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Abstract
Single Image Super-resolution  (SISR) methods are actively developed with the help of advancements in 
Convolution Neural Networks (CNNs) and attention mechanisms. Following the progress in RGB SISR  
methods, thermal image super-resolution methods (TISR) are beginning to adopt and implement these 
advancements. Despite showing prominent results, modern state-of-the-art SISR methods often have a large 
number of parameters,  leading to a significant computational overhead and memory consumption and 
making it difficult to run these methods in real-time or on edge devices. To address these problems, we 
propose a  parameter-efficient TISR model named LECAN, which consists of a stack of efficient channel-
spatial attention blocks (ECSAB). Specifically, the ECSAB combines Pixel Attention (PA) with the proposed 
Efficient Contrast-aware Channel Attention (ECCA) to extract both spatial and channel-wise features while 
maintaining a low parameter count. Meanwhile, the Attentive Feature Fusion (AFF) mechanism effectively  
combines information from all blocks, capturing both low-level and high-level features. The qualitative and 
quantitative results show that the proposed method achieves superior results among same-size models while 
preserving the texture and patterns of the thermal image with a small number of parameters.
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1. Introduction

The ability of thermography to capture light information beyond the visible scope has made it in  
demand in many spheres. Unlike thermal cameras, RGB cameras often struggle to capture images in 
low-light and bad weather conditions, making them highly sensitive and dependent tools. Moreover, 
thermal images are also used as an additional source of information, enhancing the overall process of 
data analysis. These advancements have made thermography a preferable instrument in many fields, 
including medicine [1], UAVs [2], agriculture [3], etc. 

On the other hand, due to the high cost and complexity of producing high-resolution thermal 
cameras, the output infrared image is often low-resolution. This constraint makes analyzing thermal 
data difficult, making it harder to distinguish small details in the image. This, in turn, leads to a  
decrease  in  the  quality  of  data  analysis.  To  overcome  this  issue,  image  super-resolution  (ISR)  
techniques can be used, that are invariant of the camera hardware.

With the development of CNNs, ISR task can be accurately solved with the help of deep learning 
techniques. These methods rely on the convolution operation, which can effectively extract patterns 
and textures of different complexity. On the other hand, to achieve high performance, these methods 
stack a sufficient amount of layers, making the overall size of the model large. This disadvantage 
makes it hard to integrate these models on edge devices or use them in real-time.

Efficient  ISR  methods  help  to  decrease  the  size  of  the  model  while  keeping  the  overall  
performance high. On the other hand, the development of such methods remains difficult due to the 
complexity of accuracy-size trade-off.

In this paper, we propose a novel architecture called Lightweight Efficient Channel Attention 
Network (LECAN) that is based on a combination of channel and spatial attention mechanisms. To 
keep the number of parameters low, we propose a combination of Contrast-aware and Efficient  
Channel Attention mechanisms. This structure helps to accurately extract fine details at different 
frequency levels.

The main contribution of the paper is:
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 We propose a novel architecture called LECAN that consists its key components called 
Efficient Channel-Spatial Attention Blocks (ECSAB). The architecture of ECSAB allows to 
extraction  spatial  and  channel  features  in  parallel  by  dynamically  recalibrating  the 
importance of channels and pixels.

 We propose to use the Efficient Contrast-aware Channel Attention block (ECCA) for 
solving  the  TISR  task.  This  idea  combines  the  strength  of  contrast-aware  feature 
extraction and the efficiency of ECA.

 The qualitative and quantitative results show that the proposed method demonstrates 
competitive results in different benchmarks with less number of parameters.

