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Abstract

This  paper  presents  an investigation  into  using  swarm algorithms to  automate  search,  mapping,  and 
localization tasks in multi-robot systems. The study focuses on developing effective coordination strategies 
for  multiple  robots  operating  within  a  shared  network,  aiming  to  explore  unknown  environments 
autonomously. The main objective of this research is to optimize route planning and minimize exploration  
time while enhancing system robustness through decentralized control and communication between agents. 
In addition,  the work demonstrates  the potential  of  swarm intelligence in improving the efficiency of 
collective decision-making processes. The proposed approach leverages the bee algorithm, a bio-inspired 
optimization  method,  to  enable  autonomous  robots  to  explore,  map,  and  localize  within  dynamic 
environments cooperatively. This study highlights the application of such systems in real-world scenarios, 
such as search and rescue missions, reconnaissance, and industrial automation, emphasizing their potential 
to address complex, large-scale tasks with improved scalability and adaptability.
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1. Introduction

In today's world, robotics is one of the leading technological advancements, with robots increasingly 
being  integrated  into  various  aspects  of  everyday  life,  making  the  world  more  efficient  and 
convenient. However, in most cases, robotic applications focus on individual units performing specific 
tasks, while the challenge of coordinating multiple robots as a unified system remains complex. When 
working with groups of autonomous agents, issues such as coordination, communication, and task 
distribution arise, requiring advanced strategies to ensure efficiency and effectiveness.

One promising approach to solving these challenges is swarm intelligence, a field inspired by the 
collective behavior of biological systems such as ants, bees, and flocks of birds. Swarm robotics  
leverages decentralized control, local interactions, and simple rules to enable multiple robots to work 
collaboratively,  achieving  tasks  that  would  be  difficult  or  impossible  for  a  single  unit.  This 
methodology is beneficial for autonomous exploration, where a team of robots must navigate and map 
unknown terrain, find optimal routes, and adapt to dynamic environments.

This  paper  presents  a  system  that  utilizes  swarm  intelligence  for  autonomous  exploration, 
localization, and mapping. The relevance of this research lies in optimizing robotic control strategies 
for  drones  and ground robots  in  unknown environments.  Such a  system could  explore  terrain 
efficiently and perform specialized search operations when equipped with cameras or sensors. A 
swarm of robots could be deployed for tasks such as locating missing persons, detecting gas leaks, or 
identifying  hazardous  substances,  making  them  valuable  in  disaster  response,  environmental 
monitoring, and industrial applications. Moreover, advancements in artificial intelligence and edge 
computing have significantly enhanced the capabilities of swarm robotic systems, enabling real-time 
decision-making and adaptive behaviors in unpredictable environments. Swarm robotics is crucial in 
large-scale automation, from smart cities to space exploration.
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2. Related works

Swarm robots have some critical characteristics that differentiate them from other types of platforms, 
including but not  limited to simplicity,  size,  scalability,  cooperative ability,  and communication 
capabilities  [1].  In  particular,  two  fundamental  issues  are  their  size  and  cost,  as  these  aspects 
significantly affect the scalability of real swarm systems.

A solution has been proposed for operating a multi-robot system using a proprietary ROS-based 
architecture, demonstrating efficient real-time performance with multiple robots [2]. This solution 
relies  on the first  generation of  ROS,  which is  now considered outdated  due to  the  numerous 
enhancements  introduced  in  ROS2.  Modern  ROS2-based  systems  offer  improved  facilities  for 
distributed communication, real-time, and modularity, greatly enhancing the possibilities of building 
swarm systems [3].

More recently, there has been extensive research on the customization and deployment of the ROS 
navigation stack [4], which emphasizes the continued development of the ROS2 ecosystem and its  
applicability to autonomous mobile navigation tasks. However, such works mainly focus on single 
robots rather than their coordination within a swarm.

At the same time, there is a growing interest in applying swarm algorithms in mobile robotic 
systems, especially in robot-to-robot communication and decentralized control. Some developments, 
such as HeRo 2.0 [5] and HeRoSwarm [6], focus on building specialized hardware platforms for swarm 
systems. Despite interesting hardware solutions, these projects do not provide compatibility with 
ROS2, which limits their flexibility and repeatability of results in a scientific environment.

