
AI Models for Automatic Objects Classification in Satellite 
Images

Victoria Vysotska1, Kirill Smelyakov2, Serhii Osiievskyi3 and Volodymyr Yartsev2

1 Lviv Polytechnic National University, Stepan Bandera Street, 12, Lviv, 79013, Ukraine
2 Kharkiv National University of Radio Electronics, 14 Nauky Ave., Kharkiv, 61166, Ukraine
3 Kharkiv National University of Air Force, 77/79 Sumska St., Kharkiv, 61023, Ukraine

Abstract
This study investigates the application of artificial intelligence techniques for object segmentation in high-
resolution satellite imagery, with a focus on the automatic classification of land cover types such as rivers, 
forests,  and buildings.  It  includes a comparative analysis of traditional  image processing methods and 
modern deep learning architectures — specifically convolutional neural networks (U-Net,  DeepLabV3+, 
Mask  R-CNN)  and  transformer-based  models.  The  study  outlines  practical  considerations  for  model 
deployment and highlights future directions,  including the use of  self-supervised learning,  lightweight  
models for edge devices, and multi-modal data integration. The findings highlight the advantages of AI-
driven  segmentation  over  traditional  methods,  improving  precision  and scalability  for  applications  in 
environmental monitoring, urban planning, and disaster management.
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1. Introduction

Satellite imagery plays a critical role in numerous domains, ranging from environmental monitoring 
and urban planning to  disaster  management  and agricultural  analysis.  These  images  provide  a 
comprehensive and up-to-date overview of the Earth's surface, enabling researchers, policymakers, 
and industry experts to make informed decisions. The advent of high-resolution satellite imaging has 
revolutionized the ability to observe,  analyze,  and respond to changes in the environment.  For 
instance, satellite images can be used to track deforestation, monitor water levels in rivers, or assess 
the impact of urbanization. One of the key challenges in leveraging satellite imagery is the vast  
amount of data generated daily, making manual analysis infeasible. It necessitates the development of 
automated systems that can efficiently process, analyze, and extract meaningful information from 
satellite images.  Among these tasks,  object segmentation stands out as a fundamental step that 
underpins various applications.

Object segmentation refers to the process of identifying and delineating objects within an image, 
such as rivers, forests, or buildings. In the context of satellite imagery, segmentation allows for the  
classification and spatial mapping of different land cover types, which is essential for numerous 
practical applications: 

 Environmental Monitoring is the process of identifying deforestation patterns, monitoring 
water bodies, and assessing changes in vegetation over time;
 Urban  Development  is  the  process  of  mapping  urban  growth,  analyzing  infrastructure 
distribution, and planning new developments;
 Disaster Response is the act of rapidly assessing affected areas during floods, earthquakes, or 
wildfires to guide relief efforts.
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Manual segmentation is not only time-consuming but also prone to errors due to the complexity of 
satellite  images,  which  often  include  overlapping  features,  varying  lighting  conditions,  and 
differences  in  resolution.  It  underscores  the  importance  of  employing  advanced  technologies, 
particularly Artificial Intelligence (AI), to achieve accurate and efficient segmentation.

In recent years, the integration of AI, particularly deep learning techniques, has significantly 
advanced  the  field  of  image  segmentation.  Traditional  image  processing  methods  relied  on 
handcrafted features and domain-specific algorithms, which were limited in their ability to generalize 
across diverse datasets. AI-based methods, on the other hand, utilize neural networks that can learn 
complex patterns from large datasets. Notable advancements include: 

 Convolutional  Neural  Networks  (CNNs)  are  widely  used  for  feature  extraction  and 
classification in images. Architectures like U-Net and Mask R-CNN have been specifically designed 
for image segmentation tasks. 
 Semantic segmentation is assigning a class label to each pixel in the image, enabling detailed 
object identification. 
 Instance segmentation is distinguishing between different objects of the same class, such as 
multiple buildings in a cityscape. 
AI-driven segmentation not only enhances accuracy but also drastically reduces the time required 

for analysis. It has made it feasible to process large-scale satellite datasets in near real-time.
This study aims to explore the application of AI techniques for the segmentation of objects in 

satellite imagery. The primary objectives include developing a robust framework for the automatic 
classification of land cover types such as rivers, forests, and buildings, evaluating the performance of 
state-of-the-art  segmentation  models  on  satellite  datasets,  and  identifying  the  challenges  and 
limitations associated with AI-driven segmentation methods while proposing potential solutions.

