ) , F ( xklj )<F (~x klj )
σ klj , F ( xklj )≥F (~x klj ) , 

xklj=σ kljCauchy (0,1)+
~x klj ,

If λl≤0 .2 , then xkl=
~x kl , j=round (1+(M−1)U (0,1)) , xklj=x j

min+( x j
max−x j

min )U (0,1) .

Step 12 – Perform the correction of the modified set of mutated clones Pk  for the population cell 
( xk , ak )  using LC⋅M  strands, which are grouped intoLC  one-dimensional blocks. Each thread of 
each l th block calculates:

If λl>0 .2 , then xklj=max {x j
min , xklj}, xklj=min {x j

max , xklj}.
Step 13 – Determine the best  mutated clone by the target function for each population cell 

( xk , ak )
hk=argmin

xkl

F ( xkl )
, 
l∈1 , LC .

Step 14 – If k<K , then k=k+1 , go to step 9.
Step 15 – Modify population P  using K threads that are grouped into one one-dimensional block. 

Each thread calculates:

If F (hk )<F ( xk ) , then xk=hk , ak=1 , If F (hk )≥F ( xk ) , then ak=ak+1 .

Step 16 – Add population P  cells that have reached the age a
max

 to memory cell set Q .



Step 17 – If |Q|<α⋅LM , then move to step 20.

Step 18 – Compute distance set {ρ(qi , ql )} using Q⋅Q  threads that are grouped into Q  one-

dimensional blocks. Each thread calculatesρ(qi , ql ) .

Step 19 – Compress set Q .

Step  20  –  Determine  the  best  memory  cell  of  the  set   Q  by  the  target  function 
x¿=argmin

qi

F (qi )
, k∈1 , K .

Step 21 – If n<N−1 , then n=n+1 , go to step 8.

9. Experiments and results 

The numerical  study of  the proposed metaheuristic  methods was carried out using the Python 
package in the Google Colab environment. Numerical experiments were carried out using the CUDA 
parallel information processing technology on a GeForce 920M video card with 1025 threads in a one-
dimensional block.

In this work, the following parameters were used for the modified artificial immune network 
method: the maximum number of iterations  N=100 , population size  K=20 , number of clones 
LC=10 , parameter for generating a new solution δ=0 .1 , and compression threshold ε=0 .1 .

In this work, the following parameters were used for the modified hybrid immune algorithm 
method:  maximum  number  of  iterations  N=100 ,  population  size  K=20 ,  number  of  clones 
LC=10 , memory size LM=10 , compression threshold ε=0 .1 , maximum cell age a

max=10 , and 
memory oversize factor α=1.5 .

In the work, a one-dimensional signal was generated, to which additive Gaussian noise with zero 
mathematical expectation and dispersion of 135 was added.

In the work, the following root mean square errors were calculated based on the formulas:

RMS yz=√ 1
200

∑
n=1

200

( y (n )−z (n ))2
,

(22)

RMSx z=√ 1
200

∑
n=1

200

(x (n )−z (n ))2
,

(23)

where y (n )  – noise-free countdown, 
z (n )  – observation (noise-free countdown), 
z (n )  – observation evaluation.

Table 1 presents the root mean square errors for immune metaheuristic methods. For all three 

methods RMS yz =9.25.

Table 1
Root mean square errors

Immune metaheuristic methods RMSx z

Clonal selection method 4.9
Modified artificial immune network method 4.5
Modified hybrid immune algorithm method 3.8

For example, for the modified hybrid immune algorithm method, the following parameter values 
were obtained:



A=[1.6 −0 .8
1 −0 .3 ], σQ

2=0 .35 , σ R
2=4 .16 , σH

2 =0 .38 .

Figure 3 shows the original signal without noise and the signal with noise (observation). 
Figure 4 shows the original signal without noise and the observation estimate signal.

Figure 3: Original signal without noise and signal with noise (observation)

Figure 4: The original signal without noise and the observation estimate signal

10.Discussion

The advantage of using the proposed immune metaheuristic methods:

1. Automation of determination of Kalman filtering parameters A , σQ
2

, σH
2

, σ R
2

.
2.  Immune  metaheuristic  methods,  due  to  their  stochastic  nature,  reduce  the  probability  of  
convergence to a local extremum.
3. For immune metaheuristic methods, it is proposed to replace the Gaussian distribution with the 
Cauchy distribution, which is long-tailed, i.e. to reduce the probability of convergence to a local 
extremum.
4. According to Table 1, the modified hybrid immune algorithm method gives the best results in  
terms of the root mean square error. 
5. According to Figure 3 and Figure 4, the original signal without noise and the filtered signal differ 
insignificantly, while there is a significant difference between the original signal without noise and 
the signal with noise.



Conclusions

1. A modified Kalman filtering method was developed that provides automation of parameter value 
determination and increases the speed and accuracy of Kalman filtering by using fewer parameters 
and identifying them based on immune metaheuristic methods.
2.  A modified artificial immune network method was created that reduces the probability of 
convergence to a local  extremum by using the Cauchy distribution and makes the proposed  
method more accurate than the existing one.
3. A modified hybrid immune algorithm method was developed, which, by using the Cauchy 
distribution, reduces the probability of convergence to a local extremum and makes the proposed 
method more accurate than the existing one.
4. Algorithms of immune metaheuristic methods for identifying Kalman filter parameters have 
been developed, which are intended for software implementation on GPU using CUDA technology, 
which increases the accuracy of Kalman filtering. The numerical studies conducted have confirmed 
the operability of the developed software and allow us to recommend it for practical use.
5. Further research prospects include the use of the proposed immune metaheuristic methods for 
various general-purpose and special-purpose intelligent systems, for example, for training neural 
networks.

Declaration on Generative AI
During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling 
check. After using this tool, the authors reviewed and edited the content as needed and take full 
responsibility for the publication’s content.
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