
Trans-CAMNet: A Transformer-Based Grad-CAM Network 
for Lung Disease Classification

Kajal Kansal1*, Akansha Singh1, Krishna Kant Singh2 and Kanika Kansal3  

  *1Bennett University, Greater Noida, India  
2 Delhi Technical Campus, Greater Noida, India  
3 ABES Engineering College, Ghaziabad, India  

Abstract

Accurate medical imaging analysis has become crucial in diagnosing and managing pulmonary diseases, 
especially considering the global prevalence of respiratory disorders. Chest X-ray classification has become 
one of the most effective diagnostic approaches in diagnosing pulmonary diseases and is valuable in offering 
clinicians a fast, noninvasive diagnostic solution. However, classifying thoracic abnormalities is challenging 
because of the variability of the pathological patterns and the lack of large annotated medical image datasets. 
To tackle these challenges, in this study, we introduce a novel approach that integrates fine-tuned deep 
learning-based frameworks, including CNNs and transformers. Further, to address the issues associated with 
deep learning models as black boxes, we employ the Grad-CAM as an interpretability technique to enhance 
clinical decision-making. It displays the areas that significantly contribute to the model's prediction of the  
lung regions. The proposed Trans-CAMNet framework, evaluated using the publicly available COVID-19 
radiography dataset, achieves an accuracy of 98.33%, out-competing the traditional CNN architectures. These 
results highlight the possibility of transformer-based architectures in medical imaging tasks, with better 
classification  accuracy  and  interpretability.  These  results  provide  a  strong  rationale  for  combining 
sophisticated deep learning architectures and interpretability methods to meet diagnostic performance and 
explainability in medical image analysis, especially for challenging pulmonary diseases.
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1. Introduction

The development of medical imaging procedures has been  relatively fast and has contributed 
significantly to diagnosing and treating pulmonary diseases [1]. Chest X-ray (CXR) is still frequently
used as a simple, inexpensive, and safe tool for  diagnosing lung diseases, including pneumonia, 
tuberculosis, and COVID-19. [2] However, the identification and accurate  interpretation of CXR 
findings still pose a significant problem  because of lung disease's many and varied pathological 
patterns [3].  This challenge is  magnified by the scarcity of  well-annotated large medical image 
datasets for training deep-learning models [4]. Hence, the development of dependable and generalized 
models is a challenge.

Recently, deep learning, especially CNN, has proved to be  a potential  tool  for  automatically 
detecting and diagnosing medical images with high accuracy [5]. Nonetheless, CNNs have inherent 
drawbacks in expressing long-distance relations and global context in images, essential for detecting 
intricate and minor lung pathologies. [6]. To overcome these issues, transformer-based models have 
been introduced, which are very efficient in handling sequential data and capturing the global 
context [7]. Due to self-attention mechanisms, transformers can capture the interactions within 
an image and improve upon image classification tasks. Though CNNs and transformers have shown 
outstanding  performance  in  medical  imaging,  their  black-box  nature  is  a  significant issue for 
clinicians [8]. Explaining the predictions made about medical images is essential to prevent the usage 
of unreliable and untrustworthy models in clinical decision-making. Grad-CAM (Gradient-weighted 
Class Activation Mapping) is one of the most popular methods to explain the decisions made by deep 
learning models. It underscores the areas of an image that are more important in predicting a model 
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and provides clinicians with more insights into the decision-making [9].

In this paper,  we propose Trans-CAMNet,  a new framework that integrates the benefits of 
transformer-based structures with Grad-CAM interpretability for more accurate and transparent 
lung disease categorization [10]. The proposed model uses CNN and transformers to improve feature 
extraction and context modeling; Grad-CAM enables the visualization of the model's decision-
making process. The performance of Trans-CAMNet is assessed using the COVID-19 radiography 
dataset, and it is shown that Trans-CAMNet outperforms conventional CNN structures in terms of 
accuracy and explainability.

The objectives of this work are as follows:

 This study introduces Trans-CAMNet, a novel hybrid architecture that integrates transformer-
based models and  Grad-CAM for improved classification and interpretability in pulmonary 
disease diagnosis.

 This study compares the proposed architecture with state-of-the-art CNNs.

The following study sections are discussed: Section 2 describes the related studies. Section 3 
discusses the materials and methods used in the study. Section 4 presents the results and discussion, 
and Section 5 concludes the study.