2. Related works

Analyzing recent studies [1-3], it is evident that the field of automatic segmentation and classification 
of satellite images has significantly advanced in recent years. The application of deep learning and 
computer vision techniques has led to improved accuracy in land cover classification, urban planning, 
and environmental monitoring. Modern AI-driven methods enable precise recognition of objects such 
as rivers, forests, and buildings, supporting large-scale geospatial analysis.

In this regard, convolutional neural networks (CNNs) remain the dominant approach for image 
classification.  The  work  [4]  introduces  a  deep  learning  model  that  utilizes  multiscale  feature 
extraction  to  enhance  segmentation  accuracy  in  high-resolution  satellite  images.  Similarly,  [5] 
explores the use of fully convolutional networks (FCNs) for pixel-wise classification, demonstrating 
superior performance in detecting land cover changes. A study in [6] proposes an attention-based 
UNet model to improve feature localization and boundary detection, reducing misclassification errors 
in heterogeneous landscapes.

Recent research has also investigated hybrid models that integrate traditional machine learning 
with deep learning approaches. For example, in [7], a combination of random forest classifiers with 
deep CNNs is proposed to enhance feature selection and improve classification robustness. The paper 
[8] presents an ensemble learning approach that combines CNNs with support vector machines 
(SVMs) to refine urban area detection. Additionally, [9] explores self-supervised learning techniques 
to overcome the challenge of limited labelled datasets, demonstrating their effectiveness in land-use 
classification.

Another growing trend is the use of transformer-based architectures for satellite image analysis. In 
[10],  a  Vision  Transformer  (ViT)  model  is  applied  to  large-scale  remote  sensing  datasets, 
outperforming CNN-based methods in classification accuracy. Similarly, [11] introduces a hybrid 
Swin  Transformer  model  that  captures  long-range  dependencies  in  high-resolution  imagery, 
improving segmentation results for complex terrain. Furthermore, [12] proposes a spatio-temporal  
transformer model for monitoring land cover changes over time, enabling more efficient change 
detection analysis.

Beyond  supervised  learning,  researchers  are  exploring  semi-supervised  and  unsupervised 
techniques for  classification.  The study [13]  utilizes  generative  adversarial  networks (GANs)  to 
generate synthetic training samples, reducing dependency on manually labelled datasets. In [14], self-
organizing maps (SOMs) are used for clustering satellite images, effectively identifying regions with 
similar land cover characteristics. The work [15] proposes a contrastive learning framework that 



leverages  large  unlabeled  datasets  to  improve  classification  accuracy  with  minimal  human 
annotation.

Several studies focus on domain adaptation and transfer learning to improve model generalization 
across different satellite datasets. In [16], a domain adaptation framework is introduced to fine-tune 
pre-trained  models  on  diverse  geospatial  datasets,  achieving  higher  accuracy  in  cross-region 
classification tasks. The research in [17] explores few-shot learning techniques to classify rare land 
cover types with limited training samples. Meanwhile, [18] presents a meta-learning approach that 
adapts  AI  models  to  new  satellite  images  with  minimal  re-training,  significantly  reducing 
computational costs.

Additionally, cloud computing and edge AI are being leveraged to accelerate the processing of 
satellite images in real-time. In [19], a cloud-based deep learning framework is developed for large-
scale geospatial analysis, allowing efficient processing of massive satellite datasets. The study [20] 
investigates the use of edge AI devices for real-time segmentation, enabling fast decision-making in 
environmental monitoring applications.

2.1. Traditional Approaches to Object Segmentation in Satellite 
Imagery

Before the advent of AI and deep learning, object segmentation in satellite imagery relied primarily on 
conventional  image  processing  and  computer  vision  techniques.  These  methods  often  utilized 
handcrafted features, statistical models, and rule-based systems to identify and classify objects. One of 
the  earliest  and  most  commonly  used  approaches  was  thresholding,  where  pixel  values  were 
categorized based on predefined intensity levels. This method [21] proved  to be particularly effective 
for binary segmentation tasks, such as differentiating water bodies from land. However, it was not 
capable of handling complex landscapes with multiple land cover types.