An alternative approach is offered by the ROS2swarm library [7], which is one of the first attempts 
to implement swarm behaviors in the ROS2 environment. It provides basic agent interaction patterns 
and simulation support but stays within a limited set of scenarios and does not fully evaluate the 
scalability or performance of the chosen algorithms. 

The advantages of the proposed approach over existing solutions are a balanced ratio between low 
cost  and  performance,  simplicity  of  the  implemented  swarm algorithm,  and  high  efficiency  of 
coverage of the studied territory. The developed system provides flexibility in setting parameters. It  
allows for a comprehensive analysis of the collective behavior of agents in various conditions - both in 
a homogeneous and a heterogeneous environment.

3. Methods and Materials

Robots and various approaches to territory exploration, including swarm algorithms, were used in the 
study. Simulation environments were employed to improve modeling and visualization accuracy, 
allowing  for  detailed  analysis  of  robot  behavior  in  virtual  space.  Additionally,  tools  facilitated 
navigation, mapping, and autonomous movement, enabling comprehensive testing and refinement of 
algorithms before real-world implementation.

The project used the following tools: RViz is a 3D robot visualization tool in ROS 2 that allows 
displaying  sensor  data,  maps,  robot  trajectories,  and  other  parameters  in  real-time.  It  supports 
extensions through plugins, and the librviz library allows embedding visualization capabilities into 
applications. Gazebo is a physical simulation environment designed to test robots in virtual conditions 
without the need for their actual operation. Nav2 is the ROS 2 navigation stack responsible for 
mapping, localization, route planning, and motion control in autonomous robotic applications. ROS 2 
is a robot operating system that provides the necessary tools and libraries for developing, simulating, 
and controlling robots in various applications [8]. 

The robot was a four-wheeled structure with two axles connecting pairs of wheels. It was equipped 
with a sensor (LiDAR) to scan its surroundings, a camera for visual perception, and an odometry and 
mapping system for precise positioning and localization. Odometry was used to estimate the robot's  
movement, using sensors to measure the distance traveled and movement speed.

The SLAM (Simultaneous Localization and Mapping) algorithm allows robots to simultaneously 
build a map of the environment and determine their location without prior known information. The 
SLAM algorithm used odometry and scanner data for the project to locate and construct the map.



4. Swarm algorithms 

The project is based on the use of swarm algorithms, and there are several conditions under which the 
best option was chosen:

 The algorithm should be oriented towards exploring the space, not just finding the optimal 
solution.
 Work in real-time, i.e., it should not require prior knowledge of the map.
 Distributes robots efficiently to avoid crowding them in one place.
 Takes into account obstacles and the changing environment.
The challenge may be how this map can then be merged, so a single starting area has been adopted 

for all robots, which will then explore the terrain from this point.

4.1. The particle swarm optimization algorithm

The particle swarm optimization (PSO) algorithm models the social-psychological  behavior of  a 
crowd.  PSO  is  an  optimization  algorithm  capable  of  solving  nonlinear  and  multidimensional 
problems, typically achieving reasonable solutions quickly while requiring minimal parameterization.

The algorithm and its concept, Particle Swarm Optimization (PSO), were introduced by James 
Kennedy and Russell Eberhart in 1995 [9]. The central concept of the algorithm is the creation of a 
swarm of particles that move through their surrounding space (problem space) in search of their 
target or the location that best meets their needs, as defined by the fitness function [10]. In this  
algorithm, the swarm is fully connected; all particles exchange information, and each particle knows 
the best position ever visited in the swarm.

This approach focuses on presenting the best result for a particular robot and the swarm. Such an 
algorithm converges quickly to an optimal solution and works well if the goal is known. However, this 
approach is inefficient in a completely unknown environment, as there is no explicit ‘best solution’ for 
navigation. Robots may concentrate in one place instead of exploring uniformly. For these reasons,  
PSO is more suitable for optimization problems but is poorly suited for exploring new territory.