2. Related Work

Deep learning has advanced in recent years and enhanced the ability to analyze CXR images for 
diagnosing  and  comprehending thoracic diseases, including COVID-19 [11].  Recent  work  has 
explored strong and deep neural networks, ensemble models, and explainability methods like Grad- 
CAM, Grad-CAM++, and LRP to improve classification and  explainability  [12].  When used  in 
different datasets,  these approaches demonstrate the increasing role of AI-based instruments in 
enhancing diagnostic accuracy and aiding clinical management decisions. In this direction, Degerli et 
al. [13] used five deep neural networks (DNNs) to jointly localize the COVID-19-affected region 
and estimate the severity level of the infection based on CXR images. The approach used infection 
maps to explain the areas involved in the disease. QaTa-COV19 dataset was used in the study to offer 
annotated CXR images for COVID-19 diagnosis. By integrating multiple DNNs, the model performed 
reasonably well  in detecting infected regions and severity levels,  which is  essential  for clinical 
applications. Similarly, Mahmud et al. [14] used a convolutional neural network (CNN) for the 
multiclass classification of thoracic diseases, including COVID-19. For details, it could extract the 
hierarchical features with the help of depth-wise convolution, where the convolution layers were 
applied with different dilations. The model's performance was tested on three different data sets to 
demonstrate that it applies to different imaging sources. Chetoui et al. [15] used EfficientNet B7 as a 
CNN architecture to analyze CXR images from datasets such as BIMCV COVID-19+, RSNA, NIH, 
Montfort, and others. For explainability, Grad-CAM was used to explain the model's decision-making 
by visualizing regions of interest in the CXRs. The study also noted that the model could achieve high 
classification  accuracy because of EfficientNet's specified network scaling  method  and  feature 
extraction.  Further  proving its  real-life  capability,  it  could  simultaneously  operate  on different 
datasets to increase efficiency.
Karim et al. [16] proposed a model comprising four CNN base learners and a Naïve Bayes as a meta-
learner. In this work, four CNN architectures are used as base classifiers, where a Naïve Bayes meta-
classifier is used to classify multiple classes of thoracic diseases, including COVID-19. The approach 
built upon integrating multiple CNNs took advantage of the synergistic learning capability and 
eliminated the overfitting problem. This model was applied to the Kaggle RSNA dataset to prove its 
ability to classify and interpret the CXR images accurately. In another study, Lee et al. [17]proposed 
and implemented an explanatory clustering framework called DeepSHA with a VGG-19-based model. 
DeepSHA offered explainable AI to cluster similar CXRs and then interpret the clustering to help 
diagnose. The framework  was  applied  to  public  datasets,  and  its  advantage  was  in  providing 
interpretable clusters of similar cases, which would help study diseases and make clinical decisions. 
Altogether, these works highlight the possibility of using modern deep-learning methods with CXR 
images to diagnose COVID-19 and other thoracic pathology. Therefore, all the review articles show 
how deep learning techniques  can help analyze CXR images to  classify  and diagnose thoracic 



diseases, including COVID-19. The demonstrated high performance on various benchmarks also 
highlights the great promise of deep learning for transforming medical imaging into highly accurate, 
reliable, and explainable tools to enhance diagnostics and treatment of patients.

3. Methods Used

3.1 VGG-16
VGG-16 is a deep convolutional neural network structure on the Visual Geometry Group initiative of 
the University of Oxford [18]. This model attracted much attention due to its excellent performance 
and the simplicity of its model when it was crowned the winner of the ILSVRC. Its design principles  
have become a vital architectural concept in deep learning, even in the case of image classification 
[19]. VGG-16 consists of 16 weight layers: A model with 13 convolutional layers and three fully 
connected layers. The architecture is uniform, with 3 x 3 convolutional filters used throughout the 
system, with a filter stride of one [20]. These filters allow for preserving the input dimensions when 
extracting local spatial patterns in the convolutional layers. The network has twice as many filters at 
the deeper layers (for example, 64, 128, 256, 512) to learn features at successive levels [21]. Max  
pooling is done using a filter of size 2x2 and a stride of 2 after every few convolutional layers to 
decrease the spatial size and work at a more abstract level. The last part of the network consists of 
three fully connected layers, where the previous layer implements the SoftMax activation to output 
the class probability [22]. At its release, it offered one of the highest performances for large datasets 
like ImageNet. In addition, specific pre-trained versions of VGG-16 are being introduced in various 
transfer learning projects [23]. Researchers have used the learned features for other computer vision 
applications, such as object detection, medical imaging, and style transfer [24].

