
Multi-agent WAF pentesting on the JADE platform

Nataliya O. Maslova1,2, Olena M. Liubymenko1, Yaroslaw Y.Dorogyy1 and Andriy I. Ivanusa2

1 Donetsk National Technical University, str. Sambirska , 76, Drohobych, Lviv region, 82100, Ukraine
2 Lviv State University of Life Safety, 35, Kleparivska St., Lviv, 79007, Ukraine

Abstract
This article presents an approach to automated penetration testing using a distributed multi-agent system
(MAS) based on the JADE platform. The proposed architecture includes four specialized agents that
collaborate to dynamically bypass Web Application Firewalls (WAFs) and Intrusion Prevention Systems
(IPS). The system enables the real-time generation of polymorphic payloads, reinforcement learning-based
adaptation of attack strategies, and distributed deployment to reduce detection risks. Experimental validation
confirms that this multi-agent approach enhances the efficiency of vulnerability detection through parallel
execution, intelligent payload mutation, and reduced reliance on manual testing.

Keywords Keyword
1Multi-agent system, penetration test (pentest), JADE, Web Application Firewalls, security bypass, machine
learning, attack automation

1. Introduction

Multi-agent systems (MAS) are widely used today to solve complex problems in distributed
environments where autonomy, adaptability, and interaction between software components are
required. They enable the creation of flexible architectures in which software agents perform
individual tasks, exchange information, respond to environmental changes, and work together to
achieve common goals. Due to their scalability, self-organization, and ability to perform tasks in
parallel, multi-agent approaches are effectively applied in areas such as social process modelling,
logistics, robotics, telecommunications, and — notably — in information security.

One of the promising areas for applying multi-agent systems is penetration testing (pentesting) —
the process of simulating an attacker’s actions to identify vulnerabilities in software systems.

In modern cybersecurity, pentesting plays a key role in detecting vulnerabilities in web
applications, networks, and systems. It allows for the assessment of security effectiveness,
identification of weak points, risk evaluation, testing of defence mechanisms, and the development of
recommendations for their improvement.

Traditional penetration testing methods — including the use of security scanners (such as Burp
Suite, Nessus, OpenVAS), code analysis, and common attack vectors like SQL injection (SQLi), cross-
site scripting (XSS), and CSRF — require significant human resources and are often unable to adapt to
dynamic defence mechanisms such as Web Application Firewalls (WAFs) and Intrusion
Detection/Prevention Systems (IDS/IPS).

The problem is that modern protection systems, in particular WAF and IPS/IDS, are able to
dynamically change their behaviour. This is due to the use of artificial intelligence and machine
learning algorithms, which enhance the systems’ ability to automatically respond to new types of
attacks. Under such conditions, traditional penetration testing methods do not provide sufficient
adaptability of simulated attacks to real-time changes in the configuration of defensive mechanisms.

The use of multi-agent architecture in pentesting opens up new opportunities for automation — in
particular, the development of mechanisms capable of promptly reacting to changes in protection
behaviour and outpacing it during scanning, query generation, and system response analysis.

1CMIS-2025: Eighth International Workshop on Computer Modeling and Intelligent Systems, May 5, 2025, Zaporizhzhia,
Ukraine

 nataliia.maslova@donntu.edu.ua (N. Maslova); olena.liubymenko@donntu.edu.ua (O. Liubymenko);
yaroslav.dorohyi@donntu.edu.ua (Y. Dorogyy); ivaaanusa@gmail.com (A. Ivanusa)

 0000-0002-9078-0973 (N. Maslova); 0000-0002-5935-6891 (O. Liubymenko); 0000-0003-3848-9852 (Y. Dorogyy); 0000-
0001-9141-8039 (A. Ivanusa)

© 2025 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ivaaanusa@gmail.com

The aim of this article is to develop an approach to automated pentesting using a distributed multi-
agent system (MAS) based on the JADE platform. This system enables real-time generation of
adaptive attacks, bypassing WAF/IPS filters, and improving the efficiency of vulnerability detection
through the parallel cooperation of agents.

The scientific novelty of the study lies in the development and implementation of an innovative
approach to pentesting automation using multi-agent systems. The proposed solution enables
effective vulnerability detection and circumvention of protection mechanisms such as WAF and IPS
through the dynamic generation of polymorphic requests. This reduces reliance on human resources,
accelerates the security testing process for web applications and systems, and improves both accuracy
and adaptability of threat detection.

The practical significance of the proposed solution is in its applicability to real-world pentesting
scenarios. The parallel operation of agents increases the speed of data collection and the accuracy of
vulnerability detection. The system can be integrated into automated cybersecurity audit tools,
utilized in educational environments, and embedded into software products with built-in self-testing
capabilities.

2. Literature Review

The field of application of multi-agent systems (MAS) today includes solving complex problems in
distributed environments that require autonomy, adaptability, and interaction between software
components [1]. MAS enable the creation of flexible architectures in which software agents are
assigned individual tasks but exchange information, respond to changes in the environment, and
work together to achieve a common goal [2]. Due to their scalability, self-organization, and parallel
execution capabilities, MAS are effectively applied in various domains, including the field of
information security [3].

