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Abstract

Rapid detection of forest fires is crucial to reduce their devastating impact on ecosystems and human lives. In 
this paper, we present an AI-based solution for forest fire detection using deep learning from satellite 
imagery using the ResNet50V2 convolutional neural network (CNN). The dataset used to train the model  
consists of 1,900 images (950 per class), carefully curated to reflect real-world scenarios of both active forest 
fires and undisturbed forests. Data preprocessing included image augmentation to reduce overfitting and 
enhance model performance. Transfer learning, model regularization, and reconstructed pooling layers were 
applied during training on this dataset, which was augmented with techniques such as random horizontal  
rotations, zooming, and cropping to improve model generalization. The model achieved 97.63% accuracy and 
98.40% precision in detection. Forest fire detection using satellite images is very useful because CNN methods 
can detect and locate active fires more than once per hour. It is well known that the earlier a forest fire is  
detected, the more effective it is for people and the environment. This method can help to develop of new  
strategies for real-time fire monitoring systems, in addition to greatly enhancing wildfire management and 
prevention efforts. This study focuses not on early fire detection, but on identifying post-wildfire damage 
using deep learning techniques applied to satellite imagery.
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1. Introduction

A forest is a closed area of trees, other plant species and animals at a certain level of closure, together  
with the invisible is defined as a living system and community in which organisms interact [1]. The 
world's forests cover a total cumulative area of a staggering 4.06 billion hectares, covering about 31% of 
the planet's land area [2]. Climate change is expected to have a particularly significant impact on boreal 
forests due to rapid and significant temperature increases in this region [3], as each additional degree of 
warming could result in a tripling of the area burned [4]. Therefore, the aim of this study is to determine 
how much  land  is  destroyed  after  the  fires  are  extinguished  by  using  artificial  intelligence  (AI) 
integrated systems. By identifying affected regions after fire events, the proposed model can support 
post-disaster assessment and resource planning.

Deep learning, as a subset of AI, has the ability to enhance the detection rate of fires and other natural 
disasters  using large datasets  [5].  More specifically,  image processing techniques have also been 
proposed that would benefit the response time by improving the ability to spot a forest wildfire in its  
early stages [6].  It  is  also noted that  deep learning (DL) image classification models  are able  to 
successfully analyze visualization artifacts such as smoke and flames in order to determine the presence 
of fire [7]. DL models such as ResNet50v2 have recently achieved high accuracy rates in forest fire 
detection in remote sensing application systems.

ResNet50v2[8], a convolutional neural network model, effectively recognizes key details underlying 
images from image-trained data due to its layered structure. This model is particularly useful in building 
a forest fire detection system because it maintains its efficiency even with very large datasets [9]. The  
content of the image passes through the network with less distortion and easily through the use of 
“residual” connections, which enables ResNet50v2 to speed up the learning process, thus improving the 
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overall accuracy [10]. This characteristic feature combined with the strength of the neuron structure, 
allows ResNet50v2 to be useful in practical problems requiring high accuracy, such as fire detection. 

Wildfires can have a devastating effect on ecosystems, people, and economies especially in areas 
vulnerable to wildfires. Current methods of fire remote sensing via satellite still struggle with offering 
timeliness, precision, or flexibility. Most of the traditional approaches depend on systematic monitoring 
(by humans) or use local sensor networks. This aids in scaling detection but isn't helpful in real-time 
detection over extensive areas. An AI-based method that utilizes satellite images to quickly pinpoint the 
exact location of the wildfires and assist with rapid aid is highly essential.

For this study, we used the Forest Fire Detection Dataset presented by Khan and Hassan[11] and  
available from Mendeley Data. This dataset contains a large number of images specifically selected for 
the purpose of forest fire detection. It is a balanced dataset consisting of 1900 images in total, with 950 
images belonging to each class. The comprehensive size of such a dataset also makes it suitable for the 
effective development of a DL model that can positively contribute to the early detection and monitoring 
of forest fires.