2. Related work

2.1. Image Super-Resolution methods

2.1.1. CNN-based

Image SR methods began rapid development since the CNNs became popular. SRCNN [4] was the first 
method to apply a CNN network to solve SR, consisting of 3 convolutional layers and becoming a 
state-of-the-art method at one time. However, 3 convolutional layers are not enough to learn a 
sufficient amount of patterns for reconstruction. The authors of VDSR  [5] used 20 convolutional 
layers,  showing  significant  improvements  in  results.  Combining  the  advancements  of  residual 
learning [6] to increase the performance of very deep CNNs with Generative Adversarial Networks 
(GANs), the authors of SRGAN [7] proposed a GAN-based SR model to further boost the performance 
of  SR methods.  On the other  hand,  the training process  of  GAN-based is  difficult  due to hard 
convergence and mode collapse. To achieve better performance, the authors of EDSR [8] proposed to 
remove batch normalization in SrResNet [7] blocks. Despite the fact that the process of stacking layers 
can gradually improve the accuracy of SR models, it will eventually become inefficient to apply in real-
world scenarios because of the large number of parameters. Addressing this problem, the authors of  
RCAN [9] proposed the use of the Channel Attention (CA) mechanism to adaptively enhance channel-
wise features based on the interdependencies of the channels.

2.1.2. Efficient SR

To overcome the problem of considerable complexity of most state-of-the-art methods, efficient 
models can be used. These models try to minimize the overall complexity by removing unnecessary 
layers, reducing the number of parameters of basic building blocks, distilling large models, etc.

The authors of PAN [10] proposed a network with Pixel Attention (PA) mechanism, that aims to 
enhance spatial dependencies with fewer parameters. A2N model [11] uses building blocks that consist 
of attention and non-attention branches weighted by a dynamic attention module, that helps to 
dynamically adjust the impact of each attention branch. IMDN [12] employs the channel-splitting 
strategy, in which one part of the channels is kept while the other part is passed on for further  
processing.  This  strategy  allows  to  improve  the  performance  while  reducing  the  number  of 
parameters. The authors of RFDN [13] successfully improved the idea behind IMDN by enhancing 
channel-splitting operation and reducing the number of parameters in convolutional layers. BSRN 
[14] further improves channel splitting idea

Although  efficient  models  are  able  to  produce  an  upscaled  image  quickly  and  with  low 
computational costs, the quality of the output image remains low compared to the original image. This 
trade-off emphasizes the need to develop efficient models that can process images with high accuracy 
while remaining small in size.

2.2. Attention mechanism

Inspired by human attention, the attention mechanism in deep learning helps the model focus 
more on important parts of the input data. The Squeeze-and-Excitation (SE) [15] block was proposed 
to enhance features in channel dimension by assigning weights to each channel. CBAM [16] further 
expands this idea by assigning weights not only in the channels but also in the spatial dimensions. The 



Efficient Channel Attention (ECA) is an improvement of the SE block that uses a one-dimensional 
convolutional block to reduce the model complexity. The self-attention mechanism that is used in 
Vision Transformers [18] also inspired the development of transformer-based models for low-level 
vision tasks. SwinIR [18] adopted the Swin Transformer [20] as a baseline by creating a Residual Swin 
Transformer Block with a convolutional layer and long residual connection. IPT [21] also applied ViT-
based architecture and introduced multi-task pretraining for low-level vision. HAT [22] combines 
channel attention and window-based attention to enhance performance by activating more input 
pixels.

In this work, we endeavor to enhance the ISR model with the strength of the attention mechanism, 
while keeping the model efficient at the same time.

2.3. Thermal Image Super-Resolution

Due to the domain specificity of RGB and infrared images, which include visual and contextual 
differences, directly applying SR methods developed and trained for RGB images on infrared images  
may not be beneficial. Therefore, there is a need to design and train models directly for the TISR task. 

The authors of the PSRGAN [23] proposed to use GAN-based model along with multistage transfer 
learning for solving TISR task.  TherISuRNet  [24] method consists of  several  residual blocks for 
extracting features and different frequency levels. The authors of MPRANet [25] proposed residual- 
and attention-based network with convolution of different kernel sizes. ChaSNet [26] uses channel-
splitting technique to improve feature extraction. LISN  [27] also uses a channel-splitting idea to 
reduce the number of parameters. LDANet [28] uses blocks with attention and non-attention branches 
weighted by dynamic attention modules.

Despite noticeable results in TISR, this area is still under-researched compared to other low-level 
vision tasks. This supports the need to develop robust methods directly for solving TISR task.

3. Method

This section describes the architecture of the building blocks and the overall proposed network for 
thermal image SISR, as well as the motivation for their implementation and usage.

