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Abstract
This study explores the concepts  of  computational  optimization heuristics for item categorization and  
allocation  on  distribution  center  racks.  Properly  organizing  products  on  racks  in  warehouses  or 
distribution  centers  according  to  their  respective  categories  is  essential  for  efficient  operations.  The  
research proposes the flower-cutting optimization heuristics with 17 tuning parameters. Special attention 
is given to examining the effect of two grouping tuning parameters on the number of generated product 
allocations and their implications for space utilization, accessibility, and operational efficiency: implements 
a grouping strategy where, for each total width, only one product allocation with the maximum total profit 
is considered; adopts a grouping strategy where, for each total profit and profit ratio, only one product 
allocation with the minimum total width is selected. The experiment revealed that the implementation of 
grouping tuning parameters  plays a  crucial  role in substantially  reducing computational  requirements 
while preserving the quality of solutions. By narrowing the solution space, these parameters ensure that 
the  heuristics  efficiently  produce  near-optimal  allocations.  This  streamlined  approach  enhances  the 
practicality  of  addressing  large-scale  shelf  space  allocation  challenges,  making  the  heuristics  highly 
applicable to real-world scenarios.
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1. Introduction

Dividing the warehouse shelving into zones for different product categories or types allows for 
locating products much easier. In this case, for example, household goods, electronics, clothing, etc., 
can be stored in different areas of the racks, helping order pickers quickly find the products ordered  
by customers. This also guarantees effective stock management, provides easy access to products, 
and reduces the possibility of product damage.

We introduce novel flower-cutting optimization heuristics aimed at addressing the challenges 
identified in the shelf space allocation problem with specific product categorization and additional  
item types included in the main categories. Our approach incorporates two heuristic variants, each 
characterized  by  a  unique  sorting  sequence  for  allocation  prioritization.  There  were  17  tuning 
parameters implemented. However, this research mainly focuses on key grouping parameters for 
tuning: (1) parameter 7, which limits product allocations to one per total width, maximizing total  
profit.  (2)  parameter 9,  which limits product allocations to one per total  profit and profit ratio,  
minimizing total width. By combining innovative heuristics with parameterized selection strategies, 
the flower-cutting approach effectively balances complexity and practical applicability, making it a 
robust tool for solving shelf space allocation challenges.

Earlier research has investigated the development of heuristics for resource allocation problems, 
highlighting  the  significance  of  tuning  parameters  to  optimize  the  solution  process.  These 
parameters  are  crucial  for  narrowing the  solution  space,  effectively  reducing complexity  while 
maintaining solution quality [1]-[2].
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2. Literature review

Assortment planning refers to the process of selecting and managing the range of items that are 
available  for  distribution  through  a  supply  chain.  In  distribution  centers,  effective  assortment 
planning  ensures  that  the  right  items  are  stocked  in  appropriate  quantities  to  meet  customer 
demand while optimizing inventory levels.

For the formulation of assortment planning, the authors  [3] employed an exogenous demand 
model and integer programming. They present a heuristic to tackle larger problems and solve a 
number  of  small  problems  by  thorough  enumeration  to  show  how  assortment  and  stocking 
decisions depend on the characteristics of predicted substitution behavior [3].

The  researchers [5] introduced  the  practice  of  adjusting  the  store  layout  and  changing  the 
product allocations multiple times each day to match the changing customers’ needs at different 
hours  of  the  day.  In  this  case,  the  customers  can  easily  find  their  favorite  products  in  the 
supermarket.

Online  assortment  planning  requires  a  strategic  approach  to  digital  catalogue  management, 
ensuring a diverse yet manageable range of products that align with consumer preferences and 
market trends. This often involves sophisticated algorithms and data analysis to continuously refine 
the product mix, enhancing the online shopping experience and operational efficiency.

Another researcher  [6] developed a model that maximizes the revenue of impulse purchases 
considering the layout of grocery stores and also maximizes customer satisfaction with product 
allocations with regard to adjacencies of related departments. 

Shelf  space allocation refers  to  the process  of  assigning physical  space on store  shelves  (or  
within distribution center storage areas) to different products in a way that maximizes profitability,  
sales, and operational efficiency. This issue becomes increasingly important in distribution centers 
as they prepare stock for retail stores or direct customers.