Modern security systems, particularly WAFs and IDS/IPS, play a significant role in protecting web
applications. Their key tasks include defending against common attacks (e.g., SQL injection and XSS),
real-time traffic monitoring, and adapting to new threats [4]. This adaptability is achieved through the
use of artificial intelligence and machine learning techniques, which can automatically detect
vulnerabilities [5].

An overview of the evolution of WAFs from signature-based to machine learning-based models is
presented in [6]. The authors analyse the advantages and limitations of each approach, which is
important for understanding current challenges in web application security.

The study [7] is dedicated to the use of machine learning techniques for detecting vulnerability
scanning attacks in web applications. Although the classification results were promising, the models
required further calibration to increase confidence in their predictions. The research highlights the
potential for integrating machine learning with the AppSensor concept to improve intrusion
detection and prevention systems at the application level.

The work [8] explores the application of artificial intelligence methods to enhance web application
firewalls (WAFs) in detecting web attacks, particularly injection attacks. The authors analyse the
effectiveness of various machine learning models, such as Naïve Bayes, k-nearest neighbors (k-NN),
support vector machines (SVM), and linear regression, in classifying HTTP requests as malicious or
safe. Using a synthetic dataset of over 100,000 requests, the study shows that these models can achieve
malicious request detection accuracy ranging from 92% to 99%. The main goal of the study is to
demonstrate the advantages of using AI in WAFs to improve attack detection accuracy and reduce
false positives, which are common in traditional rule-based WAFs.

As stated in [5], modern WAFs are increasingly developed using artificial intelligence and machine
learning methods, but there is also progress on the other side. The article [9] describes the WAF-A-
MoLE tool, which employs mutation-based fuzzing to generate attacks targeting machine learning in
WAFs. This demonstrates the potential of using adaptive attacks to test the robustness of defensive
mechanisms.

In particular, the article [10] analyses in detail the methods of attack detection, including signature
approaches, anomaly analysis and the use of machine learning, and compares the effectiveness of
Snort and Suricata solutions. The proposed Intelligent Threat Detector (ITD) module for Suricata
demonstrates the ability to adapt threat detection systems.

The article [11] discusses the extension of IDS/IPS capabilities using the Lua language, which
allows creating dynamic settings to adapt to new attacks, which is useful for dynamically changing

payloads and obfuscating queries. The use of techniques such as URL encoding, Base64 encoding, or
polymorphic SQLi/XSS helps to change the appearance of requests to bypass WAF and IDS/IPS
filtering signatures.

Methods for bypassing security mechanisms are also discussed in [12], which analyses the use of
SQLMap for automated obfuscation of SQL injections to avoid signature and heuristic detection of
pentesting queries by security systems.

Article [13] proposes an approach to dynamically changing the behaviour of agents using expert
systems and an extension language that improves their adaptability.

The authors of [14] analyze common web application vulnerabilities such as SQL injection, cross-
site scripting (XSS), and others, and examine the tools and techniques used to detect and eliminate
them. The article also discusses the stages of conducting VAPT (Vulnerability Assessment and
Penetration Testing), including preparation, scanning, analysis, and the implementation of security
measures. The main goal of the study is to emphasize the importance of regular web application
security testing to prevent potential threats and ensure the protection of user data.

Study [15] presents a review of web application penetration testing methods, including a
comparison of popular tools and a discussion of their effectiveness. The authors highlight the
importance of automation in improving the efficiency of security testing.

The data gathering process in penetration testing involves automated or semi-automated
collection of information about the target system. In [16], the automation of penetration testing is
discussed through the use of attack planning models. The authors stress the importance of automation
for effective vulnerability detection, including open port identification, configuration analysis, and
vulnerability scanning. However, this process faces several challenges that affect the accuracy and
efficiency of analysis.

Article [17] focuses on the integration of autonomous software agents into web services. The
authors compare two popular platforms for multi-agent systems (MAS): JADE and SPADE. They
explore how these platforms can be used to develop agents that interact through web services, which
is a crucial aspect in distributed systems and service-oriented architectures (SOA). The paper
discusses the fundamentals of web services, intelligent agents, and agent communication languages.
The comparison between JADE and SPADE is based on the implementation of a simple MAS in JADE
and its reimplementation in SPADE. This study helps to understand how different platforms support
agent integration into modern web paradigms, particularly RESTful services and event-driven
architectures.

Article [18] proposes a methodology for developing multi-agent systems using the JADE platform,
covering analysis, design, and implementation. It provides a structured approach to building efficient
agent-based systems.

Study [19] focuses on ensuring security in multi-agent systems built on the JADE platform. It
addresses aspects such as authentication, encryption, and access control between agents.

Special attention should be paid to the problem of analysing large amounts of data and the use of
distributed computing. Papers [5] and [6] investigate the principles of building multi-agent systems
and their effectiveness in distributed computing. It is stated that the use of agents allows distributing
the load between nodes, optimising queries and applying machine learning to classify data, and
processing large amounts of data coming from different sources.

Paper [7] demonstrates the creation of tools for modelling complex systems based on AgentScript,
which is usually associated with the AgentSheets platform, an environment for creating agent models
and simulations, and assesses the prospects for using AgentScript to model multi-level systems. This
was one of the authors' first attempts to choose a research tool, but the platform was not sufficiently
adapted to solve the problem of pentesting.