Another widely adopted technique was edge detection [22], which involved detecting boundaries 
between objects  using operators such as Sobel,  Canny,  and Laplacian filters.  While  effective in  
delineating distinct objects, edge detection often struggled in cases where boundaries were unclear 
due to noise, shadows, or similar textures. 

Region-based segmentation methods [23], such as Watershed and Mean-Shift, sought to improve 
edge detection by clustering pixels based on similarities in colour, texture, or spatial proximity. These 
methods worked well for specific applications but required extensive tuning and often failed when 
dealing with highly heterogeneous satellite images. 

A more advanced approach was object-based image analysis (OBIA), which segmented images into 
meaningful  objects  rather  than individual  pixels.  OBIA utilized  techniques  such as  hierarchical 
clustering  and  region-growing  algorithms,  making  it  more  effective  for  land-use  classification. 
However, it still required human intervention for parameter selection and lacked adaptability to  
varying datasets. 

Despite their utility, traditional segmentation methods had several limitations, including: 
 Poor generalization across different geographic regions and image conditions; 
 High sensitivity to noise and lighting variations, leading to inconsistent results;
 There is a lack of contextual understanding, as these methods relied solely on pixel values 
rather than learning from large datasets.

2.2. The Emergence of Machine Learning for Image Segmentation

To address  the limitations  of  traditional  methods [24],  machine learning (ML)  techniques were 
introduced, leveraging statistical  models to improve segmentation accuracy. Supervised learning 
approaches, such as decision trees, support vector machines (SVM), and random forests, became 
popular for classifying satellite images. These models were trained on labelled datasets, enabling them 
to recognize patterns more effectively than rule-based systems. 

One of the significant breakthroughs in ML-based segmentation was the adoption of k-means 
clustering and Gaussian mixture models (GMMs) for unsupervised classification. These methods 
grouped pixels based on statistical similarities, allowing for automatic identification of land cover 
categories.  However,  they still  required feature  engineering and struggled  with  complex object 
boundaries. A key advancement came with the introduction of deep learning [25], which eliminated 
the need for manual feature extraction by allowing models to learn hierarchical representations 



directly from data. It marked a paradigm shift in satellite image segmentation, as deep learning models 
significantly outperformed traditional machine learning methods.

2.3. Deep Learning for Satellite Image Segmentation

Deep learning, particularly convolutional neural networks (CNNs), revolutionized the field of image 
analysis by enabling end-to-end learning of spatial features. Several architectures [26] have been 
developed to tackle the specific challenges of satellite image segmentation: 

 Fully  Convolutional  Networks  (FCNs)  are  one of  the first  deep-learning approaches for 
segmentation.  FCNs  replaced  traditional  fully  connected  layers  with  convolutional  layers, 
allowing for pixel-wise classification. 
 U-Net is an architecture designed specifically for biomedical and remote sensing applications, 
featuring an encoder-decoder structure that enhances segmentation accuracy. 
 Mask  R-CNN  is  an  extension  of  Faster  R-CNN  that  enables  instance  segmentation  by 
distinguishing between different objects of the same category. 
 DeepLabV3+ is a model that utilizes atrous spatial pyramid pooling to capture multiscale 
information, making it practical for segmenting objects of varying sizes. 
These models have significantly improved segmentation accuracy in satellite imagery by learning 

complex spatial relationships and handling diverse environments. However, they also introduce new 
challenges, such as high computational costs and the need for large labelled datasets.

2.4. Comparison of Traditional and AI-Based Methods

A comparison of traditional and AI-based segmentation methods highlights the advantages of deep 
learning in terms of accuracy, adaptability, and scalability. The list is shown in Table 1.