The researchers in  [7] provided a revised shelf  space allocation problem with additions that 
address  more practical  scenarios  in  the retail  sector,  rationalizing this  issue.  They developed a 
combination of heuristics in a 5-phase “Squeaky Wheel” optimization with a local search technique 
to generate high-quality solutions to the problem [7].

Although marketing factors’ elasticity can be fixed beforehand with known values, the demand 
function can readily accommodate them. The theory regarding self-service grocery retail  stores 
posits that product demand is influenced by the extent of display exposure. It is hypothesized that 
this promotional structure can alter consumers’  brand preferences  [7]-[9].  Thus,  in the demand 
function, only the product’s direct spatial elasticity is often taken into account. Several strategies 
were given to solve the linear model [10]-[11].

This behavior reflects aggregated substitution effects, influencing overall demand patterns rather 
than just individual customer experiences at the store. Consequently, the initial assortment decision 
must account for potential substitution to accurately forecast demand and optimize inventory levels.

Metaheuristics  are  problem-solving  techniques  that  aim  to  find  approximate  solutions  to 
complex optimization problems, particularly when exact methods are impractical. These methods 
are  often  used  to  tackle  large-scale,  difficult  problems  by  exploring  various  strategies  and 
approaches to find near-optimal solutions efficiently.

The researches in  [12] provided a comprehensive overview of meta-heuristic methods. Among 
the many types of metaheuristics are greedy random adaptive search procedures, neural networks, 
constraint logic programming, natural evolutionary computation, non-monotonic search strategies, 
space-search techniques, simulated annealing, tabu search, threshold algorithms and their hybrids,  
and neural networks [12].

The researches in  [13] proposed to use a genetic algorithm to improve the retail  shelf-space 
configuration instead of a heuristic approach, building on the genetic algorithm shelf-space research 
stream [13]-[16]. The suggested meta-heuristic technique has the following benefits: (1) it involves 
less computational work; and (2) managers can apply the solution obtained directly to the retail  
shelf space.

The researcher in [16] used a population-based solution or genetic algorithm and concluded that 
a metaheuristic outperformed a heuristic approach. On the other hand, the simulation makes the 
assumption that the product profit is independent of the horizontal shelf location inside a shelf 
section [16].



The researcher in  [17] in their research grounded on the work of  [16]. The researcher in  [17] 
presented a hyperheuristic approach, such as a fast variant of the variable neighbourhood search 
and  the  reduced  variable  neighbourhood  search.  A  commonly  reduced  variable  neighbourhood 
search is beneficial when a local search is extremely costly. If random points are chosen from the  
current’s nearby solutions and no descent is performed, the reduced variable neighbourhood search 
method is achieved [17]. 

The research [18] emphasized the principles and aims of space management in retailing, paying 
specific attention to space management activities at the category, segment, and brand levels. The 
goal was to assist retailers in navigating the retailer-imposed category management.

These advancements in metaheuristic techniques highlight the growing interest and potential of 
these  methods  in  optimizing  complex  problems,  including  retail  shelf-space  allocation.  By 
incorporating genetic algorithms and hyperheuristics, researchers have been able to enhance the 
effectiveness and efficiency of solution methods, reducing the computational burden and providing 
more practical, implementable results for managers. This progression in metaheuristic application 
allows for more refined, cost-effective approaches to shelf-space configuration, offering valuable 
insights for the retail industry.

Both assortment planning and shelf space allocation are critical in ensuring that a distribution 
centre operates efficiently and that products are delivered to the right place at the right time. Proper  
assortment planning helps ensure that  distribution centres are stocked with the right products, 
while effective shelf space allocation maximizes the visibility and sales potential of those products.  
Together, they contribute to a smoother flow of goods, better customer satisfaction, and improved 
profitability across the supply chain.

3. Problem statement

The research focuses on the shelf space allocation problem (SSAP) in distribution centres and retail 
stores, analyzing the benefits of vertical and horizontal categorization for item (product) display.  
Vertical  categorization  enhances  visibility,  customer  experience,  and  space  utilization,  while 
horizontal  categorization  increases  exposure,  navigation,  and  the  promotion  of  key  products. 
Combining both strategies  improves  customer experience  and brand visibility.  Products  can be 
categorized  by  their  specific  attributes,  like  weight  or  perishability,  and  need  to  be  stored 
appropriately  to  avoid  risks  like  contamination  or  confusion.  Clear  categorization,  product 
orientation, and rack dividers aid the organization. Retail managers must also consider historical 
sales data for better stock management and forecasting.