The purpose of this paper is to recommend an AI-based approach for fast and effective detection of 
forest fires. In this regard, the authors trained the ResNet50v2 model which was prepared on a large 
dataset for forest fire detection and evaluated the model’s performance. The focus of this research is to 
find possible  extensions to  current  fire  detection systems and to emphasize the use of  AI in  the 
management of environmental threats.

2. Related Works

Over the past few years, there has been significant attention towards the applications of AI and DL on 
detecting forest fires [12]. Attempts have been made on the researches front to build models that help 
in detection of wild fires in real time, through the usage of computer vision as well as machine 
learning. Several satellite imaging as well as ground sensors, and unmanned aerial vehicles have been 
integrated into the wildfire monitoring systems that help in detecting, analyzing, and responding to  
these events in real time [13]. The detection of wildfires has also been effectively done through various 
DL structures.

Harkat et al. and Yang et al. [14,15] have shown that DL does not perform adequately due to limited 
data, generalization, interpretability, and missing features, but integration of DL with other methods 
can improve efficiency. Sathishkumar et al. [16] used DL based forgetting learning technique for forest 
fire and smoke detection. VGG16, InceptionV3 and Xception models were trained with fine tuning and 
their performances were compared. They utilized deep learning-based learning for fire and smoke 
detection, highlighting the potential of AI in early fire detection systems. In another study, Best, et al. 
[17] compared frozen VGG, 4-layer CNN, and fully trainable VGG for UML diagram classification and 
showed that the frozen VGG achieved higher accuracy with reduced sample size and required less 
computation time compared to the fully trainable VGG.

Achieving efficient and fast operation of endpoint devices is one of the achievements of Peng et al. 
[18] with their proposed fire detection algorithm. An effective balance between accuracy and speed is 
achieved by using quantization-compatible activation functions, a QARep component, and image size 
optimization using a  YOLOv8 algorithm. While image transfer has a positive impact on accuracy, 
there is an impact on accuracy with respect to INT8 quantization, resulting in some loss of accuracy. 
The study by Ginkal et al. [19] explores the use of AI methods    for forest fire detection. The study 
provides an AI-based framework for early detection of forest fires. The framework uses machine 
learning techniques to perform fire detection by combining color, motion and shape features. Features 
such  as  color  probabilities,  color  histograms  and  image  moments  are  used  for  fire  region 
segmentation, classification, and verification. Experiments show that the proposed framework works 
with high accuracy and provides real-time processing time.

Another research article by Titu et al. [20] explores the integration of lightweight DL models for  
real-time fire detection using drones and edge computing. Using knowledge distillation techniques, 
the study develops DL models such as Detection Transformer (DETR), Detectron2, and YOLOv8. 
Using this approach, the YOLOv8n model achieved the highest accuracy (95.21%). In another study in 
a similar area, Anh et al. [21] offer a different approach to detecting forest fires with UAVs, using  
different color spaces in combination with correlation coefficients to determine the actual fire area.

Liu et al. [22] propose two AI agents armed with large digital databases that autonomously control 
fiber optic temperature monitoring systems and DL algorithms to detect fires in large commercial  



spaces.  The  research  examines  the  effectiveness  and  reliability  of  this  combined  approach  and 
expresses how it can revolutionize fire safety measures when applied to large commercial spaces. In 
their work, Dampage et al. [23] propose the use of wireless sensor networks in conjunction with 
machine learning to detect wildfires at very non-extensive stages. Machine learning models are used 
to evaluate data gathered by sensor networks, so as to estimate the likelihood of a wildfire. In a second 
part, rechargeable batteries and a solar-powered power supply are used to ensure that the system 
remains energy efficient.