4.2. Ant algorithm

Ant Colony Optimization (ACO) is a widely recognized algorithm inspired by how ants forage for  
food and is frequently applied to tackle combinatorial optimization problems. Initially introduced by 
Dorigo, Maniezzo, and Colorni [11], this nature-inspired metaheuristic simulates the ability of ants to 
discover optimal paths between their nest and food sources, successfully addressing shortest-path 
problems without prior knowledge of the problem's structure [12]:

pi , j=
(τ i , jα )(ηi , jβ )

∑
k∈ N

(τ i , kα )(ηi , kβ ) ,
(1)

where τi,j — the amount of pheromone on the edge (i, j);  α — a parameter controlling the influence of 

the pheromone;  ηi,j — the attractiveness of the edge (i, j), usually equal to 
1
d i , j

, where di,j is the distance 

between nodes;  β — a parameter controlling the influence of attractiveness.
Continuous Ant Colony Optimization (CACO) is an improved version of classical ACO adapted for 

problems in continuous space  rather  than discrete  graphs [13].  Unlike ACO, where  ants  move 
between predefined nodes, in CACO, the robots move freely along coordinates and update a ‘virtual 
pheromone’ in a region of space [14]. This algorithm allows more efficient exploration of unknown 
terrain, primarily when the map structure is unknown in advance. This makes CACO suitable for the 
task of collective map construction by robots: it provides flexibility of movement, allows dynamic 
adaptation to changing environments, and does not require a predefined grid of routes.



4.3. Bee algorithm

The Bee Algorithm is a metaheuristic optimization algorithm inspired by the foraging behavior of 
real bees. It  simulates the work of scouts searching for new sources of nectar and worker bees  
intensifying their search in the most promising areas.

In the bee algorithm, agents (bees) must find optimal solutions, similar to how honeybees find food 
sources. Bees share information about the location of food sources with other colony members using a 
waggle dance. This dance, which consists of alternating turns and waggles of the abdomen, conveys 
two important parameters: the distance to the food source and its direction [15].

The  duration  of  the  waggle  indicates  the  distance,  and  the  angle  between the  sun  and the 
movement of the abdomen on the comb indicates the direction. In the algorithm, other agents can 
apply these instructions and follow the best solution, similar to how bees navigate to the best food 
sources. The decision-making mechanism depends on the quality of the solution, which allows agents 
to choose more promising options.

The algorithm uses Path Integration (PI), a method in which each agent updates its position, 
considering all  the distances traveled and changes in direction. This allows agents to efficiently 
explore the space and find optimal solutions, similar to the behavior of insects using this navigation 
method.

Multi-agent systems inspired by bee behavior uniquely adapt to  environmental  changes and 
efficiently solve resource allocation problems. Such systems are based on the principles of self-
regulation, where each agent acts based on local information and interacts with other agents to 
achieve a common goal. Importantly, these systems can be used to develop efficient algorithms and  
better understand the mechanisms of collective decision-making in nature [16].

However, this approach may have some drawbacks, such as a tendency to get stuck in local  
minima, which may make it difficult to effectively explore large or complex areas, as robots may be  
limited to exploring only nearby areas rather than covering all possible areas. Another obstacle is the 
need for multiple robots to provide sufficient coverage, which may increase computational costs,  
especially if the number of swarm members or the size of the area to be explored is large. In addition, 
the bee algorithm may be sensitive to the initial placement of agents, which may lead to uneven 
coverage or insufficient exploration of the area in the context of dynamic search.

To address the challenges of local exploration and resource allocation, we utilize the multi-agent 
bee algorithm, a probabilistic approach to determine which areas should be prioritized by the agents. 
This is achieved by calculating the probability \(P (x ) \) of selecting a specific point \( x \) based on its 
attractiveness, which is defined by the following formula:

P (x )= f (x )

∑
y∈ R

f ( y )
,

(2)

where x — is a potential research point; R — is the set of all possible research points; f(x) — is the 
attractiveness function of the point x, which can be defined as:

f (x )=α ·d (x ,B )+β · g (x )+γ·h (x ) , (3)

where  d(x,  B) — distance from point  x  to  the nearest  known boundary point;  g(x) — function 
estimating the potential of point x to become a boundary point; h(x) — function taking into account 
the history of the study of point x; α, β, γ — weighting coefficients.