The goal of the SSAP under investigation is to maximize profit or product movement. To achieve 
this,  retailers  must  determine  the  shelf  placement  for  each  product  based  on  its  vertical  and 
horizontal categorization. Vertical and horizontal categorizations guide the most effective placement 
strategy to minimize retrieval times, ensuring products are positioned for maximum accessibility 
and operational efficiency. This includes deciding how many stock-keeping units (SKUs) to assign 
per shelf, the product orientation (front, side, or top), and addressing various constraints such as  
shelf, product, multi-shelf, and category-specific limitations. 

The criterion of the SSAP is to maximize the profit of each SKU placed on each shelf. The core 
constraints related to SSAP can be explained as follows.

The shelf constraints: each product must fit within the shelf’s length, height, and depth, ensuring 
the product’s dimensions are compatible with the available shelf space.

The product constraints. Products must be placed on the shelf. There is a specified range for the 
number  of  SKUs allowed for  each product  on the  shelf.  Each product  must  have  a  designated 
orientation (front,  side,  or  top),  and only one orientation can be applied per  product.  Products 
requiring separate storage must be placed on different shelves. Incompatible products should not be  
placed next to each other, but if marked compatible, they must be stored together on the same shelf.  
The placement of products must align with their respective SKUs.

The multi-shelf  constraints.  Products can be placed on a specific number of  shelves,  with a 
defined  minimum and  maximum number  of  shelves  allowed.  There  are  storage  limits  when  a 
product is distributed across multiple shelves, and the shelves should be placed near one another for 
efficient access. 

The category constraint. Shelf and product compatibility must align according to their category 
tags. A minimum size for product categories must be maintained if products from the category are 



placed on a shelf. Products within the same category should be evenly distributed across shelves to  
maintain balance and organization.

The decision variables constrains. The placement of each product on the shelf. The number of 
SKUs allocated to that product. The product orientation (front, side, or top) while placing it on the  
shelf.

4. Flower-cutting heuristics for the SSAP

We introduce novel  flower-cutting heuristics that  aim to address the challenges of solving 
SSAPs efficiently by systematically reducing the solution space while retaining high-quality 
results. The methodology involves two heuristic variants, each with a unique approach to 
sorting and selecting product allocations. Here’s a summarized breakdown of the process.

The core concepts are shelf allocation, and product orientation and key metrics. 
The shelf allocation and product orientation: products on shelves are assigned positions (front-
facing, side-facing, top-facing) or do not place on the shelf at all. Each shelf allocation sequence 
encodes the placement and orientation of products.
The key metrics: total profit is the sum of profits from all shelves. Total width is the maximum 
cumulative width of products in a category. Profit ratio is the profit relative to space usage, 
excluding empty shelf space.
To decide a problem we use a heuristic workflow. 
Problem definition and objectives:  define SSAP constraints,  profit  maximization criteria,  and 

success metrics such as accuracy (profit ratio), estimate the number of solutions, and computational  
time.

Simplified problem structure: products are allocated within categories individually before being 
combined across categories, i.e. prepare the parts of the solution for each single category. 

Iterative optimization: parameters are adjusted to refine the solution set, focusing on reducing 
computational effort while preserving near-optimal results.

We  state  following  Implementation  highlights.  The  “flower  garden”  analogy  visualizes  the 
solution space. Each “flower” represents a potential solution. “Clearings” are profitable regions of 
the solution space. The “basket size” represents the number of solutions to be generated, which is  
the termination criteria. Parameters guide the selection of flowers (solutions) to focus on the most 
profitable options.

The optimization process should take into account following aspects. Initial heuristics are tested 
and  evaluated  against  benchmarks,  with  parameters  fine-tuned  to  balance  solution quality  and 
computational  efficiency.  Through  iterations,  the  algorithm  narrows  down  solutions  using 
predefined rules, systematically eliminating near-duplicate or suboptimal configurations. A stopping 
criterion (e.g.,  basket capacity) ensures the process halts when acceptable resource utilization is 
achieved.

Tuning parameter roles: parameters of flower clearing forming: 1-4, parameters of moving along 
the selected flower clearings: 5-10, parameters of the interval between cut flowers on the selected 
clearings: 11-14, parameters of the flowers to be cut: 15-17.