To summarize, previous research has shown that image-based wildfire detection can be performed 
with deep learning models VGG, Inception, and variants of YOLO. However, most of these works  
emphasize detection and monitoring using UAVs or ground sensors. Relatively few have attempted 
the post-wildfire damage identification using satellite images with high accuracy CNN architectures 
like ResNet50V2.  Our study seeks to fill this gap by utilizing a powerful transfer learning technique 
for detecting wildfire damage using satellite imagery, providing a valuable resource for post-disaster 
evaluation and recovery design.

3. Methods

3.1.  Data Collection and Data Pre-Processing

The dataset for forest fire detection is a comprehensive and carefully selected resource specifically 
designed to assist the development of algorithms for tasks such as forest fire detection and object  
detection. The images are the result of a search for different keywords in different search engines. As 
depicted in Fig. 1, designed for the binary problem, the dataset of 1,900 images (950 images per class) is 
divided into two main categories: The first category contains images documenting active forest fires, 
while the second category contains images of undisturbed, fire-free forest areas.

Figure 1: Dataset content examples [11]. 

     To improve the performance of machine learning and DL models, all images in the dataset are 
three-channel with a spatial resolution of 250 × 250 and consistent formatting. Each image in the 
dataset is carefully reviewed and pre-processed to remove irrelevant elements, such as human activity 
or firefighting equipment, to focus only on fire and non-fire regions. This is important for the model  
that will be used for training, as it eliminates false positives when the model is asked to identify areas 
of the forest that have burned and those that have not. 
     This balanced division of the dataset is critical for the model used in training to accurately 
distinguish between fire-affected and burned areas in forested and unaffected areas. As shown in 
Table 1, the dataset is divided into three subsets; this separation allows the model to be effectively  
trained on a variety of samples while achieving higher accuracy rates on the test data.



Table 1
Train, validation, and test distribution in dataset.

Set Class Original Count Augmented Count (Estimated)
Training fire 608 19456
Training nofire 608 19456
Validation fire 152 0
Validation nofire 152 0
Testing fire 190 0
Testing nofire 190 0

    Augmentation was performed here because the number of data in the dataset is not sufficient for the 
ResNet architecture and would lead to overfitting of the model. Initially, 20% of the training data was 
reserved for validation. As shown in Fig. 2, augmentation was then applied at each step of the training: 
horizontal rotation of the images, random zooming, and certain cropping operations were applied  
separately for each data in the dataset. For the test data, the data was only scaled to "1./255". Applying 
the augmentation to the test data may not reflect the real performance of the model and may lead to  
misleading results.

Figure 2: Augmentation example.

3.2.  ResNet50v2 Model Architecture

Convolutional Neural Networks (CNNs) are among the fundamental building blocks of DL methods, 
and they're popular in tasks such as image and computer vision [24]. CNNs are based on extracting 
local features from high-order inputs and passing them to lower layers for more complex features  
[25]. This process allows the model to learn and achieve more accurate results. However, CNNs 
frequently tend to have issues training deeper, especially in deep networks. This is where deep 
network architectures like ResNet50v2 can provide a solution. ResNet50v2 is a member of the Residual 
Networks family and adds an important innovation to the traditional structure of CNNs: residual or 
jump connections [26]. These structures help solve the problem of gradient loss as the depth of the  
network increases. 
   Using ResNet50V2 architecture involves opting for residual blocks which helps to bypass the issues 
of vanishing and exploding gradient problems during deep representation learning. The purpose of 
this residual block is captured in an equation that includes the image to be processed, pre-trained 
weights corresponding to the YOLO CNN, and skip connections. This method is superior at producing 
results when there are variations in dimension [27]. Furthermore a solution to the degradation is 
provided using DL framework where the mapping of the layer of the non-linear stack is treated as a 
‘cut’ from the original input.



     
Figure 3: ResNet50v2 architecture.