In [8], an agent scanner was developed for penetration testing of web applications, including
automated detection of XSS vulnerabilities. To develop the scanner agent, the MAS SPADE (Smart
Python Agent Development Environment) platform was used, which provides the creation and
organisation of interaction between agents (crawler and scanner). It runs on the Python programming
language, which provides flexibility and speed thanks to libraries for web testing, such as Asyncio, OS,
Httpx, Requests. The agent model was successfully tested on a vulnerable web resource, which
allowed us to evaluate their effectiveness in real conditions and compare them with the advanced
commercial analogue Burp Suite.

The effectiveness of the proposed approach is confirmed by the scanning results, which showed
that the advantages of the scanning agent are its speed, ability to bypass defence mechanisms, and its
cost. The multiagent system provided high flexibility in the process of creating a working model and

allowed automating some stages of pentesting, which significantly reduced the time required for
security checks.

Despite the existence of developments (including the authors'), previous studies have not
implemented a distributed multi-agent system for pentesting that combines automatic generation of
bypass attacks, dynamic change of payloads in real time, and parallel interaction of agents for
scanning, attacking, and analysing responses. The proposed research fills this gap by integrating
JADE agents for intelligent data mining in the security testing process.

Furthermore, the integration of distributed agent-based systems can enhance real-time threat
detection and response capabilities, improving the adaptability of pentesting tools in dynamic
environments. These developments open new opportunities for optimizing the testing process by
leveraging agent collaboration and real-time decision-making to bypass increasingly sophisticated
security mechanisms.

3. Choice of Methods and Tools

In today's world of multi-agent systems, there are many platforms that allow you to create, develop
and implement various agent models. Two of these platforms - JADE and SPADE - are among the most
widely used in the field of multiagent systems development. JADE (Java Agent Development
Framework) and SPADE (Smart Python Agent Development Environment) both provide powerful
capabilities for creating agents and organising their interaction, but have different approaches and are
focused on different goals.

SPADE, which is based on Python, is notable for its simplicity and flexibility, which makes it
attractive for rapid development of medium-sized agent systems and for developers who prefer
Python [24-25].

In contrast, JADE, built on the Java language, is known for its scalability, standards support, and
agent mobility, making it ideal for large, complex, and distributed systems.

An overview of the JADE and SPADE platforms helps to define their capabilities, purpose, and
application for different types of projects.

SPADE, developed for Python, supports the FIPA standard, simplifies the implementation of
agents, communication between them, task synchronisation, and includes scalability. It is aimed at
Python developers and is used to create agent systems in distributed environments, automation, and
modelling.

JADE is a framework for the development of multi-agent systems in Java, which is based on the
idea of supporting the FIPA standard. It provides agent mobility, includes tools for communication
and task scheduling, and has a testing environment, and is designed to manage complex distributed
systems where agents need to interact to achieve a common goal. For example, in large computer
networks or for monitoring various systems; in decision support systems; for building intelligent
information retrieval and processing systems (working with large amounts of data).

JADE is a powerful tool for developing agent-based systems in the cybersecurity industry due to its
ability to detect anomalies in network traffic and respond to threats in real time. JADE is used to
develop agent-based systems for monitoring and protecting information networks. Agent-based
technologies allow you to create distribution systems to detect anomalies in network traffic and
respond to potential threats. In IT, JADE is used to create automated agents that can interact with
applications to test and detect errors, especially in complex distributed systems.

While SPADE excels in rapid development and ease of use for smaller systems, JADE is better
suited for more sophisticated environments requiring high performance, scalability, and robust agent
interactions. The choice between these two platforms often depends on the specific requirements of
the project and the developer's preferences in programming language and system complexity.

JADE is superior to SPADE in scalability, supporting complex multi-agent systems, efficient
processing of large amounts of data and distributed computing. It provides a higher level of
interoperability with other platforms due to better FIPA support. Agent mobility in JADE is more
flexible, and cross-platform compatibility allows you to work on Windows, Linux, and macOS without
significant code changes.

The comparison presented in Table 1 looks at the main features, purpose, and application of both
platforms to determine which one is better for certain types of projects and tasks [26-28].

Table 1
Comparison of JADE and SPADE platforms

JADE SPADE
General
purpose

- a framework for developing complex,
adaptive, distributed multi-agent systems
where numerous agents interact to achieve
a common goal

- a framework for the development
of multi-agent systems, focused on
medium and small-scale projects

Interoperability
and standards

- supports the FIPA standard, provides high
compatibility with other agent platforms.
This allows you to create cross-platform
agent systems that can interact with other

- supports the FIPA standard,
integration with other systems is
limited to Python capabilities
(compatibility issues with large,
multi-platform systems);

Mobility -has built-in support for agent mobility,
allowing agents to move between different
computers and environments without
losing context, useful for distributed and
mobile applications

- includes scalability and supports
the creation of agents that can
move across different computers,
supports mobility, but for medium-
sized systems;

Support for
multi-platform
environments

- works with Windows, Linux and MacOS
systems, allowing you to build cross-
platform agent systems that operate in
different environments without major
code changes

- problems using the framework in
environments other than those it
was optimised for (library
dependencies, version
compatibility, network settings)

Interfaces and
features -

-has interfaces for creating agents,
communicating between them, and
scheduling tasks; - includes a full-fledged
environment for development, testing, and
debugging; applies Java