Let consider the tuning parameter description.
Parameter 1 (focus on the maximum category width before forming product allocations). It limits 

the category width for product allocations, ensuring that the other categories can achieve high-
value configurations.

Parameters 2 and 3 (focus on the number of products that can be placed on the shelf before  
forming product allocations). They form the number of product allocations per category, excluding 
low-value product allocations, which could appear in future steps.

Parameter 4 (focus on the profitable groups of products to be placed on the shelf). It establishes  
base  filters  for  allowable  product  combinations  on  each  shelf.  It  ensures  only  viable  initial  
configurations are considered, reducing unnecessary allocations.

Parameters 5, 6 (focus on the category width threshold after forming product allocations). They 
cap the number of product allocations per category, focusing on the most promising options within 
each.

Parameter 8 (focus on the sorting order limiting the number of product allocations on the shelf).  
It  defines  the  sequence  for  sorting  product  allocations,  prioritizing  based on category width ↑,  
category profit ↓ (for heuristics H1) and category profit ↓, category width ↑ (for heuristics H2).



Parameter  10 (focus  on the  sorting order  limiting  the  number  of  product  allocations  in  the 
category). It defines the sequence for sorting product allocations, prioritizing based profit ↓, profit 
ratio ↓(for heuristics H1) and profit ratio ↓, profit ↓(for heuristics H2).

Parameter 11(focus on the product allocation diversity control on the shelf). It ensures that a  
predefined diversity threshold is met across product allocations formed on the shelf.

Parameter 13 (focus on the product allocation diversity control on the category). It ensures that a 
predefined diversity threshold is met across product allocations formed on the category.

Parameters 12, 14 (focus on limiting the product allocation after applying parameters 11, 13).  
They prevent over-consolidation by maintaining a definite number of product allocation options, 
which is essential for scenarios requiring flexibility in shelf configuration. They enable the fine-
tuning of priorities based on profitability for specific product allocations.

Parameters  15,  16  (focus  on  the  category-based  profit  limits).  They  process  the  product  on 
shelves as clusters based on profit similarity. They focus optimization efforts on clusters with the 
highest potential impact, eliminating the low-profit product allocations.

Parameter 17 (focus on the lower bound of accepted total profit). It establishes the minimum 
profit for the solution to qualify, ensuring the profitability of the result.

Let consider the tuning grouping parameter roles and impact.
Parameter 7 (focus on maximum total profit per total width). It limits product allocations by 

considering only one product allocation for each total width, selecting the one with the maximum 
total  profit.  It  balances computational  efficiency and solution diversity.  It  enables  heuristics  for 
faster solution generation while maintaining near-optimal results.

Parameter  9  (focus  on  minimum  total  width  per  profit  and  profit  ratio).  It  limits  product  
allocations by considering only one product allocation for each combination of  total  profit and 
profit  ratio,  selecting  the  one  with  the  minimum  total  width.  It  is  particularly  effective  in  
accelerating convergence for larger problem instances. It significantly minimizes the solution space, 
allowing for efficient handling of large-scale problems.

Results and deployment. The heuristics demonstrate scalability, handling larger instances while 
maintaining solution diversity. The tuning parameters allow us to achieve significant reductions in 
solution space without sacrificing profitability. Final heuristics are validated documented, and could 
be integrated into retail space management systems.

Figure 1 depicts the flower garden analogy, focusing on the specific flower patches where the 
gardener (representing the heuristic) selects and cuts flowers, symbolizing potential solutions. In the 
real solution space, multiple flower patches may be chosen, each defined by unique characteristics.

The  selection  process  begins  with  identifying  a  threshold  height  above  which  flowers  are 
deemed suitable for cutting and placing in the basket.  Within each selected patch,  only certain 
flowers are cut and spaced apart by intervals that reflect the heuristic criteria. These intervals, along 
with the height thresholds and the patch widths, vary between patches, emphasizing the diversity  
of potential solutions. Flowers in unselected patches are ignored, even if their heights surpass the 
thresholds of other patches, focusing the effort on promising areas.

The objective is to prioritize patches with the largest and most profitable flowers, ensuring no 
valuable  patch  is  overlooked.  The  gardener’s  task  is  unconcerned  with  the  distances  between 
patches; instead, the focus remains on harvesting the most profitable flowers within the chosen 
patches.

