
Optimisation of Training Samples with KLE and Mutual 
Information

Denys Symonov1, Oleksandr Palagin1, Yehor Symonov1 and Bohdan Zaika1  

1 V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences (NAS) of Ukraine, Akademika Glushkova 
Avenue 40, Kyiv, 03187, Ukraine

Abstract
One of the key challenges in modern machine learning is reducing the dimensionality of the feature space in 
training samples while preserving essential information for classification and forecasting tasks. This study 
proposes a methodologically grounded approach that integrates the Kozachenko-Leonenko entropy (KLE) 
method with mutual information to enhance feature selection, thereby improving model accuracy and 
reducing  computational  complexity.  A  comparative  analysis  on  the  real-world  dataset  confirms  the 
effectiveness  of  the  proposed  method  in  selecting  informative  features  and  improving  classification 
performance.
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1. Introduction

The quality of machine learning models largely depends on the quality of training samples that are 
formed at the data preparation stage and directly affect the accuracy, generalisability and stability of 
the models. Effective data preparation involves data cleaning, transformation, selection of relevant 
features, and elimination of outliers. However, these processes are complex and require automation.

The concept of entropy is one of the most powerful mathematical tools that allows for such 
operations to be performed objectively and formally. Entropy methods allow to estimate the degree of 
uncertainty in training data, identify the most relevant features, and find optimal strategies for their  
processing.

The use of entropy for data processing is not a novel concept, but its relevance in modern machine 
learning  tasks  is  only  growing.  One  of  the  most  well-known  areas  of  its  application  is  the 
discretisation of  continuous features.  For example,  the Fayad-Irani  method is  based on entropy 
minimisation to determine the optimal partitioning thresholds, which allows obtaining compact and 
informative value intervals [1]. This technique is effective for improving trained models, which is  
confirmed by empirical studies [2, 3]. Such approaches allow not only to reduce the dimensionality of 
the feature space but also to improve the generalisation ability of the models.

Another important aspect is the selection of features based on entropy criteria. Methods such as 
information gain [4, 5] and Gini impurity [6-8] identify the extent to which each feature contributes to 
class  recognition.  This  enables  the  elimination  of  redundant  or  insignificant  features,  thereby 
increasing the efficiency of classification algorithms. In particular, algorithms such as SelectKBest [9, 
10] and Recursive Feature Elimination (RFE) [11, 12] are effectively used to select relevant features 
even in cases of large and unbalanced samples. Taking into account methods based on conditional and 
mutual information allows creating more flexible and adaptive feature selection strategies for further 
use in machine learning algorithms.

In addition to working with features, entropy is used to select the most informative training 
samples. In the context of active learning, one of the most common approaches is Entropy Sampling, 
where priority is given to samples for which the model has the highest uncertainty in predictions. This 
allows to significantly reduce the size of the training set without degrading the classification quality. 

1CMIS-2025: The Eighth International Workshop on Computer Modeling and Intelligent Systems, May 5, 2025, 
Zaporizhzhia, Ukraine

 denys.symonov@gmail.com (D. Symonov); palagin_a@ukr.net (O. Palagin); e.symonov@gmail.com (Y. Symonov); 
zaikabohdan5@gmail.com (B. Zaika) 

 0000-0002-6648-4736 (D. Symonov); 0000-0003-3223-1391 (O. Palagin); 0009-0008-2581-2001 (Y. Symonov); 0009-0001-
9567-8361 (B. Zaika)

© 2025 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



Studies in computer vision and text analytics confirm the effectiveness of this strategy [13, 14]. It  
should also be noted that entropy analysis helps to assess the balance of classes in the training set. A 
low value of the entropy of the class distribution signals a significant imbalance, which can negatively 
affect the performance and accuracy of the model.  Diagnostic criteria based on entropy help to 
identify  such  problems  in  time  and  apply  appropriate  corrective  strategies,  such  as  sample 
rebalancing or weighting.

Therefore, the use of entropy methods in the processing and analysis of training samples opens up 
wide opportunities to improve the efficiency of machine learning models. These approaches not only 
optimise the structure of the sample but also improve its information content, which directly affects 
the accuracy and stability of the built models.