3.1. Network Architecture

The architecture of the proposed networks (Figure 1) follows the extended standard structure for 
the SR models: shallow feature extractor (SFE), deep feature extractor (DFE), feature fusion (FF), and 
image reconstruction (IR, upsampling). 

Figure 1: The architecture of the proposed method

The SFE is represented by a single convolutional layer with a kernel size of 3×3. Mathematically,  
the SFE is represented as follows (1):

xSFE=f SFE( I LR ) , (1)
where xSFE– output features from SFE module;
 ILR – low-resolution image;
fSFE – the function of the SFE module.
After shallow features are extracted, the output from the SFE module is then processed by the DFE 

module. The DFE module is the main part of the network which is responsible for extracting high-
level features and complex patterns that might be useful for ISR. The DFE module consists of a stack of 
Efficient Channel-Spatial Attention Blocks (ECSAB), which will  be explained in Section 3.2.  The 



output of the DFE module is the stack of outputs of each ECSAB module that is then processed by the 
AFF module. Mathematically, the DFE is represented as follows (2):

xDFE=f DFE( xSFE )={f B1( xSFE ); f B2( f B1( xSFE ));…; f BN ( f BN−1
(… f B1( xSFE )…))}, (2)

where xDFE– outputs from DFE module;
f BN – the function of N-th ECSAB block.
The stacked outputs from the DFE module are then processed by the FF module to accurately fuse 

and extract the interdependencies between the output channels of each ECSAB block and the spatial  
features of the fused results. The FF module is represented by the AFF block, which is described in  
Section 3.3. Mathematically, the output of the FF module is expressed as follows (3):

xFF=f FF ( f DFE( f SFE( I LR ))) , (3)
where xFF – output features from FF module;
fFF– the function of the FF module.
Finally, the IR module reconstructs the high-resolution image by upscaling it with the desired 

factor. Figure 2 shows the IR block. The IR module consists of one IR block if upscaling factor is 2 and 
two IR block if upscaling factor is 4.

Figure 2: Image Reconstruction Block

IR block can be represented mathematically as follows (4):
x IR=Conv (PA (ECCA (Conv (NN ( xFF ))))) , (4)

where xIR – output from IR module;
NN – nearest neighbor interpolation.
The overall mathematical formula for ISR is the following (5):

I SR=f IR( f FF ( f DFE ( f SFE ( I LR ))))+B( I LR ) , (5)
where ISR – output upscaled image;
fIR – the function of the IR module;
B – bilinear interpolation.

3.2. Efficient Contrast-aware Channel Attention Block

Simply combining the strength of the ECA [17] and CCA [12], we propose the ECCA block as part 
of the TISR method. First, the ECCA inherits parameter efficiency from the ECA block. Secondly, the 
contrast-aware part from CCA introduces a better refinement of textures and edges, allowing the 
model to capture information from low-, medium-, and high-level features. Following the original 
paper, the contrast-aware operation is the summation of each channel's standard deviation and mean. 
Figure 3 shows the structures of spatial-based attention (PA) and channel-based attention (including 
the proposed ECCA).



Figure  3:The visualization of  attention mechanisms:  a  – Pixel  Attention (PA),  b  – Channel 
Attention (CA), c – Contrast-aware Channel Attention (CCA), d – Efficient Channel Attention (ECA), 
e – Efficient Contrast-aware Channel Attention (ECCA).

Mathematically, ECCA can be expressed as follows (6):
xECCA=Sigmoid (Conv1d (meanc ( xin )+stdc ( xin )) , (6)

where xECCA – output from ECCA block;
xin – input to the ECCA block;
meanc – per channel mean;
stdc – per channel standard deviation

3.3. Efficient Channel-Spatial Attention Block

The key component of the proposed method is the ECSA block and its combination of channel-
wise  and  pixel-wise  attention  mechanisms.  Specifically,  this  combination  of  two  attention 
mechanisms allows the model to simultaneously focus on reweighting the feature maps along the 
channel dimension with the ECCA and emphasize the importance of individual pixels within the 
feature maps with the PA. Consequently, the network is able to leverage complementary information 
is  across  both  spatial  and  channel  dimensions.  The  parallel  structure  of  applying  attention 
mechanisms to the input features ensures independent behavior of extracting spatial and channel-
wise dependencies with a further combination of the feature maps. Residual connections allow the 
preservation of input features’ information for further layers. Figure 4 shows the architecture of the 
ECSA block.