The following formula describes how a robot explores a point based on several factors:

tᵢ (t )=argma x x∈ R ¿ (t ) [ω1 · d (x ,B )−ω2 · d (x , sᵢ )+ω3 · q (x ) ] , (4)

where E(t) — set of points explored by other robots at time t; d(x, B) — distance to the nearest known 
boundary; d(x, sᵢ) — distance from the robot to the point; q(x) — quality function of the point (potential 
to be a boundary); ω₁, ω₂, ω₃ —weight coefficients.

At time t, each robot must choose a point t i (t ) from the set of possible points R, excluding those 
already explored points represented by E(t). The robot's decision is based on a weighted combination 



of factors, allowing it to select points that offer the best coverage of the area, given the current 
conditions and constraints.

Finally, let I(t) represent the global information about the boundary points at time t. Each robot ni 

updates its local information I i (t ) as follows:

Iᵢ (t+1)=Iᵢ (t )∪ Iⱼ (t )∨nj ∈ C (nᵢ , r ) , (5)

where C(nᵢ, r) is the set of robots within communication radius r from robot nᵢ.
The chosen approach reflects the core decision-making process of the bee algorithm, prioritizing 

exploration based on a combination of  multiple factors.  Robots can effectively balance between 
exploring new areas and reinforcing previously identified boundaries by utilizing a probabilistic 
approach to select points based on their attractiveness. The weighting coefficients in the formula  
allow for flexibility in adjusting the impact of different factors, such as the proximity to known 
boundaries, the distance from the robot, and the potential of a point to become a boundary. This 
adaptability  makes  the  bee  algorithm  particularly  effective  for  dynamic  environments  where 
exploration and resource allocation must be adjusted in real-time. Furthermore, the formula accounts 
for the collaborative nature of the swarm, where each robot's local information is updated through 
communication with nearby agents,  ensuring that the exploration process remains efficient and 
comprehensive.  By  selecting  the  most  promising  points  based  on  these  criteria,  the  algorithm 
maximizes the overall coverage and effectiveness of the swarm, ensuring a balance between local and 
global exploration objectives.

5. Robot architecture

5.1. The base structure of the robot

Below is a structure that shows how the different parts of the robot (sensors, steering mechanisms, 
wheels) are linked through the transformation system in ROS 2. The presence of global (map, odom) 
and local (base_link, wheel_link) frames allows the robot to determine its position in space and 
control movement correctly.

In ROS 2, nodes are the fundamental building blocks of the system. A node is an executable that  
performs a specific task, such as reading sensor data, processing that data, or controlling the robot’s 
motors. Nodes communicate with each other using topics, services, and actions. They can be run on 
the same machine or distributed across multiple machines in a network. The flexibility of ROS 2 nodes 
allows for modular design and efficient control of robot systems [17].

Each robot in the system operates within its namespace, ensuring that multiple robots can function 
simultaneously without interference. This structure is crucial in swarm robotics, where each unit 
must manage its own transformations while also exchanging information with others. 

Additionally, ROS 2 supports real-time processing, enhancing robotic operations' accuracy and 
responsiveness. By leveraging the ROS 2 middleware, robots can efficiently synchronize sensor data, 
execute navigation commands, and dynamically update their internal state based on environmental  
changes. This approach improves the scalability and robustness of autonomous robotic systems,  
making them suitable for large-scale deployments in real-world applications.

Figure 1 shows a graphical visualization of the ROS 2 frame tree (TF) created with tf2 and the 
"view_frames" tool and converted into a block diagram. This diagram shows the hierarchy and 
relationships  between the  robot's  different  coordinate  systems  (frames)  in  the  simulation.  Two 
conventional groups, "sensors_group" and "steering_group", are responsible for the operation and 
stability of the sensors and allow the distribution of responsibilities between components.