2. Problem statement

One of the key challenges of modern machine learning is to reduce the dimensionality of the feature 
space without significant loss of information required to solve forecasting or classification tasks. The 
growing amount of data used in models leads to an increase in computational complexity, model 
overtraining, and a decrease in their generalisation ability. As a result, it is important to develop 
effective methods for selecting informative features and reducing the dimensionality of the space 
while retaining relevant information. Traditional approaches, such as principal component analysis  
(PCA) [15] or linear discriminant analysis (LDA) [16], are effective only under certain assumptions 
about  the data  distribution.  However,  in the case  of  complex,  non-linear  relationships between 
features, these methods may not be effective. An alternative is entropy-based methods for assessing 
the information content of features, which do not require any prior assumptions about the data 
distribution.

Therefore, the problem statement is to develop a methodologically sound approach based on 
entropy methods, which will improve the quality of training samples and, consequently, the accuracy 
of machine learning models.

3. Goal and objectives of the study

The purpose of this study is to analyse and justify the effectiveness of using entropy method for 
processing and analysing training samples in order to improve the quality of machine learning 
models. To achieve this goal, the following objectives are considered.

1. Analyse the capabilities of the Kozachenko-Leonenko entropy (KLE) method for assessing the 
informativeness of features in N-dimensional space.
2. Development of a combined approach using KLE and mutual information for feature selection 
to improve the quality of models and reduce the need for resources to solve classification or 
prediction problems.
The accomplishment of these objectives will contribute to the development of a methodological 

framework for machine learning and provide an effective approach to the preparation of training 
samples, which in turn will increase the accuracy and generalisation of models.

4. A combined approach using KLE and mutual information for 
feature selection

This section presents a novel approach to feature selection that combines KLE entropy and mutual 
information.  By  integrating  these  two  methods,  the  proposed  approach  aims  to  improve  the  
evaluation of  feature relationships,  decrease dimensionality of  training sample and,  as  a  result,  
enhance both classification accuracy and generalization performance. The first part of the section 
discusses the use of the KLE method in N-dimensional space for preparing the training sample, while 
the second part demonstrates how KLE and mutual information are combined to perform feature 
selection.



4.1. KLE method in N-dimensional space

The KLE method is an effective approach for estimating differential entropy in N-dimensional 
space. This nonparametric method, unlike its parametric counterparts, does not require any prior 
assumptions about the data distribution and works well even with complex, nonlinear distributions 
[17].

Let's assume that the task of training sample preparation involves the following.
1. Remove or reduce the influence of noisy data (outliers);
2. Select or transform a subset of features in such a way as to ensure the highest informativeness 
with respect to the output variable;
3. Ensure  satisfactory  accuracy  of  the  machine  learning  model,  even  under  conditions  of  
incomplete information.
Denote the given dataset by X={(xi , y i)}, i=1 , N , where x i∈ RN is a feature vector and y i is the 

target  variable ( y i∈ R for  regression,  y i∈ {C1 ,C2 ,…,C k } for  classification).  The KLE method 
estimates  the  differential  entropy  of  the  feature  space  X,  which  is  useful  for  analysing  the 
informativeness of features and their relationship with the target variable Y.

The differential entropy of a random variable X ∈ RN  is defined as

H ( X )=−∫
RN

❑

f X (x ) log f X (x )dx , (1)

where f X (x ) is the probability density of the feature distribution.
The KLE algorithm for N-dimensional space is as follows. First, for each point xi the distance to its 

k-th nearest neighbour is found (for example, with the Euclidean distance):

ρk (xi)=min
k

{ρ∨|{x j∈ X :‖x j−xi‖≤ ρ}|≥k+1}, (2)

where ρk (xi)is the radius containing k+1 points, including the point xi itself; x j is the point for 

which the  k-th nearest neighbour is searched;  ‖x j−x i‖ is the distance between points  xi and  x j 
according to the selected distance metric;  ρ is the value of the radius, which changes until  the 
minimum value is found that satisfies the condition; k  is the number of nearest neighbours that are 
taken into account.

The number of k nearest neighbours, which is taken into account when estimating the distribution 
of the noise component, can be calculated with the pseudocode from the Figure 1.