Table 1
Comparison of traditional and AI-based methods

Method Strengths Weaknesses
Thresholding Simple and computationally 

efficient
Limited to binary segmentation, 
sensitive to noise

Edge Detection Effective for boundary 
delineation

Struggles with complex landscapes 
and occlusions

Region-Based Methods

Machine Learning (SVM, 
Random Forests)
Deep Learning (CNNs, U-
Net, Mask R-CNN)

Captures spatial 
relationships
More robust than traditional 
methods
High accuracy, automatic 
feature extraction

Requires fine-tuned parameters, not 
scalable
Requires handcrafted features, 
limited contextual understanding
Requires large datasets, 
computationally expensive

2.5. Gaps in Existing Research and Future Directions

Despite significant progress in AI-driven segmentation, several challenges remain. One of the main 
issues is data scarcity, as high-quality labelled satellite datasets are often limited, making it difficult to 
scale supervised learning approaches. Another challenge lies in computational constraints,  since 
training deep learning models requires substantial resources that may not be accessible in all research 
settings. Additionally, there is the problem of generalization across regions — models trained on 
specific geographic areas often struggle to perform accurately in different environments due to 
variations in landscape features.

To address these challenges, future research should focus on developing self-supervised and semi-
supervised learning approaches that reduce dependence on labelled data. There is also a growing need 
to optimize lightweight AI models capable of real-time processing on edge devices and satellites. 
Furthermore, integrating multi-modal data sources, such as LiDAR and hyperspectral imagery, can 
significantly enhance segmentation accuracy and model robustness.



3. Methodology

3.1. Overview of the Methodology

The proposed study [27] employs AI techniques to perform object segmentation on satellite images, 
focusing on classifying land cover types such as rivers, forests, and buildings. The methodology 
consists of several key stages, including data collection, preprocessing, model selection, training, and 
evaluation.  This  structured  approach  ensures  the  development  of  an  efficient  and  accurate 
segmentation  system  tailored  for  satellite  imagery  analysis.  The  workflow  begins  with  the 
identification of suitable high-resolution satellite imagery datasets for training and evaluation. This is 
followed by preprocessing steps aimed at enhancing image quality, normalizing data, and preparing 
segmentation masks. Next, appropriate deep learning architectures optimized for segmentation tasks 
are selected. The training and optimization phase involves using annotated datasets and fine-tuning 
model hyperparameters. Model performance is then assessed using standard segmentation metrics to 
ensure effectiveness. Finally, deployment considerations are addressed, focusing on the real-world 
applicability of the system and its computational requirements. Each of these stages plays a critical 
role in ensuring the accuracy and robustness of the segmentation model.

3.2. Dataset Selection

Selecting an appropriate dataset is essential for training an AI-based segmentation model. This study 
considers publicly available satellite datasets that provide high-resolution images and corresponding 
segmentation masks. Some of the most commonly used datasets include: 

 Sentinel-2 Dataset is a multispectral satellite dataset provided by the European Space 
Agency (ESA), which is widely used for land cover classification;

 LandCover.ai is a dataset specifically designed for semantic segmentation of aerial and 
satellite imagery featuring manually annotated masks;

 DeepGlobe  Land  Cover  Classification  Dataset  is  a  benchmark  dataset  that  provides 
annotated satellite images covering urban, agricultural, and forested areas;

 SpaceNet is a dataset containing high-resolution satellite imagery and building footprint 
annotations that is functional for urban planning applications. 

3.3. Data Preprocessing

Before training deep learning models, raw satellite images must undergo preprocessing to enhance  
their quality and suitability for analysis [28]. This preprocessing pipeline involves several essential 
steps. First, image resizing is performed to standardize image dimensions and ensure consistency 
across the dataset. Next, normalization scales pixel values to a uniform range,  such as [0,1] or [-1,1] — 
which helps facilitate stable and efficient neural network training. To improve model generalization 
and reduce overfitting,  data  augmentation techniques  such as  rotation,  flipping,  and brightness 
adjustments are applied to increase dataset diversity. Finally, mask generation is carried out to create 
binary or multiclass segmentation masks that correspond to different land cover types, providing the 
necessary ground truth for supervised learning.

3.4. Model Selection and Implementation

This study explores several state-of-the-art deep learning architectures for semantic segmentation, 
focusing on convolutional  neural  networks (CNNs) and transformer-based models.  The selected 
models include: 

 U-Net is a widely used segmentation model with an encoder-decoder architecture designed 
for biomedical and remote sensing applications;
 DeepLabV3+ is a model incorporating atrous spatial pyramid pooling, enabling multiscale 
feature extraction for improved segmentation accuracy;
 Mask R-CNN is a region-based convolutional neural network capable of performing both 
instance segmentation and object detection;



 Swin Transformer is a transformer-based model that leverages self-attention mechanisms for 
efficient image segmentation. 
Each  model  is  implemented  using  the  TensorFlow and  PyTorch  deep  learning  frameworks, 

leveraging pre-trained weights to accelerate training and improve performance.