Figure 4: Architecture of the ECSA block

3.4. Attentive Feature Fusion



The AFF block serves as a additional part of the proposed model and its main goal is to efficiently 
fuse output features from different detailization levels. To do this, outputs from each ECSA block are 
concatenated along the channel dimension. Then, concatenated channels are processed with an ECCA 
block to extract dependencies across all blocks channel-wise. This operation allows the model to 
attend more to important information that  might  be  spread along channels  of  different  blocks,  
efficiently combining low-level and high-level features. Then, to reduce the number of parameters, the 
point-wise  convolution  is  applied.  In  the  end,  the  PA block  is  used  to  further  process  spatial 
information. In general, this module is based on the assumption that different levels of deep feature 
extraction might carry some portion of useful features and the attentive combination of features 
might improve the selection of this information. Figure 5 shows the architecture of the FFA block.

Figure 5: The architecture of the FFA block

4. Experimental analysis

The training setup for all models was the same to exclude the dependency of training parameters. 
AdamW [29] was used as an optimizer. The learning rate was set to 2e-4 with a MiltuStepLR scheduler 
that multiplies the learning rate by 0.5 at the following milestones: 50k, 65k, 80k, and 90k. The total 
number of iterations was set to 100k. During training, a patch of size 256×256 was randomly cropped 
from the HR image along with the corresponding patch from the LR image. The batch size during 
training was set to 8. Horizontal and vertical flips were used as data augmentation techniques, as well 
as  random JPG compression with quality varying from 0.9  to 1.  RSNR and SSIM were used as  
evaluation metrics. The experiments were conducted with PyTorch framework.

4.1. Training and testing datasets

For training, we used the Challenge dataset Помилка: джерело посилання не знайдено. This 
dataset consists of thermal images of three different resolutions: LR Domo, MR Axis, and HR FLIR. To 
create a training set for this task, we downsampled HR FLIR thermal images by the scales of 2 and 4.  
The resulting dataset contains 951 images for training and 50 images for validation.

For testing, we used a recent Challenge dataset (Challenge 2)  [30]. This dataset contains 1000 
images, where 900 images are provided for training and validation, while the other 100 images are 
used to evaluate entries for the challenge (ground-truth is hidden). To create a testing set, 900 GT 
images were downsampled by scales of 2 and 4.

We also used CVC-09: FIR Sequence Pedestrian Dataset [31] by randomly selecting 1000 GT images 
and downsampling them by scales of 2 and 4.



4.2. Ablation study

We conducted the ablation study to examine the effect of different attention mechanisms in the  
network. Specifically, we trained 4 models with CA, ECA, CCA, and ECCA blocks in the architecture. 
The results of the ablation study on Channel Attention type are shown in Table 1.

Table 1 
The results of the ablation study on Channel Attention type. The top values are highlighted in red 
and blue respectively

Attention type N Params (k) PSNR (dB) SSIM
CA 399 32,5775 0,9294
ECA 344 32,563 0,9292
CCA 399 32,5836 0,9296
ECCA 344 32,5894 0,9296

The  results  show  that  the  contrast-aware  part  of  the  Channel  Attention  can  improve  the  
performance,  while  the  usage  of  parameter-efficient  Channel  Attention  reduces  overall  model 
complexity, keeping model’s accuracy high.

4.3. Quantitative evaluation

We compared our proposed model with several state-of-the-art methods: SRCNN [4], BSRN [14], 
PAN [10], RFDN [13], A2N [11], and IMDN [12]. The quantitative evaluation shows that the proposed 
method achieves competitive results while remaining relatively small compared to other models. 
Tables 2-5 present quantitative results for each method, as well as the size of each model.