Figure 1: Pseudocode for calculating the number of k nearest neighbours

The pseudocode in Figure 1 implements an adaptive method for finding the optimal value of 
parameter k, using a window of size L to track the dynamics of the evaluation function J (k ) changes 
and introducing a stopping condition based on the stability or deterioration of the function value.

The evaluation function J (k ) can be calculated with the equation

J (k )= 1
B ∑

b=1

B

[H KLE ,k (X b)−H k ]
2
, (3)



where H KLE ,k (X b) is the KLE entropy with fixed k (e.g., k = 1) on the sample X b; H k is the average 

KLE entropy with fixed k on the sample X b; B is the number of samples (e.g., bootstrap samples or 
cross-validation samples); X b is one of the B samples.

Next, the volume of a unit sphere in N-dimensional space is determined by the chosen norm. For  
example, for the Euclidean norm, the volume of a unit sphere

V N=
π

N
2

Γ(N
2

+1)
, (4)

where Γ (⋅) is the gamma function.
The last step is to calculate the KLE-entropy estimate 

H KLE=Ψ (M )−Ψ (k )+ log (V N )+ N
M

∑
i=1

M

ln ρk (xi)+γ , (5)

where Ψ (⋅) is the digamma function, Ψ (x+1)=Ψ (x )+ 1
x

;  M is the number of sample points; 

γ≈0.5772 is the Euler-Mascheroni constant.

4.2. Combining KLE with mutual information

The mutual information is a powerful tool for detecting non-linear dependencies between features 
and the target variable, facilitating the construction of a dataset that is both balanced and information-
rich  [18].  Mutual  Information  measures  the  extent  to  which  information  about 
X b={(xi , y i)}, i=1 , N  helps to determine Y. If the values of X b are conditionally independent, then 
mutual information will be

I (X b ,Y )=∑
j=1

N

I (xij , y i) , (6)

provided that

p (xi1 , xi2 ,…, x¿∨ y i)=∏
j=1

n

p (xij∨ y i) . (7)

Accordingly, Mutual Information for xi is defined as:

I (xi∨ y i)=∑
i=1

N

∑
y i∈ Y

p (xi , y i) log
p (xi , y i)

p (xi) p ( y i)
, (8)

where p (xi , y i) is the joint probability of events xi and y i;  p (xi), p ( y i) are the corresponding 

marginal probabilities of xi and y i.
Based on the integral Mutual Information scores given on the sample from the dataset X b, it is 

possible to eliminate insignificant features, thus the sample for model training will be of the form
XT={X b∨I (xi∨ y i)≥α }, (9)

where α  – is the cut-off threshold.
This  approach  makes  it  possible  to  reduce  the  dimensionality  of  the  feature  space  while 

maintaining a high level of relevance to the target variable.
If the model performance at the validation stage is insufficient, it is possible to add an algorithm for 

iteratively adjusting the α  threshold or implementing the combined criterion ϕ (XT ), which aims to 

maximise the ratio by changing the α  parameter and the structure of XT :
ϕ (XT )=ScoreCV (XT )−λ|XT|, (10)

Where ScoreCV (XT ) is the average model quality score based on the cross-validation; |XT| is the 
number of selected features; λ≥0 is the penalty factor.

To sum up, the integration of KLE entropy and Mutual Information methods allows to significantly 
reduce the dimensionality of the initial feature set, while maintaining sufficient information potential 
for efficient model training. This increases not only the performance of machine learning algorithms, 
but also their stability and interpretability in real classification and regression tasks.



5. Comparative analysis of modelling results

One of the important stages of developing effective machine learning models is validation of the 
results on real data set, which allows to objectively assess the impact of preprocessing on the accuracy 
and stability of classification. To verify the quality of the proposed entropy methods, a comparative  
analysis of classification results using pre-processed and unprocessed training samples was applied.

5.1. Dataset

To evaluate the effectiveness of entropy-based methods for processing training samples to improve 
the quality of machine learning models, the Gas Sensor Array Low-Concentration dataset [19] is used. 
Table 1 shows a snapshot of the Gas Sensor Array Low-Concentration dataset.  The full  dataset 
contains 90 gas samples collected by 10 semiconductor sensors. The studied gases include ethanol, 
acetone, toluene, ethyl acetate, isopropanol and n-hexane at three concentrations: 50 ppb, 100 ppb and 
200 ppb. For each gas and concentration combination, five samples were collected to provide a variety 
of data for modelling. Each sample consists of 9000 data points representing the sensors' response to 
the gas. Each sensor generates 900 data points, allowing for detailed analysis of their response to  
different gases and concentrations. The data was collected in three stages: baseline (5 minutes), gas 
injection (10 minutes), and purification (15 minutes) with a sampling rate of 1 Hz.