- uses the Java programming
language and supports a graphical
interface for debugging and
monitoring the work of agents; is
focused on the use of the Python
programming language;

Purpose - to create complex, scalable agent systems
where agents interact to achieve a
common goal

- provides simple implementation
of agents, communication between
them and synchronisation of tasks

Applications -development of intelligent agents for
various industries - modelling and analysis
of multifaceted systems involving a large
number of agents;

- development of intelligent agents
(Python) for various applications
such as automation, distributed
systems, robotics, smart cities

JADE is one of the most reliable platforms for developing distributed MAS, featuring built-in
support for agent communication, container migration, and FIPA compliance. The environment offers
powerful tools for the development, testing, and monitoring of agent-based systems, making it
suitable for complex projects. It is a preferred choice due to its scalability and flexibility. The platform
promotes research reproducibility, facilitates experiments with learning-based payload generation,
and provides a solid foundation for the further development of intelligent systems.

4. Discussion: Using JADE to dynamically bypass WAFs when
anomalies are detected

Modern Web Application Firewalls (WAFs) use various methods of attack filtering, including
signature analysis, heuristics, and behavioural models, to provide effective protection against external
threats. For effective security testing and threat analysis, a JADE-based agent system must adapt its
payloads and change attack strategies to circumvent WAF defences.

The proposed automated pentesting system is implemented as a multi-agent system on the JADE
platform, enabling parallel task execution, adaptation to the reactions of the protection system, and

learning based on feedback. The architecture involves the interaction of four main types of agents:
Recon-Agent, Mutation-Agent, Attack-Agent, and Learning-Agent.

Recon-Agent is responsible for collecting initial information about the target system. It analyses
server responses to various requests, attempts to detect active filters (such as XSS filters or WAF/IPS
responses), and records key indicators that point to the type of filtering in use.

Mutation-Agent, based on data provided by the Recon-Agent, generates payload variants for
testing the filters. This agent dynamically alters requests in order to bypass signature-based WAF
filters by applying encoding techniques (URL, Hex), polymorphic XSS and SQL injections, as well as
injecting invisible characters or modifying syntax. As a result, it produces a set of potentially evasive
payloads tailored to the specific behaviour of the protection system.

Attack-Agent performs the mutated attacks against the web application, testing the effectiveness
of the selected payloads. It logs response codes (403, 406, 500) and differences in request processing
time. If protection mechanisms trigger, the agent records an error or lack of response; if the attack
succeeds, the result is marked as successful and forwarded for further analysis. It interacts with the
Mutation-Agent, sending feedback to refine the payloads accordingly.

The Learning-Agent analyses successful and unsuccessful bypass attempts, using reinforcement
learning methods to adapt attacks in real time. This agent builds a database of effective attacks for
specific types of WAFs, constantly improving the circumvention strategies.

Figure 1 illustrates the system architecture.

Figure 1: System Architecture
Dynamic adaptation and WAF evasion are achieved through coordinated interaction among

agents: the Recon-Agent identifies active filters and protection constraints; the Mutation-Agent
generates evasive payloads based on the detected characteristics; the Attack-Agent sends the requests
to the target system; and the Learning-Agent analyzes server responses and adjusts attack strategies
to further optimize the system’s behavior.

Communication between agents is implemented using FIPA-compliant protocols supported by the
JADE platform. The architecture is designed for scalability—allowing deployment either locally or as a
distributed network of agents interacting via the JADE Remote Monitoring Agent (RMA).

Thus, the proposed architecture provides flexible adaptation to changes in protection mechanisms,
automates the generation and testing of attacks, and significantly reduces the need for manual
intervention during penetration testing stages.

4.1. Examples of dynamic WAF bypass

The attack process is illustrated below as part of penetration testing using the agents described above:
1) Recon-Agent. The first stage of the attack is to gather information about the website's security

mechanisms.

Example: The Recon-Agent uses techniques to analyse HTTP headers, examine URL parameters,
and study server behaviour (in particular, whether certain characters or patterns such as <script> are
blocked). It can also perform WAF fingerprinting to identify a specific security solution (such as
Cloudflare or ModSecurity).

Agent task: Determine how the website processes user input and what filtering methods or
restrictions are applied.

2) Mutation-Agent. After collecting the information, Mutation-Agent generates new variants of
malicious requests that can bypass the detected restrictions based on the data received from Recon-
Agent.

Example: If Recon-Agent detects that a website blocks standard scripts, Mutation-Agent can
modify requests using different coding methods (e.g., URL coding:
%3Cscript%3Ealert(1)%3C%2Fscript%3E) or use polymorphic versions of XSS injections. You can also
try inserting JavaScript events (e.g. onerror or onload) into HTML attributes (e.g. <img src=‘x’
onerror=‘alert(1)’>).

Agent task: Generate new variants of malicious requests that are more likely to pass through WAF
filters.

3) Attack-Agent. The Attack-Agent launches attacks by sending compiled payloads and then
analyses the server responses.

Example: Attack-Agent sends generated payloads to a website, for example, with XSS code or SQL
injection, checking whether these requests are executed and logging the response status code (e.g. 403,
406, 500). In addition, it measures the processing time of requests to assess for delays or anomalies that
could indicate blocking attempts.