The application of ResNet to computer vision has shown outstanding performance [28]. ResNet18, 
ResNet50, and ResNet101 are the most widely used types of ResNet networks. Among these network 
types, ResNet50 has achieved better identification accuracy and real-time performance [29]. The 
number 50 in its name represents the 50 layers that make up the ResNet50v2 architecture. These layers 
include the convolutional layer, the batch normalization layer, and the ReLU activation function [30]. 

Figure 4: ResNet50v2 model architecture.
In this paper, the transfer learning method of the ResNet50v2 model is used to implement a DL 

model using the Keras library. In order for the model to efficiently extract features from the input data, 
ResNet50v2 is used as the base feature extractor with pre-trained weights on the ImageNet dataset.  
The model is loaded with a structure that excludes the classification headers, allowing only feature 
extraction. The architecture of the model as illustrated in Fig. 3, is built on top of ResNet50v2 as the 
base feature extractor and enriched with Global Average Pooling and Fully Connected (Dense) layers. 
This allows for a more compact feature set, greatly reducing the number of parameters required. The 
goal at this stage was to remove unnecessary complexity from the model. 

The model is completed with Global Average Pooling and Fully Connected (Dense) layers. Global 
Average Pooling takes the average value of each feature map to create a more compact summary 
vector and reduce the number of parameters. This step increased the efficiency of the model. The 
resulting vector was transferred to a 128-neuron dense layer,  where the risk of overfitting was 
reduced using the ReLU activation function and L2 regularization. In addition, a dropout layer was 
added and applied at 50% to increase the generalizability of the model. The output layer is built to 
perform  binary  classification  using  a  sigmoid  activation  function  and  represents  the  model's 
classification decision as a value between 0 and 1.



4. Experimental Results

In this work, the ResNet50v2 model was transformed into a transfer learning model that was trained 
on a dataset defined as a forest fire detection dataset. The data was cleaned with fire and non-fire 
images in an equally weighted ratio.  To increase variability and prevent overfitting in the data 
augmentation stage, random horizontal rotation, zooming, and cropping were applied during the 
training set hours to allow variability while ensuring that overfitting is contained. The validation and 
test sets did not require augmentation, although the test set was normalized to a range of 1/255.

The model  was then modified to have a global  mean pooling layer,  a  fully connected layer 
consisting of 128 neurons, an L2 regularization term with λ = 0.01, and a drop of 50%. The binary 
classification output layer had a sigmoid activation function reflecting the probability of  firing. 
Training was done with the Adam optimizer. The learning rate was set to 0.0001 and the binary cross 
entropy loss was used.  Early stopping was implemented to track accuracy loss, and training was 
terminated after observing 10 consecutive epochs in which there was no improvement.

Most academic research evaluates model performance not by a single measure, but rather by a  
combination of measures, including accuracy (1), recall (2), precision (3), and F1-score (4). These  
metrics  allow for  fair  and comprehensive comparisons  across  tasks,  in  addition to  providing a 
quantitative measure of model performance [32].

Accuracy=
True Positive (TP )+True Negative(TN )

True Positive (TP )+True Negative (TN )+False Positive (FP )+False Negative(FN ), (1)

 Recall= True Positives(TP )
True Positives (TP )+False Negatives(FN )

 , (2)

 Precision= True Positives(TP )
True Positives (TP )+False Positives(FP )

 , (3)

 F 1Score=2 x Precision x Recall
Precision+Recall (4)

Table 2 presents the performance metrics of the model on the test data. The model performed well 
with an accuracy of 97.63%. This means that 97.63% of the samples tested were correctly classified. In 
addition, the precision of the model is 98.40%, meaning that 98.40% of all samples predicted to be fire 
were in fact correctly classified as fire. The recall rate is 96.84%, which means that most of the images 
containing fire are correctly recognized. The F1-score of the model is 97.61%, which is an important 
performance measure that reflects both the accuracy and the recall of the model in a balanced way. 
Overall, the model shows a high success rate and effective classification performance, with both false 
positives and negatives minimized.

Table 2
Model performance metrics on test data.