Figure 1: Visualization of robot architecture

The top node of the tree is “map”, the global coordinate system. From it there is a link to “odom”  
(the odometric system),  which is updated over time and contains information about the robot's 
position relative to the starting point. The structure is then connected to “base_footprint”, the robot's 
base point representing its position on the surface.

From “base_footprint” follows a connection to “base_link”, which is the robot's main frame to 
which all other components are linked.

Figure 2 represents the robot that corresponds to the graph above. This image was taken in a  
gazebo simulation and shows the visual characteristics.

Figure 2: Visualization of robot in Gazebo sim



5.2. Using SLAM in robot architecture

5.2.1. SLAM

The robot building process also considers the future use and availability of the model and system for 
mapping and localization in a dynamically changing environment. The robot-building process also 
considers the future use and availability of the model and system for mapping and localization in a 
dynamically changing environment. With such input parameters, ensuring that these systems are 
available for scaling and integration into different scenarios is very important. For example, in an  
urban or manufacturing environment,  a robot faces moving objects,  changing infrastructure,  or  
unpredictable disturbances. To function in such environments, the system must quickly process data 
from sensors (lidars, cameras, gyroscopes) and instantly adjust its route, avoiding collisions and 
minimizing delays. This is especially critical in systems with swarm intelligence, where many robots 
interact to fulfill a common task – for example, when searching for survivors in an emergency zone or 
synchronized delivery of goods to a warehouse. 

This is where SLAM (Simultaneous Localization and Mapping) comes to the fore. This technology 
allows each robot to simultaneously build a map of an unknown environment and determine its  
position  in  it.  Recently,  the  demand for  intelligent  robotics  has  increased,  and  there  are  more 
advanced approaches to detecting the environment for robots [18]. The object can be a domestic robot, 
autonomous vehicle, planet rover[19], uncrewed aerial vehicle (UAV) [20] [21] or other automated 
systems. SLAM becomes indispensable in environments with no pre-prepared terrain map or the 
device's  position  is  unknown,  making  it  a  versatile  tool  for  various  tasks.  Due  to  the  rapid  
development  of  robotics,  SLAM  is  attracting  increased  interest  from  academia  and  industrial 
developers.

SLAM systems can collect environmental data from different types of sensors: laser, acoustic, or 
visual. For example, robots with cameras analyze images to determine their position and orientation 
in space. This approach, known as VSLAM (Visual SLAM) [22], has several advantages: reduced 
hardware costs, simplified object recognition and tracking, and access to detailed visual and semantic 
data.  The resulting images are used for navigation and computer vision tasks such as semantic 
segmentation or object detection due to the large amount of information they contain.

In the SLAM problem, filters continuously refine estimates of an object's position and velocity 
using  imprecise  location  measurements.  They  also  improve  the  accuracy  of  spatial  landmark 
positions.

The Kalman Filter is an algorithm used to estimate the state of a system under uncertainty [23][24]. 
It is applied in SLAM, navigation, signal processing, and other fields where state estimation based on 
noisy measurements is required. In the original implementation of the SLAM algorithm, the primary 
source of information about the robot's movement was odometry obtained from wheel rotation.  
Despite its simplicity and widespread use, this method has several significant limitations. Odometry  
errors accumulate over time due to wheel slippage, interaction with uneven or slippery surfaces, as  
well as during sudden braking or collisions with obstacles. In addition, wheel odometry does not  
provide absolute measurements of position and orientation in space,  which is especially critical 
during long-term autonomous operation. In the absence of external correction, for example, due to 
visual or lidar sensors, the system is prone to drift. For this reason, modern SLAM systems implement 
a multimodal approach to state assessment, combining odometry data with information from LiDAR, 
cameras, or inertial measurement units (IMUs). Such sensor integration can significantly improve 
localization accuracy and the algorithm's resistance to various types of noise and external influences. 
This  study uses  a  camera and LiDAR as  the primary data  sources,  eliminating the reliance on 
odometry while improving the system's robustness in simulated conditions.