Table 1
Data: "Gas Sensor Array Low-Concentration"

Col1 Col2 Col3 Col4 Col5 Col6 Col7 … Col9001 Col9002
ethanol 100ppb 0.3565 0.3345 0.3575 0.333 0.3565 … 3.9325 3.9315
ethanol 100ppb 0.3525 0.3305 0.3525 0.332 0.355 … 3.918 3.9205
ethanol 100ppb 0.355 0.3345 0.354 0.332 0.355 … 3.8825 3.8815
… … … … … … … … … …
hexane 50ppb 0.3955 0.3805 0.394 0.3745 0.394 … 3.8995 3.8995

The presence of data for several types of gases, concentrations, and time phases (see Table 1) 
makes it possible to form a representative training set for building classification models in real-world 
conditions. Such a sample is optimal for testing the effectiveness of feature space reduction methods, 
in particular those based on entropy and mutual information.

5.2. Description of the experiments

The  base  machine  learning  model  is  the  ensemble  method  Random  Forest,  where  multiple 
independent decision trees are combined to enhance accuracy and stability. The implementation of 
machine learning algorithms and data analysis is conducted in Python, utilising libraries such as 
NumPy, pandas, matplotlib, scikit-learn, time, and psutil.  These libraries support tasks including 
classification,  dataset  splitting  (train_test_split),  learning  curve  analysis,  model  training  with 
RandomForestClassifier, performance evaluation metrics, t-SNE, PCA, and resource and execution 
time monitoring.

The dataset is initially divided into training and test sets, followed by model training based on a 
predefined target vector. To assess sensitivity to missing features, a mechanism is employed that 
retains only a fixed number of significant features, replacing the remaining ones with mean values 
computed from the training set. Classification quality is evaluated using accuracy metrics, ROC AUC, 
MAE, and MSE, while the model’s performance dependency on training set size is examined through a 
learning curve analysis.

For feature space analysis and dimensionality reduction, t-SNE (a non-linear projection) and PCA 
(a linear projection onto principal components) are applied. In addition to classification performance, 
computational efficiency and resource consumption are assessed by measuring execution time and 
CPU load.

All computational experiments presented in the paper were conducted on a laptop equipped with 
an Intel Core i7-13620H processor (13th generation, 10 cores: 6 performance and 4 efficiency cores,  
base frequency 2.40 GHz) and 16 GB of RAM. The system operates on a 64-bit Windows operating 



system  with  x64  architecture.  Parallel  computations  were  automatically  handled  through  CPU 
multithreading  using  libraries  such  as  scikit-learn,  NumPy,  and  joblib,  which  support  task 
parallelization  via  the  n_jobs  parameter.  GPU  acceleration  was  not  employed,  as  the  main 
computations involved tabular data processing and ensemble modeling (Random Forest), which are 
efficiently executed on modern CPUs.

5.3. Results of the experiments

The results of model testing presented in this section demonstrate a comparative analysis of the  
effectiveness  of  classification  methods  under  conditions  of  incomplete  input  data  and  different 
approaches to feature preprocessing.  Particular attention is  paid to the quality of  classification, 
stability of models, their ability to generalise, and computational efficiency.

Figure 2 a) (left) shows the effect of the available features on the classification accuracy in the  
absence of training set preprocessing (¬KLE). There is a gradual increase in classification accuracy 
with the number of available features, but this increase is non-linear and has some fluctuations. The 
initial  accuracy values are low, and the maximum value does not reach one, which indicates a  
significant loss of information. These results indicate that even with an increase in available features, 
the classifier cannot achieve ‘perfect’ accuracy due to the influence of noisy or unrepresentative data. 
In Figure 2 b) (right), where the training set was pre-processed using the Kozachenko-Leonenko 
entropy (KLE) method, a much faster increase in classification accuracy is observed. With a small 
number of features, the accuracy values are almost the same as in the first graph, but after reaching a 
certain threshold (approximately at 7 features), the accuracy increases sharply and approaches one. 
This indicates a significant improvement in classification quality due to data preprocessing, which 
likely eliminated the influence of noisy or irrelevant features, making the model more robust to  
incomplete data.