3.5. Training and Optimization

The  training  process  involves  feeding  annotated  satellite  images  into  the  selected  models  and 
optimizing their parameters using backpropagation. A key aspect of this procedure is selecting an 
appropriate loss function, such as cross-entropy loss for multi-class segmentation or Dice loss for  
imbalanced datasets. Optimization is performed using adaptive techniques, such as Adam or SGD 
with momentum, to adjust model parameters effectively. Learning rate scheduling is employed to 
dynamically  adjust  the  learning  rate  during  training,  improving  convergence.  Additionally, 
hyperparameters like batch size and epochs are tuned to balance training efficiency with model 
performance.  To  prevent  overfitting,  regularization  techniques  such  as  dropout  and  batch 
normalization are also applied throughout the training process.

3.6. Model Evaluation

To evaluate the performance of segmentation models, a range of quantitative metrics is applied [29], 
each  capturing  different  aspects  of  model  accuracy.  One  of  the  most  widely  used  metrics  is 
Intersection over Union (IoU), which quantifies how well the predicted segmentation overlaps with 
the ground truth. Complementing this, the Dice Coefficient provides a measure of similarity between 
predicted and actual regions, making it especially effective for datasets with class imbalance. Pixel 
Accuracy offers a straightforward metric by calculating the proportion of correctly classified pixels in 
an image. In the context of instance segmentation, Mean Average Precision (mAP) is utilized to assess 
how accurately individual objects are detected and segmented. Collectively, these metrics enable a  
thorough and multi-faceted evaluation of model performance across diverse land cover categories.

3.7. Deployment Considerations

Beyond model training, practical deployment considerations are addressed, including: 
 Computational Requirements is evaluating hardware demands for real-time segmentation;
 Scalability is ensuring the model can process large-scale satellite datasets efficiently. 
 Edge Deployment is exploring lightweight models for satellite or UAV-based applications. 

3.8. Visualization of segmentation results

Semantic segmentation is used to identify land surface types from satellite images. The most basic use 
of  the  technology is  to  determine  water  body contours  to  provide  more  accurate  cartographic 
information. Advanced algorithms are used to map roads, identify crop types, and so on.



Figure 1: Semantic segmentation of satellite/aerial images [30]

The first example shows a comparison of the original satellite image and its segmented version, 
where different objects are marked in colours. Automatic segmentation allows you to highlight water 
bodies, vegetation, buildings, and roads, which is helpful for environmental monitoring and urban 
planning. Deep learning methods such as U-Net were used. Possible segmentation errors may be due 
to shadows, low resolution, or insufficient training data. This approach is practical for analyzing 
landscape changes and mapping territories.

Figure 2: Semantic segmentation of coastal ecosystems [31]

The second example demonstrates the process of segmentation of a satellite image for the analysis 
of coastal ecosystems.

This  method  of  analysis  allows  for  automatic  classification  of  areas  based  on  spectral 
characteristics, which is helpful for monitoring the state of water bodies, identifying environmental 
problems, and planning ecological protection measures.

The third figure is a good example, which combines AI with satellite data to assess real-time 
disaster  impacts  like  floods,  wildfires,  and  hurricanes.  This  approach  enables  rapid  situational 
awareness  by  visually  differentiating  damage  severity,  allowing  emergency  response  teams  to 
prioritize critical areas.



Figure 3: An example of post-disaster images that show damaged areas with colours: green for 
minor damage, orange for significant damage, and red for destroyed [32]

3.9. Mathematical Formulation

To formalize the segmentation process, let  I represent a high-resolution satellite image, where a 
feature vector xp characterizes each pixel. The goal of segmentation is to assign a label yp to each pixel 
such that the function f : xp→yp maps input features to semantic categories (e.g., water, vegetation, 
urban areas). 