Agent's task: Determine whether attacks on a web application are successful by analysing server
responses to different pingbacks.

4) Learning-Agent. This agent analyses successful and unsuccessful bypass attempts using
reinforcement learning techniques to adapt attacks in real time.

Example: After the Attack-Agent receives responses from the server, the Learning-Agent evaluates
which attack strategies were effective (e.g., which payloads were able to bypass the WAF). Based on
this experience, the agent adapts attack strategies by changing the parameters of payloads or methods
to respond to changes in the web application's security mechanisms (for example, if the WAF changes
its rules after previous attacks).

The task of the fourth agent is to optimise and adapt attack strategies in real time to make them
more effective based on new trials and errors.

The general process is that the Recon-Agent analyses the system to determine how the WAF works
and how it filters requests. Based on this information, the Mutation-Agent generates new variants of
malicious requests, adapting them to the detected limitations. The Attack-Agent then sends these
requests to the server, analysing the responses to see if the WAF's defences can be bypassed. Based on
the test results, the Learning-Agent optimises attack strategies, adapting them to changes in the
defence mechanisms to increase the effectiveness of attacks. Thus, the entire process is a dynamic
attack that constantly adapts based on the WAF's responses and the application of various
circumvention strategies in real time.

4.2 Implementation of distribution in a multi-agent system.

The concept of distribution is realized through agents that operate independently while exchanging
results and coordinating to achieve a common goal. To mitigate the risk of detection through IP-based
filtering or regional restrictions, agents can be deployed on separate physical or virtual machines,
including containers, strategically located in different countries.

For example, Recon-Agent can operate from different IP addresses so that data collection does not
look like malicious requests from one location. Other agents, such as Mutation-Agent and Attack-
Agent, can also run on separate servers to test different attack scenarios simultaneously. This allows
for multi-functional attacks to be launched through different sources, reducing the likelihood of the
entire system being blocked by the attacks.

Multiple Recon-Agents can run on different parts of the same website or on different websites to
gather information about security mechanisms. They simultaneously test different pages, collecting
metadata, HTTP headers, request parameters, and server responses from different points, which

allows them to gather more information about WAF settings. The results of the collected information
are transferred to a centralised database that is used by other agents.

The Mutation-Agent can be run on multiple nodes simultaneously to generate different variants of
payloads. This allows you to respond faster to different types of WAFs by generating paloads for
different WAF configurations at the same time. For example, one agent generates payloads to bypass
one type of protection, while another generates payloads for another type of protection. The payloads
are then passed to the Attack-Agent for testing in parallel.

If the Attack-Agent is distributed among several nodes that send requests to websites from
different parts of the world, it allows you to test different scenarios simultaneously and speeds up the
attack process. Parallel testing on different servers increases the likelihood of a successful attack, as
each server may have different approaches to blocking requests, which helps to identify
vulnerabilities.

An example of a distributed multi-agent system for bypassing WAF, where specific server names,
addresses, and access points can be used for each agent. The table also shows the names of the WAFs
that the system will work with, as well as the stages of each agent's work (Table 2).

Table 2
Distributed multi-agent system for bypassing WAF

Agent/.
Server name

IP- address Access point / URL type WAF

Recon-Agent (Server 1) 192.168.1.101 https://target1.com/ Cloudflare WAF
Recon-Agent (Server 2) 192.168.1.102 https://target2.com/ Imperva WAF
Mutation-Agent (MuS 1) 192.168.2.101 https://target1.com/search Cloudflare WAF
Mutation-Agent (MuS 2) 192.168.2.102 https://target2.com/search Imperva WAF
Attack-Agent (AtS 1) 192.168.3.101 https://target1.com/search?

query =<script>alert(1)</script>
Cloudflare WAF

Attack-Agent (AtS 2) 192.168.3.102 https://target2.com/search?
query =<script>alert(1)</script>

Imperva WAF

Learning-Agent (LeS 1) 192.168.4.101 https://target1.com/search Cloudflare WAF
Learning-Agent (LeS 2) 192.168.4.102 https://target2.com/search Imperva WAF

A Learning-Agent can work as a central agent or as distributed agents working in different
locations to evaluate the effectiveness of attacks (distributed learning). They collect data on attack
success from different locations, compare strategies, identify patterns, and optimise them to avoid
WAF blocking. For example, one Learning-Agent L1 learns successful attacks from one access point,
and the Learning-Agent L2 learns from another. This data is then transmitted to a central server and
stored in a database for further correction of attack strategies.

The scheme of work is as follows.
Recon-Agent: Two servers (recon-server-01 and recon-server-02) run on different access points

(on different websites, target1.com and target2.com). They scan and collect information about the
security mechanisms used on these sites (for example, Cloudflare WAF on target1.com and Imperva
WAF on target2.com).

Mutation-Agent: Based on the information received from the Recon-Agent, two servers (mutation-
server-01 and mutation-server-02) generate different payloads to bypass specific WAFs (Cloudflare on
target1.com and Imperva on target2.com). These servers may use techniques such as Base64 encoding,
polymorphic XSS, or SQL injection.