Metric Value
Accuracy 97.63%
Precision 98.40%
Recall 96.84%
F1_Score 97.61%

There is a need to analyze the working of the model in a detailed manner, which can be done by 
analyzing certain different parameters. One of these metrics can be a confusion matrix as shown in 
Fig. 3. The confusion matrix protocol allows the user to more accurately determine the type of classes 
that have been solved compared to the others. In this way, it can be determined which fire class was 
correctly recognized and which was more prone to errors.



Figure 5: Confusion matrix of the model’s fire classification.

5. Discussion

This  article  demonstrates  a  useful  case  of  DL application for  an important  ecological  problem: 
detecting  wildfires.  Applying  the  ResNet50V2  architecture  together  with  small  but  cleverly  
augmented dataset results in 97.63\% accuracy and 98.40\% precision in locating wildfire affected 
regions from satellite images. With regard to transfer learning, the use of already trained ImageNet 
weights is one of the most notable advantages, as it allows for better results and faster convergence 
even when there isn’t sufficient training data available. Data augmentation methods like horizontal 
flips, zooms, and crops help control overfitting, which is a serious problem when working with small 
datasets. Regularization techniques also improve the model's generalizability.

Still, the error analysis section would improve by providing more detail outside of the confusion 
matrix analysis. Determining if the true miss-classifications are false positives (areas without fire but 
marked as fire) or false negatives (burned areas that should have been marked but are not) is the most 
important part misclassification analysis. Examining those misclassified images could show the flaws 
in the model and the biases it holds.

Although many researchers use the ResNet50V2 architecture with transfer learning for image 
classification, our research is different. We customize the model to detect post-wildfire land damage 
using satellite images, an area not previously investigated. Unlike most prior work on real-time fire or 
smoke detection, our focus is on identifying areas of fire damage in forests. Moreover, unlike other 
more sophisticated solutions such as the dual-agent detection system described in [22], our model is 
less complicated while achieving the same high accuracy, thus better tailored for environments with 
constrained resources. To address the problem of limited datasets, we applied specific augmentation 
strategies, dropout, and L2 regularization. These methods help ensure robustness and generalization. 
The modular architecture and training pipeline enhance central  and edge-based fire monitoring 
practicality.

Furthermore, examining the practical aspects of the proposed methods would greatly increase the 
impact of the study. For example, in what ways could this model be used with current wildfire 
monitoring systems? What are the implications for safeguarding the environment, saving money, and 
improving response time? Trying to answer these questions would reiterate the importance of the 
topic while enhancing the discussion providently.

6. Conclusion

Using the ResNet50V2 architecture,  the model  achieved a  remarkable accuracy of  97.63% when 
classifying satellite images into wildfire and non-wildfire categories. The model's accuracy, coupled 
with its capacity to spot forest fires, makes it an invaluable asset for prompt fire detection and 
prevention. Adopting an approach based on DL and satellite imagery provides the opportunity to 
enhance  the  detection of  fires’  earliest  stages,  thus  enabling  quicker,  more  efficient  actions.  In 
addition, these real-time assessments can aid in firefighting efforts on a personal and communal level. 



The use of satellite information for instant evaluation can have supportive implications in helping 
onlookers assess the location of fire activity. This is important in determining the location to dispatch 
firefighting teams to, hence optimizing resource use and reducing damage.
   In addition, this study helps refine the general approach to managing forest fires. As the current 
version of the model improves, further steps can look into testing other augmentation strategies to 
increase the model's strength, new fine-tuning adjustments to improve performance, or even other  
neural network designs that are better intended for certain satellite images or regions geography.  
Such changes  would  greatly  improve the  range of  applications  of  the model  so  that  it  can be 
configured to work in varying environmental and geographical regions, including those that are 
untapped. This development may enhance the capacity to monitor and prevent wildfires in different 
ecosystems around the world.

Declaration on Generative AI
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