A typical deep learning-based segmentation model optimizes a loss function ℒ to minimize the 
difference between predicted and ground truth labels. One commonly used function is the cross-
entropy loss, defined as:

Lce=−∑
P
∑
c

y p
c lg ( ŷ pc ),

where y p
c  is the ground truth probability for class  at pixel , and 𝑐 𝑝 ŷ p

c  is the predicted probability. 
For imbalanced datasets, Dice loss is often used to improve segmentation performance:

LDice=1−
2∑

p

yP ŷ p

∑
P

y p+∑
p

ŷ p
,

where yp and ŷ p are the ground truth and predicted segmentation masks. 
To  enhance  the  spatial  coherence  of  segmentation  predictions,  a  Total  Variation  (TV) 

regularization term can be introduced. This regularizer is particularly effective in reducing noise and 
producing  smoother  segmentations  by  discouraging  abrupt  changes  in  neighboring  pixel 
classifications. The TV regularization term is defined as follows:

Lᵥₜ =∑ ₚ(∨ ŷp ₊₁− ŷp ∨+¿ ŷp ₋₁− ŷp ∨),

where ŷp  represents the predicted probability or class value at pixel ppp. The expression quantifies 
the  total  amount  of  variation  across  neighboring  pixels,  effectively  penalizing  high-frequency 
fluctuations in predictions that are not supported by image features. This promotes local smoothness 
and improves spatial consistency in the segmented output.



However, regularization alone is not sufficient. In practice, the training of segmentation models 
involves  optimizing  a  composite  loss  function  that  balances  multiple  objectives.  For  semantic 
segmentation tasks,  commonly used components  include the categorical  cross-entropy loss  Lce, 
which measures the pixel-wise classification error, the Dice loss LDice, which is particularly useful in 
handling class imbalance, and the aforementioned total variation loss Lᵥₜ .

The final objective function used to train the segmentation network is a weighted combination of 
these three terms:

L ₒ ₐₜ ₜ ₗ=α Lсе+β LDice+γ L ᵥₜ ,

where α, β, γ are hyperparameters controlling the influence of each term. Tuning these coefficients 
is crucial for achieving optimal performance, as they determine the trade-off between segmentation 
accuracy, boundary precision, and spatial smoothness.

In most implementations, the choice of these weights depends on the characteristics of the dataset. 
For instance, datasets with noisy annotations or frequent texture artifacts may benefit from higher γ 
values to enforce smoother transitions.

4. Experiments and Results

To  ensure  reliable  and  reproducible  results,  the  experimental  setup  is  carefully  designed, 
incorporating high-performance computing resources and standardized deep learning frameworks. 
The key components of the environment include:
Table 2 
Computing resources

N Computing resources Components Explanation
1 Hardware 

Configuration
GPU NVIDIA RTX 3080 (10GB VRAM) for 

accelerated model training
CPU AMD Ryzen 9 7950X for efficient data 

preprocessing
RAM 64GB to handle large satellite image datasets
Storage 1TB SSD for fast data access and model 

checkpoints
2 Software and 

Frameworks
Python 3.8
TensorFlow 2.x and PyTorch 1.x
OpenCV for image processing
GDAL (Geospatial Data Abstraction Library) for handling satellite 
image formats
Albumentations for data augmentation

3 Dataset Image resolution 512 × 512 and 1024 × 1024 pixels
Number of classes 3 (rivers, forests, buildings)
Training-validation-
test split

70%-20%-10%

By using this  experimental  environment,  we ensure  that  the  results  are  optimized for  both 
accuracy and computational efficiency.

The  training  process  involves  fine-tuning  hyperparameters  to  achieve  optimal  segmentation 
accuracy. Several aspects of the training procedure are adjusted:

 Experimented with 8, 16, and 32 to balance GPU memory usage and convergence speed;
 Initialized at 0.001 with a step decay to 0.0001 using ReduceLROnPlateau;
 Optimizers Adam and SGD were tested, with Adam providing better stability in the early 

training phases;
 Set to 100 number of epochs, with early stopping applied when validation loss plateaued;
 Loss Functions are Dice Loss for imbalanced datasets (improves segmentation for small 

objects like rivers) and Categorical Cross-Entropy for multiclass segmentation.
These hyperparameters were determined through an extensive grid search, ensuring that the 

models achieved the best possible performance. The trained models were evaluated using standard 



segmentation metrics, and the results were compared across different architectures. The performance 
of each model is summarized in Table 3.