Figure 2: Incomplete data and classification accuracy

Figure 3 a) (left) shows that for the ¬KLE model, the training accuracy remains relatively stable as 
the  training  sample  size  increases,  while  the  cross-validation  accuracy  gradually  increases  but 
remains below the training accuracy. This may indicate a certain level of overfitting, as the model  
demonstrates higher accuracy on training data than on cross-validation data. The difference between 
the two curves indicates the presence of noise and uneven distribution of information in the training 
sample. In Figure 3 b) (right), the KLE model shows a much better balance between training and cross-
validation accuracy. Already with relatively small amounts of data, the model achieves high accuracy, 
and the difference between the two curves is much smaller, indicating better model generalisation and 
reduced overfitting. This confirms the effectiveness of pre-processing, which reduces the influence of 
irrelevant or noisy features and improves the quality of training.

In Figure 4 a) (left), there is significant chaos and high density of points for the t-SNE test of the  
¬KLE model, indicating a weak structure in the data. The classes overlap significantly, which can 
make  classification  difficult.  Such  a  distribution  indicates  the  presence  of  noise  and  irrelevant 
information in the features, which can reduce the accuracy of the model and its ability to generalise 
patterns in the data. In Figure 4 b) (right), a more structured distribution of points is observed for the 
KLE model. Clusters are clearer, indicating improved differentiation between classes. This confirms 
the effectiveness of pre-processing in reducing noise and identifying hidden patterns in the data.



Figure 3: Comparison of learning curves of “¬KLE” and “KLE” methods

Figure 4: t-SNE analysis of the test set with different feature processing

Figure 5 a) (left) for the ¬KLE model shows that the data are unevenly distributed and have some 
clusters, but the structure remains blurred. The classes overlap to a large extent, which can make 
classification difficult, as there is no clear boundary between the groups. Such a distribution 
indicates that the original features contain a significant amount of noise or irrelevant information, 
which reduces the quality of model training. In Figure 5 b) (right), the KLE model shows a clearer 
separation between the groups, the data looks more clustered and has distinct directions in the 
principal component space. This indicates effective noise removal and improved differentiation 
between classes, which can improve classification accuracy. 

Figure 5: PCA analysis of the test set with different data processing

Figure 6 a) (top row) shows that without preprocessing, the prediction time and the CPU usage 
increases  from 0.45 sec (3  features)  to 0.67 sec (10 features),  indicating the high computational 
complexity of the model. In Figure 6 b) (bottom row), after processing with the Kozachenko-Leonenko 



entropy method, the prediction time increases only from 0.077 sec to 0.096 sec, while CPU Time 
stabilises at 0.094 sec after 6 features. This confirms the effectiveness of the processing in reducing  
computational costs and improving performance.

Figure 6: Dependence of performance and resources on training set pre-processing

Table 2 shows that without pre-processing (¬KLE), all metrics deteriorate sharply as the number of 
features decreases: AUC-ROC drops from 0.999 (10/10 features) to 0.747 (3/10 features), MAE and MSE 
increase significantly, and Log Loss increases from 0.525 to 5.427, indicating a loss of model stability. 
This indicates that without preprocessing, the model becomes very sensitive to a decrease in the 
number of features, which impairs its ability to generalise patterns. On the other hand, with KLE, the 
classification accuracy remains consistently high even with incomplete information. For example, the 
AUC-ROC changes less sharply (from 1.000 to 0.805), and the MSE and Log Loss remain at lower levels 
than in the case of ¬KLE. This shows that entropy processing improves model generalisability and 
reduces the impact of missing features, making the algorithm more robust to incomplete data.