Attack-Agent: The attack-servers -01 and -02 send payloads generated by the Mutation-Agent to
target access points, such as target1.com and target2.com, to test the effectiveness of attacks against
these sites. They record server responses (e.g., 403, 406, 500 codes) for further analysis.

Learning-Agent: The learning-server-01 and learning-server-02 servers collect data on attack
successes and failures, analyse the results, and optimise strategies to bypass the WAF. For example, if
a certain type of attack fails, the Learning-Agent changes the attack strategy and passes it to the
Mutation-Agent to create new payloads.

Let's name the advantages of the proposed distributed multi-agent system:

https://target2.com/search?query%C2%A0=
https://target2.com/search?query%C2%A0=
https://target1.com/search?query%20=
https://target1.com/search?query%20=

Scalability: Due to the ability to run many agents simultaneously on different nodes, the system
can easily scale to handle large volumes of traffic or to test on numerous websites simultaneously.

Minimising the risk of blocking: Distributed agents operating from different locations (e.g.,
different IP addresses or countries) reduce the likelihood that an attack will be detected and blocked
due to increased activity from a single source.

Improved attack speed: Due to the parallel execution of all stages (data collection, payload
generation, testing, optimisation), an attack can be carried out faster, which allows you to effectively
bypass new and unusual security mechanisms.

Flexibility in adaptation: Distributed learning allows agents to quickly adapt their strategies based
on changes in WAF behaviour or changes to web application settings.

Protection against detection: Distributed and parallel operation of agents in different locations
helps reduce the likelihood that the system will detect centralised attacks and block the entire process
by analysing traffic anomalies.

Thus, distribution adds flexibility, resilience, and scalability to a multi-agent system, allows you to
bypass WAFs and reduce the risk of detecting attacks, increase the complexity (efficiency) of
pentesting and attacking WAFs, while reducing the likelihood of detection and blocking.

5. Description of test scenarios and test results

The purpose of the test is to evaluate the effectiveness of a JADE-based agent system in dynamic WAF
circumvention using different payload mutation methods. Table 3 and 4 describe the test scenarios for
WAF traversal, including the test objective, traversal methods, and expected results.

The objective of the first test is to detect basic XSS filters. For this purpose, the character encoding
method (Hex, URL) are used. It is expected that the system will not block the request and a response
will be received successfully.

The second test aims to bypass the WAF's heuristic rules using polymorphic SQL queries. The
expected result is the successful insertion of SQL code without being blocked.

The third test evaluates behavioural filtering. The split bypass technique is applied. An XSS attack
is expected to be executed when assembling parts of the payload.

These scenarios allow for assessing the effectiveness of different techniques for bypassing security
filters.

Overall, more than 100 attempts were made with different mutation combinations, and on average,
about 60% of the attacks bypassed the protection. The success rate depended on both the filter type
and the specific mutation implementation. In particular, split-based XSS attacks showed higher
effectiveness compared to SQLi. The example provided in the table:

Test 1 was successful: URL encoding helped bypass the WAF.
Test 2 failed: SQLi was blocked, likely due to strict server analysis.
Test 3 was successful: The WAF could not reassemble the payload parts into a single attack.

Table 3
Description of the test scenarios

Test No. Test Objective WAF bypass method Expected result
1 Detect basic XSS filters Character encoding (Hex, URL) Response without

blocking
2 Bypassing heuristic WAF

rules
Polymorphic SQLi queries SQL injection without

blocking
3 Behavioural filter

analysis
Split bypass XSS execution when

collecting payload parts

Table 4
Test execution and results

Test
No.

Inbound payload Bypass method Response
status

WAF bypass

1 %3Cscript%3Ealert(1)%3C/script%3E URL coding 200 OK Successful
2 ' OR 1=1-- - Polymorphic SQLi 403

Forbidden
Not
bypassed

3 <scr<script>ipt>alert(1)</scr<script>ipt> Split bypass 200 OK Successful

Testing showed that JADE agents effectively modify XSS payloads to bypass signature-based WAF
analysis. SQLi requires more complex evasion techniques (e.g., time-based attacks). The results
confirm the viability of using a multi-agent architecture for dynamic WAF protection bypass and
demonstrate the potential for automating adaptive attacks.

Based on the above tests, we can formulate ideas for further improvement: integrating machine
learning to predict WAF filters and automatically generating SQLi bypass mechanisms.

We use the above-described multi-agent system (MAS) on the JADE platform, where agents work
together to dynamically bypass the WAF. An example of the Recon-Agent code is shown in Figure 2.
The Recon-Agent analyses server headers, WAF filters, and obtains information about the target.

Figure 2: ReconAgent code example

Figure 3 shows a Java implementation of the payload mutator (with support for the split approach
and URL encoding) that performs random rearrangement of characters in the input string, applies partial
URL encoding to individual characters, and generates a result in the form of a string that simulates the
structure that could be used by a real XSS payload.

Figure 3: Mutation-Agent code snippet

The example provides a visual payload: it only simulates the attack structure but will not execute
until it is used in an executable context (e.g., in eval(), innerHTML, or DOM injection).