The RF2O (Range Flow 2D Odometry) method estimates robot odometry by comparing successive 
laser scans. The basic idea is to find the optimal transformation between two scans that minimizes the 
point-matching error:

                              (R¿ , t ¿)=argmin
R ,t

∑
i=1

N

|R⋅ pi+t−qi |
2 , (6)

where pi — is the point from the previous lidar scan, qi — is the corresponding point from the current 
scan, R — is the rotation matrix, t — is the translation vector, N — is the number of matched points.



This approach (6) helps to improve the accuracy and stability of odometry estimation, especially in 
dynamic and complex environments where traditional methods may have limitations.

5.2.2. Merge maps

In an environment with many robots, the system handles each robot's output separately from the 
others using the delegation method through namespaces. When each robot publishes a separate map 
to a separate topic in a namespace, it becomes necessary to merge these maps together. To merge the 
maps effectively, it is crucial to consider the raw data from each robot and factors like sensor noise, 
alignment errors, and differences in the local coordinate frames. 

One common challenge is the misalignment of the maps, which can occur when the robots use 
different frames of reference or have slightly different odometry information. Several approaches can 
address this, including using Iterative Closest Point (ICP) algorithms and techniques like graph-based 
optimization. Additionally, careful handling of the transform (tf) between robots is required to ensure 
accurate map alignment. Even with these techniques, some artifacts may persist, particularly in areas 
where the robots' sensors had conflicting readings. These issues can be minimized by fine-tuning the 
merging process and employing robust alignment methods, leading to a more accurate global map. In 
Figure 3, pictures (a) and (b) show the local maps of two separate robots operating in different  
namespaces, where each robot builds its version of the environment. Figure (c) is a merged map, the 
result of merging data from both robots, where it can be seen that the map boundaries are aligned.  
However, there are artifacts and distortions, probably due to errors in coordinate alignment or tf-
frames.

Figure 3: Visualization of merging maps from different robots

5.3. Using Navigation2 for path planning and obstacle avoidance

Navigation2 (Nav2) is a powerful navigation stack for ROS 2, designed for the autonomous movement 
of mobile robots. It is the successor to the classic ROS Navigation Stack from ROS 1, but offers an 
improved  architecture,  advanced  customization  options,  and  support  for  modern  navigation 
algorithms. Nav2 is used for motion planning, path control, obstacle avoidance, and real-time map 
updates, making it an important tool in robotics for delivery services, autonomous warehouses, and 
service robots.

Nav2 follows a modular design, each component handling a specific part of the navigation process. 
Key components include the Planner Server, which builds a global route; the Controller Server for 
local  movement  control;  the  Behavior  Tree  Engine,  which  organizes  navigation  processes;  and 
Costmap 2D, responsible for creating walkability maps. Due to the architecture's flexibility, Nav2 
allows easy customization of the planning and traffic control algorithms for specific tasks.

Navigation2 supports integration with various sensors, including lidars, cameras, and IMUs, and 
works both in simulation (Gazebo, Isaac Sim) and on real  robots.  The ROS community actively 
develops the system, and researchers and companies use it in various projects. Support for hybrid AI 
algorithms, reinforcement learning (RL), and SLAM makes Nav2 a promising solution for dynamic 
environments.



ROS2 and Navigation2 include the SLAM Toolbox [25] as the core package for SLAM solutions. It 
provides real-time mapping capabilities for large areas through advanced graph implementations, 
making it well-suited for dynamic environments. With a focus on customizability, it also offers a 
variety  of  options  to  meet  the  specific  requirements  of  specific  use  cases.  At  the  same  time, 
Navigation2 developers have shown great interest in supporting emerging Visual SLAM (VSLAM) 
approaches that can replace traditional methods that require expensive lidar sensors [26].

Figure 4: Visualized differences between SLAM map, global costmap and local costmap

6. Experiments

Several experiments were conducted with the robot system on different maps, scaling the number of 
robots used to build a map of an unknown area. In Experiment 1, a basic pattern was run where a  
swarm of robots searched for optimal routes to unknown areas using a static environment and 
tracking other robots with a sensor. In Experiment 2, a combined basic pattern was run and additional 
sensors and cameras were used to detect other robots in the swarm in a dynamic environment. These 
two experiments should help us analyze the difference in swarm behavior in static and dynamic 
environments, and their necessity and difficulty in scaling the swarm. 