Table 3
The performance of models

Model IoU (Intersection 
over Union)

Dice Coefficient Pixel 
Accuracy

Training Time 
(per epoch)

U-Net 85.2% 89.4% 92.3% 12 min
DeepLabV3+ 83.7% 88.2% 93.1% 15 min
Mask R-CNN 81.5% 86.8% 91.5% 18 min
Swin Transformer 86.8% 90.1% 92.8% 22 min

From these results, we observe that U-Net performs well across all metrics, making it a strong  
choice  for  semantic  segmentation tasks.  Its  encoder-decoder architecture with skip connections 
allows it to preserve spatial information, which is essential for delineating land cover boundaries 
accurately. 

DeepLabV3+ achieves the highest pixel accuracy, which is particularly beneficial for large-area 
segmentation tasks where overall classification consistency is critical. Its use of atrous convolution 
and multi-scale context aggregation contributes to its strength in handling spatially diverse features.

Mask R-CNN provides instance-level segmentation, which is valuable for distinguishing between 
multiple occurrences of the same object class, such as separate buildings or vehicles. However, it 
shows a slightly lower IoU due to challenges in dealing with complex and noisy background textures 
commonly found in natural landscapes. This indicates a trade-off between instance-level precision 
and overall semantic coherence.

Swin  Transformer  achieves  the  best  overall  performance  across  metrics,  benefiting  from its 
hierarchical vision transformer design and self-attention mechanisms that effectively model long-
range spatial  dependencies.  This makes it  especially powerful for capturing subtle patterns and 
context  in  high-resolution  satellite  images.  However,  this  superior  accuracy comes  at  a  higher 
computational cost, which may limit its practical deployment in resource-constrained environments, 
such as real-time onboard satellite processing or edge devices. 

Despite promising results, several challenges remain:
 Misclassification in boundary regions (small objects such as narrow rivers are sometimes 
misidentified as roads);
 Variability in lighting and atmospheric conditions (shadows and haze in satellite images 
introduce noise);
 Data scarcity for specific regions (the model generalizes well for well-represented landscapes 
but struggles with less common environments).

5. Discussions

The experimental results demonstrate the effectiveness of deep learning models for satellite image 
segmentation,  revealing  notable  variations  in  performance  across  different  architectures.  High 
Intersection over Union (IoU) and Dice coefficient scores confirm that the models can accurately 
differentiate between various land cover types, such as rivers, forests, and buildings. Among the 
evaluated  models,  the  Swin  Transformer  consistently  outperformed  traditional  CNN-based 
architectures,  benefiting from self-attention mechanisms that effectively capture complex spatial 
relationships in satellite imagery. U-Net, despite its relatively simple design, delivered competitive 
results and remains a practical choice for large-scale segmentation tasks due to its computational 
efficiency and ease of training. DeepLabV3+ excelled in capturing fine details, which is especially 
advantageous for segmenting narrow rivers and small structures. In contrast, Mask R-CNN proved 
useful for instance segmentation but encountered difficulties with semantic segmentation of natural  
landscapes, primarily due to the complexity and variability of background textures.

Several key observations emerged from the analysis. Boundary regions between different land 
types  presented  consistent  challenges,  often  resulting  in  misclassifications  at  the  edges.  Data 
imbalance also impacted model  performance,  as  areas  with fewer training examples  — such as  
sparsely  represented  forest  zones,  tended  to  be  segmented  less  accurately.  Moreover,  model 



generalization was found to depend heavily on dataset diversity; models trained on geographically 
limited data often struggled to accurately segment landscapes from unfamiliar regions. These findings 
highlight both the strengths and current limitations of AI-based segmentation methods when applied 
to real-world satellite imagery.

Traditional  satellite  image  segmentation  methods,  such  as  thresholding,  edge  detection,  and 
classical machine learning techniques (e.g., Random Forests, SVM), have been widely used in remote 
sensing applications. However, these methods often struggle with complex, high-resolution images 
due  to  their  limited  ability  to  capture  hierarchical  spatial  relationships.  They typically  rely  on 
handcrafted features  and shallow representations,  which makes  them less  effective  in  handling 
variations in texture, lighting, and object scale. As a result, their performance tends to degrade in 
heterogeneous landscapes or when applied to large and diverse satellite datasets.

The list of advantages and disadvantages of models is shown in Table 4.