3.2 ResNet50
The ResNet-50 model is  a well-known deep convolutional neural network devised by Microsoft 
researchers in their paper "Deep Residual Learning for Image Recognition," published in 2015. This  
model  is  from the  ResNet  family,  which  proposed  residual  learning  to  overcome the  problem, 
including  vanishing  gradients  and  performance  degradation,  that  might  be  encountered  when 
training intense networks [25]. ResNet-50 is a full-residual 50-layer model and is one of the most 
frequently  used  networks  because  of  its  depth  and  computational  complexity  [26].  The  main 
advancement of ResNet-50 is the use of residual blocks. A residual block is built from the shortcut 
connections  through  which  the  model  can  skip  one  or  several  layers  during  the  forward  and 
backpropagation computation [27]. These are often known as skip connections, which endow the 
network with an ability to learn residual mapping rather than direct mapping [28].
ResNet-50  architecture  has  48  convolution  layers,  one  max  pooling  layer,  and  only  one  fully 
connected layer. It uses bottleneck residual blocks, where each block has three convolutional layers:  
As for the convolutional layers, there's always one 1x1 layer for downsampling, one 3x3 layer for 
feature  extracting,  and  the  third  1x1  layer  for  upsampling  [29].  This  design  helps  reduce 
computational costs, although it results in high representational power. In addition, performing batch 
normalization after each convolutional layer helps stabilize the training process and accelerate the 
convergence speed. ResNet-50 has performed well on many benchmarks, including the ILSVRC [30]. 
The pre-trained ResNet-50 model is commonly used for transfer learning, and researchers can further 
modify it as per the application domain for analyzing X-ray images, detecting tumors, or classifying 
satellite images [31].

3.3 Inception-V3
Inception-V3 is  a  deep  convolutional  neural  network,  a  third  version of  Inception  architecture 
proposed by Google in 2015. This was pointed out in a paper by Christian Szegedy et al.  titled 
'Rethinking the Inception Architecture for Computer Vision.' Compared to the previous models, the  
model under consideration expands on the existing algorithms and brings new methods for increasing 
the speed and accuracy of computations [32]. Inception-V3 is one of the most used architectures in 
computer vision tasks, especially image classification. The structure of Inception-V3 architecture is 
such that it performs well on large-scale image classification problems. It uses inception modules to 
extract features at various scales due to parallel 1x1, 3x3, and 5x5 convolutions [33]. These outputs are 
concatenated to cover a variety of spatial features efficiently. To enhance computational efficiency, 
the model proposes factorized convolutions or using two consecutive and smaller kernels (e.g., 5x5) 



instead of one large one (e.g., 3x3) with a predictable decrease in accuracy and size of the parameters. 
Furthermore, batch normalization is used heavily across the layers for training purposes and to 
prevent overfitting [34]. It is also important to note that the Inception-V3 network is computationally 
efficient  yet  has  achieved  high  levels  of  accuracy.  The  model  does  this  by  including  auxiliary 
classifiers as part of the training process to assist the training in case of vanishing gradients. In 
addition, label smoothing applied to the loss function enhances the generalization because the model 
stops making nearly specific predictions [35]. Together with the Inception modules developed with 
much care, these techniques make Inception-V3 work efficiently and accurately on benchmarks such 
as ImageNet and more efficiently than deeper networks [36]. Inception-V3 has shown great versatility 
in many applications, from image classification transfer learning to feature extraction [37].  It  is 
typically used in object detection, diagnosing medical images or images in general, and even art-
related tasks such as transferring style [38].