Three types of maps were used for Experiments 1 and 2: a rectangular box with obstacles inside, a 
corridor-type area, and an area around a large object. In all three types of maps, the robots had the  
same amount of time to cover as much territory as possible and return to the starting point.

Figure 5: Available maps: a rectangular box with obstacles inside, a corridor-type area, an outer 
zone

Experiment 1 involves the use of the Multi-Agent Bee Algorithm, which allows scout robots to be 
used to cover a larger area for exploration.

Since LiDAR does not distinguish between robots and obstacles, robots may mistakenly see walls 
or other objects as other members of the swarm, which can sometimes alter their assessment of the 
area and cause one robot that has separated from the group to be unable to return to the swarm 
without outside intervention.



Figure 6: Example of system start-up

Experiment  2  used an algorithm similar  to  the  first  experiment  but  also  created  a  dynamic 
environment  in  which  the  robots  had  to  cover  the  territory,  taking  into  account  the  possible 
emergence of new obstacles. Also, in a dynamic environment, a different number of robots in a swarm 
was tested, for a clear example of the scalability of the system. This simulation used the same types of 
maps as the previous experiment. The current setup of the robots differed from the previous one in 
that new sensors and cameras were used, which allowed them to accurately determine the positions of 
swarm members in a dynamically changing environment and avoid already marked and explored 
territories.

Table 1
Experiment results

Experiment Number  of 
robots

Coverage 
area, %

Type of map Average 
Speed

Robots  back 
in position

1 5 89 rectangular box area 43 5
1 5 72 a corridor-type area 37 4
1 5 85 outer zone 60 5
2 5 91 rectangular box area 46 4
2 5 83 a corridor-type area 36 3
2 5 85 outer zone 59 5
2 10 97 rectangular box area 40 10
2 10 89 a corridor-type area 44 9
2 10 92 outer zone 53 10

The essence of the experiment was that, despite new obstacles, the robots could correctly mark the 
map and find their way back to the starting position. The difficulty of this method was that the robots 
require a more complex setup and support, leading to an increase in the complexity and cost of such a 
swarm. Table 1 shows the results of two experiments, allowing us to analyze the system's stability in 
different situations and their advantages and disadvantages when scaling in a dynamically changing 
environment.

Future work will focus on improving the synchronization of robot movements, enhancing sensor 
fusion techniques, and optimizing the algorithms to handle increasingly dynamic environments with 
minimal human intervention.

7. Conclusion

The experiments demonstrated that the swarm robot system with basic and combined patterns can 
effectively explore unknown terrain in both static and dynamic environments. The first experiment  
showed that using the Multi-Agent Bee Algorithm allows scout robots to expand the exploration area 
quickly. However, LiDAR sensors' limitations sometimes lead to obstacle recognition errors. This can 
cause issues with individual robots returning to the formation, especially if they separate from the 
group and mistake walls for other swarm members.



The second experiment confirmed that adding new sensors and cameras improves the accuracy of 
robot and obstacle detection in a dynamic environment, which is crucial when the environment 
changes and new obstacles appear. Despite the increased setup complexity and higher system costs, 
these improvements enhance the swarm’s stability and efficiency, which was clearly demonstrated 
across three different types of maps.

Comparing the results of the two experiments showed that the dynamic environment reduces the 
number of robots successfully returning to their starting position, particularly when the swarm size is 
small. However, increasing the number of robots to ten made the system more resilient, as confirmed 
by high coverage rates and a greater number of robots returning to the base. This demonstrates the 
swarm’s scalability potential, especially when enhanced sensors and cameras are used.

The experiments confirmed that the swarm system can adapt to various terrains and conditions.  
The combination of basic and complex patterns, supported by additional sensors, proved effective 
when scaling the swarm. Nevertheless, the identified LiDAR limitations and the complexity of setting 
up dynamic systems require further improvements to enhance the swarm’s autonomy and resilience 
in unpredictable environments.
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