The algorithm’s computational time mirrors the gardener’s efficiency, relying solely on the time 
spent assessing and cutting flowers in the selected patches while disregarding unselected patches. 
This visualization underscores the heuristic’s ability to streamline the solution space, concentrating 
only on areas with the highest potential for optimal outcomes.
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Figure 1: Looking for patches to cut flowers and cutting flowers with some intervals

5. Experiment

The study evaluates the performance of two heuristics (H1 and H2) across a range of test scenarios 
with varying product counts (10, 15, 20, 25, and 30) and shelf widths (250, 375, 500, 625, and 750).  
The  performance  of  the  developed  heuristics  for  solving  the  SSAP  was  evaluated  through 
experiments comparing their solutions to the optimal results from the CPLEX solver. 

The  study  focused  on  the  best-performing  parameter  configurations,  identified  through 
systematic  tuning,  to  ensure  high-quality  solutions.  Key  metrics  such  as  solution  quality, 
computational time, and proximity to optimality were analyzed. The results provide insights into 
the  efficiency  of  the  heuristics  and  their  potential  for  improving  shelf  space  management  in 
complex scenarios.

The computer parameters were: processor:  AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz, 
system type:  64-bit  Operation System, x64-based processor,.  RAM: 16 GB, operation system: MS 
Windows 10.

Table 1 presents the average performance of the developed heuristics. Across all test scenarios,  
heuristic H1 consistently achieved near-optimal profit ratios, averaging 99.85%, with computation 
times ranging from 0.05 to 5.60 minutes. Heuristic H2 displayed slightly higher computation times,  
ranging from 0.05 to 7.01 minutes, but similar profit ratios, averaging 99.86%. The CPLEX solver was 
effective for smaller cases, with times as low as 0.36 seconds, but scaled less efficiently; its maximum 
computation time was 6.48 seconds.

In terms of performance consistency, both heuristics (H1 and H2) consistently achieve high-
profit ratios,  with most values at or near 100%. This indicates their effectiveness in maximizing 
profit regardless of the number of products or shelf width. When talking about the efficiency of 
heuristics,  it  can be  observed that  H1 generally  has  faster  computation times than H2.  As the 
number of products and shelf width increase, computation times for both heuristics and CPLEX 
increase, although CPLEX exhibits significant variation in computation time.

Table 1
The average performance of the developed heuristics

Products
Average profit 

ratio of H1
Average profit 

ratio of H2
Average time 
of H1 [min]

Average time 
of H2 [min]

Average 
time of 

CPLEX [s]
10 100.00% 100.00% 0.33 0.33 0.52
15 99.96% 99.96% 0.78 1.52 0.75
20 99.99% 100.00% 3.21 4.39 1.07
25 99.85% 99.87% 2.92 3.87 1.79
30 99.43% 99.45% 2.52 2.81 3.68

The  next  phase  of  the  experiment  focuses  on  evaluating  the  impact  of  grouping  tuning 
parameters. Parameter 7 prioritizes generating a single product allocation for each total width that 
maximizes the total profit among the available options. Parameter 9, on the other hand, focuses on 



generating a single product allocation for each total profit and profit ratio that minimizes the total 
width among the available options.

Table 2 displays the number of product allocations (the number of SKUs put on the shelf) that 
correspond to the number of generated shelf allocations if the product is put on the shelf). The  
number of product allocations is presented after applying the initial product allocation parameters  
1-4 and the minimum and maximum width parameters (parameters 5 and 6).  So,  there is not a 
complete solution space, but there is already a reduced one. Although this is not the entire number 
of potential solutions, it is clear that even after reduction, there are still a lot of product allocations 
that need to be examined. These product allocations will be used to determine the ultimate solution.

The numbers of shelf allocations for 10, 15, 20, 25, and 30 product sets varied from 3 to 6, from 3 
to 36, from 3 to 79, from 4 to 106, and from 4 to 119 for each product set, respectively. The numbers 
of product allocations for 10, 15, 20, 25, and 30 product sets varied from 24 to 2 879, from 54 to 
23 609,  from  42  to  57 289,  from  48  to  728 143,  and  from  65  to  87 881  for  each  product  set 
respectively. Despite the fact that the presented numbers of product allocations are calculated after 
the reduction solution space parameters, we can’t check all of them; therefore, further reduction 
solution space is still needed.