Table 2
Quality metrics of models

Number  of 
input 
parameters

AUC-ROC MAE MSE Log Loss Macro-F1
¬KLE* KLE ¬KLE KLE ¬KLE KLE ¬KLE KLE ¬KLE KLE

10/10 0.999 1.000 0.486 0.029 14.35 0.05 0.525 0.097 0.91 0.98
9/10 0.997 0.999 1.589 0.282 40.16 8.46 1.038 0.407 0.69 0.95
8/10 0.996 0.999 2.180 0.637 53.80 23.88 1.421 0.776 0.64 0.94
5/10 0.847 0.899 11.118 7.641 244.37 157.74 4.827 7.058 0.11 0.14
3/10 0.747 0.805 12.877 13.915 302.93 427.91 5.427 12.562 0.05 0.06

* - Machine learning algorithm without using KLE for preparing the initial sample
The  results  in  Table  2  demonstrate  that  data  preprocessing  using  KLE  not  only  improves 

classification accuracy, but also ensures the stability of the metrics while reducing the amount of input 
information.  This  approach  is  effective  both  in  terms  of  model  quality  and  computational  
performance.



6. Conclusion

The primary goal of this study was to develop and substantiate an effective method for optimization of 
training sample, based on entropy theory, combining the Kozachenko-Leonenko entropy (KLE) and 
mutual information. The declared objectives included analysing the potential of KLE in N-dimensional 
feature space and constructing a hybrid approach for feature selection to enhance model quality and 
reduce computational cost. The findings fully reflect the achievement of these objectives.

The  proposed  method  offers  a  non-parametric  evaluation  of  differential  entropy,  capable  of 
detecting  noise  and  selecting  informative  features  without  relying  on  prior  distributional 
assumptions.  The  integration  with  mutual  information  enables  identification  of  features  most 
relevant to the target variable, contributing to the creation of a compact yet expressive feature space.

Empirical validation on the Gas Sensor Array Low-Concentration dataset confirmed the practical 
effectiveness of the method with the following results.

1. The AUC-ROC metric under preprocessing with KLE remained high even with partial data 
(1.000 with the full feature set; 0.805 with only 3 out of 10 features), whereas in the unprocessed 
baseline it dropped to 0.747.
2. The Mean Squared Error (MSE) remained low (ranging from 0.05 to 427.91 depending on the 
number of features) for the proposed method, indicating improved noise resilience.
3. The Macro-F1 score remained consistently higher (ranging from 0.98 to 0.06 for KLE vs. 0.91 
to 0.05 for the baseline) under feature removal scenarios.
4. Prediction time decreased from 0.67 seconds (baseline) to 0.096 seconds (with KLE) for 10 
features, demonstrating enhanced computational efficiency.
5. Visualisation  techniques  such  as  t-SNE  and  PCA  further  confirmed  improved  class 
separability and reduced noise.
The  analysis  shows that  the  use  of  KLE entropy allows for  an  objective  assessment  of  the 

informativeness of features, reducing their number without losing relevance, which significantly 
increases the accuracy and stability of models. The use of mutual information in combination with 
KLE facilitates the selection of the most significant features, which minimises the influence of noise 
factors and allows optimising the feature space for training. The results also show a significant 
reduction in model overfitting and computational costs by removing redundant information.

Therefore, this research presents a theoretically grounded and empirically validated approach to 
entropy-based preprocessing. The alignment between the initially defined objectives and the achieved 
results has been demonstrated through both qualitative and quantitative analysis. This work provides 
a foundation for the further integration of entropy-driven techniques into advanced machine learning 
pipelines, particularly in domains characterised by complex or imbalanced datasets.

7. Directions for further research

The use of entropy criteria in combination with deep learning methods can significantly improve the 
quality of training samples, especially in high-dimensional spaces. In particular, a promising area is 
the adaptation of  the KLE method to analyse the relationship between features in deep neural 
networks, which will not only reduce the feature space but also determine their informativeness in the 
context of multilevel data representations.

Special  attention should be paid to  the integration of  entropy-based approaches  with active 
learning methods, which will allow for dynamic sample adjustment in the process of model training. 
The use of strategies similar to Entropy Sampling will allow optimising the balance of classes and 
selecting the most informative examples for training. Further development of such approaches may 
include the creation of adaptive algorithms that combine estimates of differential entropy and mutual 
information to optimise the learning process in real time. This will not only reduce computational 
costs, but also improve the generalisation capability of the models, ensuring their stability even in 
circumstances of high variability in input data.
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