From a WAF bypass perspective, split attacks are useful for analyzing the behavior of the protective
mechanism because visual payloads can trigger false positives or reveal how the filter responds to
fragmented signatures. Executable versions, on the other hand, allow testing the full effectiveness of the
attack

Here are the results of a series of 100 test requests to the WAF bypass system (Fig. 4)

Figure 4: Testing Results

The graph shows the proportion of successful attacks against a WAF over 100 experiments. The
blue line represents the cumulative percentage of successful attacks, and the red dashed line
represents the average success rate, which is about 60%. This is the proportion of attacks that the WAF
managed to bypass, which confirms the effectiveness of Mutation-Agent. However, the success rate of
attacks varies during the training process, which leads to fluctuations. As the number of tests
increases, the success rate becomes more stable.

6. Conclusions

This paper presents an innovative approach to automated penetration testing using a multi-agent
system (MAS) based on the JADE platform. The proposed architecture enables effective task
distribution among specialised agents, allowing for parallel scanning, adaptive attack generation, and
real-time response analysis. Particular emphasis is placed on the Mutation-Agent, which dynamically
alters payload structures to evade signature-based and heuristic detection methods of WAF and IPS
systems.

Experimental evaluation demonstrated enhanced vulnerability detection performance compared
to traditional methods, attributed to the high level of autonomy, adaptability, and self-organisation of
agents. Reduced reliance on human resources, faster security assessment processes, and adaptation to
dynamic defence mechanisms make the proposed system a promising tool for modern penetration
testing.

The practical value of the solution lies in its potential integration into existing information security
audit tools, as well as its applicability in training cybersecurity professionals.

Future research directions are outlined as follows. The current implementation focuses primarily
on XSS and SQLi attack types. However, the modular and extensible system architecture allows for
the integration of new agents to handle more complex attack classes, such as SSRF. While real-time
adaptation to sophisticated attacks may increase computational overhead, this can be mitigated
through agent-level parallelism and selective payload mutation.

JADE has been chosen for its reliability and comprehensive features, including inter-agent
communication, container migration, scalability, FIPA-compliant messaging, and agent container
management. These capabilities address most challenges related to message conflicts or agent
interference. Nevertheless, managing false positives and false negatives remains a key area for future
research. Additional enhancements may include improved load balancing strategies, expanded attack
coverage, and the incorporation of machine learning models to predict defence system responses.

These advancements reflect the authors’ long-term vision for developing an intelligent, modular,
and scalable next-generation automated penetration testing platform.

Acknowledgements

We express our gratitude to Professor E. Fedorov (Cherkasy State Technological University) for his
research in the field of artificial intelligence and distributed computing, whose scientific works have
become the basis of the authors' knowledge of building agent-based systems.

We would like to thank Professor S. Subbotin for his significant and informative work on the
application of artificial intelligence and neural networks for diagnostics and data processing.

We acknowledge the efforts of graduate students A. Nikitenko and E. Yezhova, whose research
contributed to the study of mechanisms and techniques for creating the first prototypes of the multi-
agent system described in this article, which allowed us to continue and improve further
developments.

Thank you to the reviewers who drew our attention to the current shortcomings and contributed
to improving the presentation of the study and identifying critical issues.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling
check. After using this tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

References

[1] J. Ferber, Multi-agent systems: An introduction to distributed artificial intelligence. Addison-
Wesley, 1999. URL: https://archive.org/details/multiagentsystem0000ferb

[2] S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-agent reinforcement learning: Foundations and
modern approaches. MIT Press, 2024. URL: https://www.marl-book.com

[3] R. Song and L. Korba, "The scalability of a multi-agent system in security services," CiteseerX,
2003. URL:https: //citeseerx.ist.psu.edu/document?
doi=c8149772206549b3fe3d241ee590ce5876edf24c&repid=rep1&type=pdf

[4] CyCognito, "Application Security Testing: Paradigms, Tools & Best Practices," n.d. URL:
https://www.cycognito.com/learn/application-security/application-security-testing.php

[5] B. Isiker and I. Sogukpinar, "Machine learning based web application firewall," in 2021 2nd
International Informatics and Software Engineering Conference (IISEC), Dec. 2021. URL:
https://doi.org/10.1109/IISEC54230.2021.9672335

[6] S. Applebaum, T. Gaber, and A. AhmedAli, "Signature-based and machine-learning-based web
application firewalls: A short survey," Procedia Computer Science, vol. 189, pp. 359-367, 2021.
URL: https://doi.org/10.1016/j.procs.2021.05.105

[7] P. Shahrivar, "Detection of vulnerability scanning attacks using machine learning: Application
layer intrusion detection and prevention by combining machine learning and AppSensor
concepts," Master's thesis, KTH Royal Institute of Technology, 2022.

url:https

[8] J.-Á. Román-Gallego, M.-L. Pérez-Delgado, M. Luengo Viñuela, and M.-C. Vega-Hernández,
"Artificial Intelligence Web Application Firewall for advanced detection of web injection
attacks," Expert Systems, 2024. URL: https://doi.org/10.1111/exsy.13505

[9] A. Valenza, L. Demetrio, G. Costa, and G. Lagorio, "WAF-A-MoLE: An adversarial tool for
assessing ML-based WAFs," SoftwareX, vol. 11, p. 100367, 2020. URL:
https://doi.org/10.1016/j.softx.2020.100367