Table 2
Numbers of generated shelf allocations and product allocations in heuristics H1, H2

Product
s

Shelf 
width

Number of shelf allocations Number of product allocations
Shelf 

1
Shelf 

2
Shelf 

3
Shelf 

4
Shelf 

1
Shelf 2 Shelf 3 Shelf 

4
10 250 4 6 4 6 24 145 140 80

375 4 6 4 6 26 414 426 279
500 4 6 4 6 30 950 956 688
625 3 6 4 6 28 1 782 1 771 1 359
750 3 6 4 6 26 2 870 2 879 2 361

15 250 3 36 17 24 57 271 791 120
375 3 35 17 24 76 1 480 3 241 397
500 3 35 17 24 54 3 213 5 454 681
625 3 35 17 23 84 4 708 13 510 949
750 3 34 17 23 88 9 480 23 609 1 695

20 250 3 68 62 48 66 1 524 6 377 3 346

375 3 79 69 59 90 7 312 29 609
14 35

0
500 3 35 30 24 109 2 855 9 802 5 628
625 3 35 30 24 42 5 913 14 682 7 860

750 3 35 30 24 50 44 254 57 289
23 79

4
25 250 4 84 63 62 48 1 385 6 931 1 035

375 4 106 69 74 48 3 040 19 743 2 378
500 4 79 61 59 71 8 860 43 337 5 237

625 4 82 61 62 74 23 257 148 586
15 54

1

750 4 64 50 53 65 83 946 728 143
25 57

7
30 250 5 119 105 91 65 1 550 1 885 2 167

375 4 58 38 48 75 4 762 3 447 752
500 4 59 24 38 110 5 639 5 834 8 879

625 4 51 31 38 83 10 105 7 789
15 98

9
750 4 71 24 45 120 11 500 87 881 6 521



Table 3 presents the number of product allocations after applying grouping parameter 7 to all 
instances except the smallest 10 product sets. The values in Table 3 could be compared to the values 
in  Table  2.  Therefore,  the  product  allocations  given  here  are  also  achieved  after  applying  all  
previous  reducing  space  parameters,  i.e.  the  initial  product  allocation  parameters  1-4  and  the 
minimum and maximum width parameters (parameters 5 and 6). The number of product allocations 
that will be processed after applying parameter 7 is limited by parameter 8. The amount of checked  
product allocations limited by the parameter 8 was shown in Table 2. 

Table 3 shows how much the solution space was reduced with the help of parameter 7. So, on 
average, the number of product allocations on each shelf was 56, 1 937, 870, 1 139. These numbers 
varied from 22 to 117 for the 1st shelf, 661 to 3 512 for the 2nd shelf, 110 to 1 692 for the 3rd shelf, 252 
to 2 216 for the 4th shelf.

Table 3
Numbers of product allocations after applying grouping parameter 7 in heuristics H1, H2

Products Shelf width Shelf 1 Shelf 2 Shelf 3 Shelf 4
15 250 35 661 110 252

375 40 1 393 262 673
500 26 1 196 257 624
625 36 1 425 381 764
750 38 1 651 459 884

20 250 22 1 458 938 697
375 38 1 964 1 322 1 185
500 52 1 242 915 790
625 40 1 325 955 915
750 48 1 528 1 113 991

25 250 48 2 544 751 917
375 48 3 512 1 266 1 546
500 71 3 278 1 544 2 131
625 74 3 046 1 692 2 216
750 65 2 739 1 362 1 972

30 250 63 1 382 1 374 1 184
375 72 1 667 485 1 098
500 106 2 040 753 1 115
625 81 1 634 741 1 226
750 117 3 054 720 1 592

Minimum 22 661 110 252
Average 56 1 937 870 1 139
Maximum 117 3 512 1 692 2 216

Following the application of grouping parameter 9, the number of created product allocations 
(the number of SKUs put on the shelf) is displayed in Table 4. Only large test instances of 25 and 30-
product sets were subject to this parameter. The values attained were used for subsequent actions. 

Even though Table 3 shows nearly equal numbers of product allocations on the shelves for 15-20 
and  25-30  product  sets,  the  issue  arises  when the  new category (25-30  product  sets)  is  added,  
making the reduction grouping parameter 9 necessary. Not every product allocation obtained after 
grouping is used for subsequent phases. Parameter 10 sets a limit on how many product allocations 
can be handled following the application of parameter 9.For medium (15-20 product sets) instances 
parameter 10 was utilized without the use of parameter 9. For small (10 product sets) instances,  
parameters 9 and 10 were not used.