3.4 DenseNet169
DenseNet-169 is a type of deep convolutional neural network of the DenseNet family, which was 
presented by Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger in their 
work "Densely Connected Convolutional Networks" in 2017. DenseNet architectures were created to 
overcome the shortcomings of traditional deep learning structures utilizing the dense connectivity 
method, which implies the direct connection of every layer of the neural network to any other layer in 
a feedforward manner [39]. This unique approach has distanced DenseNet as one of the most efficient 
architectures for recognition of images [40]. The DenseNet-169 model combined 169 layers, including 
the convolutional, pooling, and fully connected layers [41]. In DenseNet, the idea is to feed all the 
feature maps of a layer to the subsequent layers and take in all the previous layer's feature maps [42]. 
This is accomplished through dense blocks where feature maps are concatenated instead of summed, 
as in ResNet networks [43]. Transition layers are employed between these blocks of high density for 
feature  maps  down  sampling  and  dimensionality  reduction  [44].  The  growth  rate,  another 
hyperparameter in DenseNet, determines the number of new feature maps each layer in the network 
creates to balance the computational complexity and model capability [45].
Another favorable point that can be identified with DenseNet-169 is the utilization of parameters [46]. 
Compared to the conventional architectures in which many parameters are needed to pursue high 
accuracy, DenseNet adopts dense connectivity to keep feature reuse low [47]. This leads to better 
gradient  flow during  backpropagation  and  easier  model  training,  even  with  fewer  parameters. 
Compared to other architectures,  such as ResNet and ResNeXt,  DenseNet-169 is  best  suited for 
learning  detailed  features  in  datasets  and  is,  therefore,  well  suited  for  image  classification, 
segmentation, and other vision-based tasks [48].

3.5 Proposed Trans-CAMNet
In  this  research,  we  proposed  a  fine-tuned  Vision  Transformer  (ViT)  model  to  classify  chest 
radiograph images from the COVID-19 Radiography Dataset.  Vision Transformer architecture is 
appropriate for medical imaging tasks since it uses a self-attention mechanism to capture long-range 
dependencies and global contextual information [49]. In the proposed model, the deep neural network 
is trained on a large-scale dataset to obtain the general features and then trained on the COVID-19 
Radiography Dataset for tailoring the CXR images. The Vision Transformer takes an input image and 
partitions the input image into fixed spatial regions such as 16×16. The patch is then flattened into a 
vector and mapped into the fixed-dimensional embedding space [50]. These are supplemented by a 
learnable class token and position-specific positional encodings to feed to the transformer encoder. 
The encoder, implemented as a stack of several instances of the multi-head self-attention mechanism 
and feedforward neural networks, can learn global relations between patches. This approach helps the 
model to determine regions in chest radiographs that are important to distinguish between COVID-19, 
lung opacity, pneumonia, and normal cases [51].
We use  a  transfer  learning  approach  to  implement  the  Vision  Transformer  for  the  COVID-19 
Radiography Dataset. A labeled chest radiograph is used to fine-tune the pre-trained ViT, thereby 
enabling it to modify the learned features for the distribution of the dataset [52]. Fine-tuning is 
working on the model's weights, and this can be done using a supervised learning approach where the 
loss can be optimized to get better results with the classes. Also, data augmentation and regularization 
are used, with the data size relatively small in this project, to avoid overfitting. The fine-tuned Vision 
Transformer shows substantial performance enhancements in diagnosing chest radiographs, using its 
capability  to  model  global  dependency and recognize the subtle  differences in the radiographic 



features of COVID-19 [53]. Additionally, the attention maps of the model also make interpretation 
easier since they point out the areas that are most relevant to the prediction in the obtained CXR 
images. These attention-based visualizations are consistent with the radiological diagnosis, making 
the model accurate and clinically usable. The concept of the proposed fine-tuned Vision Transformer 
model indicates that transformer-based models can be used to solve issues in medical image analysis. 
By incorporating external knowledge and learning the characteristics of chest radiographs, the model 
provides high accuracy on the COVID-19 Radiography Dataset and advances the research of AI 
approaches to COVID-19 detection and diagnosis. Figure 1 describes the workflow used in the study.

Figure 1: Workflow used in the study

4. Experiment

4.1 Dataset Used
The dataset  used for  the study consists  of  four disease categories:  COVID-19,  Normal,  Viral 

Pneumonia, and Lung Opacity. The training and testing split is 70:30. The COVID-19 category consists 
of 3,616 images; from them, 2,531 images are utilized for training, and 1,085 images are used for 
testing. The most extensive files, containing 10,200 images in the Normal category, have been split  
between 7,140 images for training and 3,060 for testing. The Viral Pneumonia category contains 1345 
images; of them, 941 are used for training, and 404 are used for testing. For the Lung Opacity, the  
category comprised 6,012 images, with 4,208 for training and 1,804 for testing. This means the model 
addresses various diseases and is trained and tested equally for all disease groups, making it reliable 
and accurate.