Table 4
Advantages and disadvantages of models

Method Advantages Disadvantages
Thresholding & Edge 
Detection

Simple, fast, interpretable Sensitive to lighting conditions 
and noise

Random Forests & SVM Effective for small datasets, 
interpretable

Requires handcrafted features, 
limited scalability

CNN-based Models (U-Net, 
DeepLabV3+)

High accuracy, learns spatial 
hierarchies

Computationally expensive

Transformer-based Models 
(Swin Transformer)

Captures long-range 
dependencies, state-of-the-art 
performance

Requires large datasets and 
computational power

The results show that deep learning methods significantly outperform classical approaches in 
terms  of  segmentation  accuracy  and robustness.  Transformer-based  architectures,  in  particular,  
demonstrate superior capability in handling complex satellite imagery, suggesting a shift towards 
these models in remote sensing applications.

The  automatic  classification  of  land  cover  using  satellite  imagery  has  numerous  real-world 
applications  across  various  domains.  In  environmental  monitoring [33],  AI-based  segmentation 
enables the detection of changes in river paths due to climate change or deforestation, allowing 
researchers to track the degradation of natural landscapes over time. It also facilitates the assessment 
of flood-prone areas, contributing to disaster prevention strategies. Similarly, the ability to analyze 
forest cover loss and land degradation helps environmental organizations and policymakers take 
appropriate conservation measures.

Urban  planning  and  infrastructure  development  [34]  also  greatly  benefit  from  automated 
segmentation methods. By analyzing satellite images, city planners can monitor urban expansion, 
identify informal settlements, and evaluate changes in land use. This data is essential for designing  
sustainable  cities  and  ensuring  efficient  infrastructure  growth.  Automated  segmentation  allows 
authorities to track the development of new buildings and road networks,  supporting informed 
decision-making in large-scale construction projects.

Despite the advancements in AI-based satellite image segmentation, several challenges remain 
that hinder widespread adoption and practical implementation. One of the primary issues [35] is the 
generalization of models across different geographic regions. Satellite images vary significantly based 
on atmospheric conditions, vegetation types, and urban structures, making it difficult for a model 
trained  on  one  dataset  to  perform well  in  other  locations.  This  limitation  necessitates  domain 
adaptation techniques  or  the  collection of  diverse  training data  to  improve  robustness  [36-37].  
Another significant challenge [38] is the issue of class imbalance and rare object detection. In many 
satellite datasets, certain land cover types, such as rivers or buildings, are underrepresented compared 
to dominant classes like forests or open land. This imbalance leads to biased model predictions, where 
rare  classes  are  often  misclassified  or  ignored.  Addressing  this  problem  requires  specialized 
techniques such as data augmentation, focal loss, and synthetic data generation to ensure balanced 
learning [39].



6. Conclusions

This study assessed the application of artificial intelligence techniques for object segmentation in 
satellite imagery, with a specific focus on the automatic classification of land cover types such as  
rivers, forests, and buildings. A comprehensive comparison was conducted between traditional image 
processing  methods  and  modern  deep  learning  architectures,  including  convolutional  neural 
networks (U-Net, DeepLabV3+, Mask R-CNN) and transformer-based models (Swin Transformer).

Experimental  results  demonstrated  that  deep  learning  methods  significantly  outperform 
traditional approaches in terms of segmentation accuracy, boundary delineation, and generalization 
across diverse landscapes. Among the tested models, the Swin Transformer achieved the highest  
accuracy  metrics,  while  U-Net  remained  a  computationally  efficient  and  competitive  baseline. 
However, the performance gains of advanced models come with higher computational costs and 
increased demand for annotated data.

Despite  outcomes,  the  study  identified  key  limitations  in  current  AI-based  segmentation 
approaches.  These  include:  reduced  model  performance  in  regions  with  limited  training 
representation,  difficulty  in  accurately  classifying  boundary  zones  and  rare  object  classes,  and 
challenges in generalizing to unseen geographic areas. The research also highlighted the importance 
of  selecting  appropriate  models  based  on  deployment  scenarios  — particularly  when balancing 
performance with computational efficiency.

In conclusion, the findings underscore the practical potential of deep learning in satellite image 
segmentation and emphasize the necessity of addressing current challenges to facilitate broader 
adoption in environmental monitoring, urban development, and disaster response scenarios.
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