It  could be observed that  for the 1st category for 25-product  set  on the 250 cm shelves,  the 
number of product allocations was reduced from 1 074 107to 742 after applying this parameter. For 
most  of  these  3-category  instances,  the  number  of  product  allocations  has  been  significantly 
reduced  from millions  and  thousands  to  thousands  and  hundreds,  which  is  a  forward-looking 
improvement of the main algorithm. The procedure for looking for further solutions is streamlined, 
and efficiency is increased by this modification.



Table 4
Numbers of product allocations before and after applying grouping parameter 9 in heuristics H1, 
H2

Product
s

Shelf 
width

Before grouping After grouping
Category 

1
Category 

2
Category 

3
Category 

1
Category 

2
Category 

3
10 250 703 680 - - - -

375 3 057 908 - - - -
500 3 478 2 580 - - - -
625 3 852 296 - - - -
750 394 440 - - - -

15 250 17 047 12 318 - - - -
375 168 557 41 100 - - - -
500 11 086 583 - - - -
625 53 101 7 488 - - - -
750 98 474 18 904 - - - -

20 250 2 397 25 749 - - - -
375 3 536 1 100 - - - -
500 34 906 44 365 - - - -
625 12 145 59 414 - - - -
750 6 021 17 989 - - - -

25 250 1 074 107 4 571 4 464 742 656 492
375 437 455 186 094 3 119 748 681 691
500 128 524 10 056 45 370 474 443 998
625 147 050 22 473 102 114 422 455 616
750 130 019 11 815 4 391 340 314 391

30 250 371 902 898 2 727 1 082 308 359
375 408 315 42 091 11 362 1 507 2 383 592
500 246 462 21 360 4 780 2 465 2 590 547
625 22 925 26 699 5 021 659 1 581 547
750 20 036 702 15 679 640 402 1 355

Minimum 394 296 2 727 340 308 359
Average 136 222 22 427 19 903 908 981 659
Maximum 1 074 107 186 094 102 114 2 465 2 590 1 355

6. Discussion

As a result of conducted experiments we obtain following observations.
The reduction in  solution  space.  Both grouping parameters (7 and 9) significantly reduce the 

number of generated product allocations, which directly minimizes the solution space, enhancing 
computational efficiency. Parameter 7: By focusing on maximizing the total profit for each total 
width,  the  number  of  product  allocations  was  drastically  reduced  across  all  shelf  widths.  For 
instance,  at  the  3rd shelf  for  25 products  and a  shelf  width of  750 cm,  the  number  of  product 
allocations decreased from 728 143 to 1 362. Parameter 9: Targeting the minimum total width for 
each  total  profit and  profit  ratio  resulted  in  a  substantial  reduction  in  the  solution  space.  For 
example, at 25 products and a shelf width of 250, the number of product allocations in Category 1 
dropped from 1 074 107 to 742, Category 2 from 4 571 to 656, and Category 3 from 4 464 to 492.

The generation of near-optimal results. Despite the reduction in solution space, both parameters 
retained the heuristics’ ability to generate solutions close to the optimal, as demonstrated earlier in  
their  high-profit ratios.  Parameter 7:  Ensures near-optimal  results  by prioritizing the maximum 



profit allocation for each shelf width, maintaining the quality of solutions while drastically reducing 
complexity. Parameter 9: Focuses on minimizing total width for specific profit categories for each 
total profit and  profit ratio, aligning with the goal of achieving efficient space utilization without 
compromising profitability.

The grouping tuning parameters. The number of product allocations after applying Parameter 7 
was  reduced  by  approximately  60–90%  in  most  cases  while  preserving  diversity  across  profit 
categories. Parameter 9 achieved reductions of up to 95% in certain scenarios, particularly in high-
complexity instances like 30 products or large shelf widths, enabling faster solution convergence.

The  effectiveness  across  problem  scenarios.  The  grouping  tuning  parameters  demonstrated 
scalability  across  varying problem sizes  (e.g.,  10–30 products)  and shelf  widths (250–750).  This 
confirms their adaptability and robustness in handling different complexities inherent in the SSAP.