4.2 Evaluation Metrics
All standard measures were used to assess the outcome of the proposed models, such as Accuracy, 

Precision, Recall, and the F1-score. Accuracy calculates the ratio of the total number of instances 
correctly predicted to the total number of cases. Recall measures the model's capability of correctly 
identifying positive samples without counting false samples, and it is essential in reducing wrong 
classification. Recall measures how many positive actual cases the model identified. The F1-score, the 
measure of precision and recall in equal proportion, is helpful in the case of an unbalanced set of data. 
All  these  metrics,  taken  together,  present  a  strong  framework  by  which  one  can  perform  a 
comparative analysis of the strengths and weaknesses of each model to determine their ability to 
predict.

4.3 Results
The ability of the models to perform in terms of features such as the accuracy, precision, recall, and 

F1-score  of  the  identified  models,  VGG-16,  ResNet50,  Inception-V3,  DenseNet-169,  and  Trans-
CAMNet is valuable information regarding each model's suitability. As each model corresponds to a  
different  architectural  complexity  and  ingenuity  tier,  the  experiment  (Table  1)  shows  how the 
performance differs on the given dataset. VGG-16, the oldest architecture among the architectures 
under comparison, has a test accuracy of 94.06%, precision of 84.62%, recall of 79.70%, and F1-measure 
of 82.09%. This can be attributed to its inability to perform residual or dense connections, preventing it 
from learning deeper hierarchical features excellently. The precision and recall are somewhat lower, 
implying that several images are misclassified, and VGG-16 is not suited for complex patterns of a 
given dataset. ResNet50 yields a much better result of 95.70 % accuracy, 93.61 % precision, 97.74 % 
recall,  and  a  f1-  score  of  95.63%.  The  high  recall  suggests  that  ResNet50  has  excellent  actual  



identification capacity. Its residual architecture helps reduce the vanishing gradient problem; thus, the 
model can train deeper networks. The high percentage of true positives and true negatives focuses on 
the  stability  of  the  measure  between  precision  and  recall.  Similar  performance  is  improved  in 
Inception-V3 by attaining an accuracy of 97.13%, precision of 97.98%, recall of 91.79%, and F1-score of 
94.79%. The inception modules mean multiple-scale filtering, allowing the model to get high-level  
features efficiently. This leads to better precision than ResNet50, meaning it has fewer false positives. 
DenseNet-169 achieved an accuracy of 97.96%, precision of 92.83%, recall of 95.48%, and F1-score of  
94.13%. Due to its condensed network connections, this architecture entails reusing features and 
gradients, making learning extraordinary. Its high recall means it is good at identifying true positives.

Table 1
Performance of different models.

Model Accuracy Precision Recall F1score

VGG-16 94.06 84.62 79.70 82.09
ResNet50 95.70 93.61 97.74 95.63
Inception-V3 97.13 97.98 91.79 94.79
DenseNet169 97.96 92.83 95.48 94.13
Trans-CAMNet 98.33 97.98 98.56 98.27

The proposed Trans-CAMNet has the highest overall accuracy of 98.33%, precision of 97.98%, recall 
of 98.56%, and F1 score of 98.27%. The nearly optimal values of precision and recall demonstrate 
excellent reliability, which is especially valuable for tasks where false positive and false negative 
results need to be avoided. The choice of model depends on the specific application requirements, as 
Trans- CAMNet is the best solution for critical cases with the highest level of needed accuracy and 
favoring balanced precision and recall values. This model may be improved by developing vision 
transformer architectures with attention to focus on the most essential objects while preserving 
overall context. Figure 2 depicts the Grad-CAM visualizations of different models.

5. Conclusion

This  research  shows  that  the  proposed  approach of  fine-tuning the  CNN- -transformer  can 
effectively classify pulmonary diseases from CXR images. The Trans-CAMNet proposed in this study 
yields impressive results with an accuracy of 98.33%, thereby out-competing traditional CNN-based 
models. When used as an interpretability tool, Grad-CAM enlightens the model's decision-making 
process  and increases  its  suitability  for  clinical  use.  These  results  highlight  the  opportunity  to 
incorporate transformer-based medical imaging architectures that increase diagnostic performance 
and interpretability. The proposed approach can serve as a basis for future work combining deep 
learning models with interpretability methods and ensure more accurate and explainable machine 
learning-based diagnostics of pulmonary diseases.

CXRs VGG-16 ResNet50 Inception-V3 DenseNet169 Trans-CAMNet



Figure 2: Grad-CAM visualizations of different models.
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