Table 2
The quantitative results on the Challenge 2 dataset with a scaling factor of 4. The top values are  
highlighted in red and blue respectively

Model N Params (k) PSNR (dB) SSIM
SRCNN 8 31,0928 0,8959
BSRN 333 32,4592 0,9261
PAN 271 32,4990 0,9279
RFDN 530 32,5271 0,9276
A2N 1046 32,5683 0,9289
IMDN 696 32,649 0,9292
LECAN (proposed) 344 32,5894 0,9296

Table 3
The quantitative results on the Challenge 2 dataset with a scaling factor of 2. The top values are  
highlighted in red and blue respectively

Model N Params (k) PSNR (dB) SSIM
SRCNN 8 41,6601 0,9746
BSRN 327 43,4645 0,9872
PAN 260 43,4757 0,9873
RFDN 524 43,3422 0,9867
A2N 1035 43,2968 0,9862
IMDN 687 43,5564 0,9867
LECAN (proposed) 336 43,5997 0,9874



Table 4
The quantitative results  on the CVC-09 dataset  with a  scaling  factor  of  4.  The top values  are 
highlighted in red and blue respectively

Model N Params (k) PSNR (dB) SSIM
SRCNN 8 37,4622 0,9075
BSRN 333 37,9992 0,9129
PAN 271 38,0288 0,9130
RFDN 530 38,0285 0,9129
A2N 1046 38,0571 0,9133
IMDN 696 38,0743 0,9135
LECAN (proposed) 344 38,0670 0,9136

Table 5
The quantitative results  on the CVC-09 dataset  with a  scaling  factor  of  2.  The top values  are 
highlighted in red and blue respectively

Model N Params (k) PSNR (dB) SSIM
SRCNN 8 41,2614 0,9418
BSRN 327 41,9301 0,9501
PAN 260 41,8375 0,9484
RFDN 524 41,7690 0,9474
A2N 1035 41,7778 0,9477
IMDN 687 41,7091 0,9466
LECAN (proposed) 336 41,8790 0,9491

4.4. Qualitative evaluation

The quantitative results show that the proposed method is able to reconstruct different patterns 
and textures of thermal images. The proposed model can Figures 6-9 present a qualitative analysis of 
LECAN comparing to state-of-the-art methods.

Figure 6: Qualitative results on the Challenge 2 dataset with a scaling factor of 2



Figure 7: Qualitative results on the Challenge 2 dataset with a scaling factor of 4

Figure 8: Qualitative results on the CVC-09 dataset with a scaling factor of 2

Figure 9: Qualitative results on the CVC-09 dataset with a scaling factor of 4

4.5. Inference speed evaluation

Inference evaluations were conducted on a server CPU AMD EPYC 7R32. The input image size is 
256x256, and an average time of 10 runs was chosen. Table 6 lists the inference speed results in ms and 
the number of Floating Point Operations (FLOPs). The results show good trade-off between accuracy 
and inference speed.



Table 6
The quantitative inference results

Model N Params (k) Time (ms) FLOPs (G)
SRCNN 8 118 4,26
BSRN 327 748 40,8
PAN 260 371 40
RFDN 524 418 68,47
A2N 1035 921 140,7
IMDN 687 433 89.8
LECAN (proposed) 336 559 48.6

5. Conclusion

In this paper, we propose LECAN for solving the TISR task. The proposed model consists of four main 
parts:  shallow  feature  extraction,  deep  feature  extraction,  attentive  feature  fusion,  and  image 
reconstruction. The deep feature extraction consists of several ECSAB blocks. The ECSAB block 
efficiently  combines  channel  and  spatial  attention  mechanisms,  where  channel  attention  is 
represented by the Efficient Contrast-aware Channel Attention (ECCA) block, and spatial attention is 
represented by the Pixel Attention (PA) block. The combination of Contrast-aware and Efficient 
Channel Attention mechanisms allows to reduce the number of parameters and enhances the overall 
performance of the model. The qualitative and quantitative comparisons show that the proposed 
method demonstrates competitive results while maintaining a low parameter count. Further work can 
be aimed to improve the extraction of more complex features by enhancing attention mechanisms.
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