The  overall  impact  of  grouping  tuning  parameters.  The  application  of  grouping  tuning 
parameters  (7  and  9)  is  instrumental  in  significantly  reducing  computational  demands  while 
maintaining solution quality.  This  allows the heuristics  to  remain effective  in  generating near-
optimal allocations with a fraction of the original solution space. These parameters enable a more  
practical  approach  to  solving  large-scale  SSAP  problems,  making  them  suitable  for  real-world 
applications.

7. Conclusion

In  this  research,  concepts  of  item  categorization  and  allocation  on  the  warehouse  racks  are  
considered. It’s critical to arrange items on warehouse or distribution centre racks according to the 
correct  categories.  The investigated  SSAP approach allows organizing the racks  simultaneously 
vertically and horizontally according to the category or product type.  The proposed model deals 
with shelf space optimization by appropriately arranging product categories maximizing the gained 
profit or movement of the products to make the most of available shelf space while adhering to the  
following categories of constraints: shelf, product, multi-shelves, and category constraints. It makes 
it possible to efficiently distribute shelf space in a way that optimizes operational effectiveness and 
guarantees  the  integrity  of  the  stored  goods  by combining these  constraints.  Furthermore,  our 
approach extends beyond traditional shelf allocation methods by considering the diverse needs of 
different products. Therefore, in the developed model, we include two types of such products: (1) 
incompatible products, which must not be placed one next to the other on the same shelf, and (2) 
products requiring separate storage, which must not be placed on the same shelf.

In  order  to  optimize  space  usage  and  uphold  safety  regulations  in  the  warehouse  setting,  
decisions  on  shelf  structure,  spacing,  and  weight  distribution  can  also  be  made  based  on  the  
products’ heterogeneous character. Some products have a specific packaging shape, size or stocking 
possibilities, which may determine how best to place them and which orientation is better. If there 
is a grouping of products by category on the shelf, then it is advisable to display the products so  
that their name or main element is visible at first glance of the picker at this category on the rack. In 
this research, we use three orientations of the product on the shelf: front, side, and top.

In this research, we propose flower-picking heuristics with tuning parameters to deal with the 
described SSAP. Performance metrics include the profit ratio, computation times for the heuristics, 
and the computation time for the CPLEX solver, which serves as a benchmark for exact solutions.

The profit ratios remain consistently high across all scenarios, with averages near 99.85% for H1 
and 99.86% for  H2.  Computation  times  show significant  variability,  with  H1 taking up to  5.60 
minutes and H2 taking up to 7.01 minutes in the worst case. The fastest computation time was 0.05 
minutes for both heuristics.

Comparing the heuristics performance with CPLEX, it could be observed that the CPLEX solver 
is faster in small-scale scenarios but does not scale as efficiently with an increasing number of  
products or shelf  width. The heuristics are more practical  for larger problem sizes due to their  
ability to deliver optimal or near-optimal solutions in a shorter time frame.

The study also investigates the impact of two grouping tuning parameters on the number of 
generated product allocations and their influence on space utilization, accessibility, and operational 
efficiency. Parameter 7 represents a strategy that considers only one product allocation with the 
maximum total profit for each total width. Parameter 9 represents a strategy that selects only one  
product allocation with the minimum total width for each total profit and profit ratio.



The use of grouping tuning parameters results in fewer product allocations. These reductions of 
solution space, coupled with the maintenance of solution quality, underscore the value of grouping 
as an efficient strategy for tackling the investigated SSAP.

Applying Parameter 7 reduced the number of product allocations by approximately 60–90% in 
most cases while maintaining diversity across profit categories. Parameter 9 achieved reductions of 
up to 95%, especially in high-complexity scenarios such as instances with 30 products or large shelf  
widths, significantly accelerating solution convergence.

There are several ways in which future research can enhance its effectiveness. Firstly, it is real-
time  optimization  in  dynamic  environments:  Future  studies  could  focus  on  optimizing  product 
allocation in environments that are constantly changing, such as warehouses with high product 
turnover or  seasonal  demand fluctuations.  This  would involve developing heuristics  that  adjust 
automatically based on real-time data, such as stock levels, order frequency, or product shelf-life. 
Secondly, it is a multi-objective optimization. Research could explore models that balance multiple 
objectives,  such as  reducing operational  costs,  improving product  accessibility,  and maximizing 
profitability.  This  would  involve  developing  complex  heuristics  or  hybrid  algorithms  that  can 
handle conflicting goals efficiently.
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