[10] A. Goldii, O. Shpur, and A. Masiuk, "Development of a system model for detecting and
counteracting cyber threats with support and updating of attack detection rules," Information
and Communication Technologies, Electronic Engineering (ICTEE), vol. 4, no. 2, pp. 60–71, 2024.
URL: https://doi.org/10.23939/ictee2024.02.060

[11] K. Churbakov, "Using Lua language to extend IDS/IPS functionality," in Proceedings of the XII
Scientific and Technical Conference "Information Models, Systems and Technologies," Ternopil
National Technical University, Dec. 2024, p. 107. URL:
https://elartu.tntu.edu.ua/bitstream/lib/46978/1/Zbirnyk_18_12_2024.pdf

[12] HackYourMom, "Dangerous injections: Methods of bypassing protection using SQLMap," n.d.
URL: https://hackyourmom.com/kibervijna/nebezpechni-inyekcziyi-metody-obhodu-zahystu-
za-dopomogoyu-sqlmap

[13] M. R. McMahan, J. T. He, and X. Liu, "Dynamic Modification of Agent Behaviors Without
Disrupting a Running System," in Proceedings of the International Conference on Intelligent
Agents and Multi-Agent Systems, Springer, 2023, pp. 345–358. URL:
https://link.springer.com/chapter/10.1007/978-3-031-70415-4_25

[14] U. Ravindran and R. V. Potukuchi, "A review on web application vulnerability assessment and
penetration testing," Review of Computer Engineering Studies, vol. 9, no. 1, pp. 1–22, 2022. URL:
https://doi.org/10.18280/rces.090101

[15] E. A. Altulaihan, A. Alismail, and M. Frikha, "A survey on web application penetration testing,"
Electronics, vol. 12, no. 5, p. 1229, 2023. URL: https://doi.org/10.3390/electronics12051229

[16] G. Chu, "Automation of penetration testing," Doctoral dissertation, University of Liverpool, 2021.
URL: https://livrepository.liverpool.ac.uk/3138094/1/200928649_Sep2021.pdf

[17] H. Donâncio, A. Casals, and A. A. F. Brandão, "Exposing agents as web services: A case study
using JADE and SPADE," in Proceedings of the 13th Workshop-School on Agents, Environments,
and Applications (WESAAC 2019), 2019. URL: https://doi.org/10.5281/zenodo.7895066

[18] M. Nikraz, G. Caire, and P. Bahri, "A methodology for the development of multi-agent systems
using the JADE platform," Computer Systems Science and Engineering, vol. 21, no. 2, 2006. URL:
https://www.researchgate.net/publication/220403984_A_methodology_for_the_development_of
_multi-agent_systems_using_the_JADE_platform

[19] X. Vila, A. Schuster, and A. Riera, "Security for a multi-agent system based on JADE," Computers
& Security, vol. 26, no. 5, pp. 391–400, 2007. URL: https://doi.org/10.1016/j.cose.2006.12.003

[20] T. V. Neskorodieva, Y. Y. Fedorov, and O. V. Nechyporenko, "Methodology of creation of
intelligent agents," Journal of Applied and Systemic Mathematics of DonNU, vol. 1, pp. 45-58,
2021. URL: https://jpasmd.donnu.edu.ua/article/view/12949

[21] Y. O. Kubrak, D. D. Plechystyi, and V. V. Romanyshyn, "Principles of forming a multi-agent
artificial intelligence system," Computer-Integrated Technologies: Education, Science,
Production, vol. 45, pp. 39–46, 2021. URL:
https://cit-journal.com.ua/index.php/cit/article/download/372/473

[22] Y. Yezhova and N. Maslova, "Using AgentScript to produce multi-level agent-based modelling
models," Scientific Papers of Donetsk National Technical University. Series: “Computer
Engineering and Automation," vol. 35, pp. 54–66, 2024. URL:
https://doi.org/10.31474/2786-9024/v2i3(35).319553

[23] V. Kravchuk, N. Maslova, and I. Dorohyi, "Automated xss vulnerability detection in web
applications based on a multi-agent approach," Scientific Papers of Donetsk National Technical
University. Series: “Computer Engineering and Automation," vol. 3, no. 4(36), pp. 19–30. URL:
https://doi.org/10.31474/2786-9024/v3i4(36).324435

[24] D. López and F. Bellifemine, "Developing multi-agent systems with SPADE," in Multi-Agent
Programming, Springer, 2009, pp. 383-410.

[25] J. Palanca, "Welcome to SPADE’s documentation," SPADE Team, 2020. URL: https://spade-
mas.readthedocs.io/en/latest/

[26] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent systems with JADE. Wiley,
2007. URL: https://www.wiley.com/en-us/Developing+Multi-Agent+Systems+with+JADE-
p-9780470058404

[27] G. Caire, "JADE Programming Tutorial for beginners," Tilab, 2009. URL:
https://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf

[28] D. Grimshaw, "JADE administration tutorial," Tilab, 2010. URL:
https://jade.tilab.com/documentation/tutorial

	1. Introduction
	2. Literature Review
	3. Choice of Methods and Tools
	4. Discussion: Using JADE to dynamically bypass WAFs when anomalies are detected
	4.1. Examples of dynamic WAF bypass
	4.2 Implementation of distribution in a multi-agent system.

	5. Description of test scenarios and test results
	6. Conclusions
	Acknowledgements
	Declaration on Generative AI
	References

