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Abstract
This article addresses the problem of identifying unique objects in aerial images of urban areas on the Earth’s 
surface, which can serve as stable landmarks for UAV navigation without GPS signals. The main contribution 
lies in proposing an approach to transforming the image into an object-oriented vector representation 
(embedding) that retains structural information about those objects. The proposed approach automatically 
identifies the most distinctive objects, which can serve as navigation landmarks. The study focuses on urban 
and suburban landscapes, where buildings are chosen as landmarks and YOLOv11 is used as the deep 
learning  model.  By  employing  dimensionality  reduction  methods,  in  particular  PCA  and  t-SNE,  it  is 
demonstrated  that  in  the  proposed  embedding  space,  buildings  with  atypical  structural  or  visual 
characteristics differ significantly from other buildings and are easily classified as outliers, making them 
natural  landmarks  for  navigation.  Experimental  results  confirm the  effectiveness  and potential  of  the  
proposed approach for ensuring stable UAV navigation in scenarios where GPS may be inaccessible—the 
accuracy of identifying buildings designated as landmarks is twice that of ordinary buildings (Recall@1 = 
0.51 vs. 0.28).
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1. Introduction

Unmanned Aerial Vehicles (UAVs) increasingly operate in environments where GPS signals are 
unreliable or absent  [1]. Under such conditions, visual landmarks identified from onboard camera 
images  become  the  sole  method  for  determining  UAV  location  [2].  For  accurate  localisation, 
landmarks must be distinctive and visually recognisable under various conditions of illumination, 
altitude, and imaging type (e.g., UAV camera versus satellite imagery). Thus, using a set of landmarks 
for a given area, a route can be planned to a specified point, allowing UAV navigation without GPS 
signals, relying solely on environmental image analysis.

Depending on terrain characteristics, various types of objects can serve as landmarks. Given their 
critical practical relevance for tasks like search-and-rescue operations, deliveries, and path planning 
for long-range strike UAVs through densely populated urban areas, this study focuses on urban and 
suburban environments. Buildings, frequently prominent in these areas, have thus been chosen as 
potential landmarks in this research. 

In recent years, deep neural networks have become widely used to obtain vector representations of 
features, such as embeddings. In computer vision tasks, embeddings of images or their fragments can 
be extracted from the hidden layers of pre-trained neural networks (such as convolutional networks 
or transformers), transforming visual data into compact, information-rich vectors while preserving 
meaningful similarity between inputs [3], [4]. Essentially, a neural network “encodes” an image into a 
point in latent space, placing images with similar content close together and enabling comparison 
using  distance  functions.  Moreover,  networks  can  be  fine-tuned  to  produce  embeddings  with 
enhanced properties [5], such as invariance to common disturbances (changes in lighting, angles, etc.), 
thus improving their robustness in dynamic environments. Instead of raw pixel processing, UAV 
navigation systems can reliably recognise relevant objects using embeddings and distance metrics.
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Therefore,  this research contributes to developing an approach to generate semantically rich 
vector representations of objects (buildings) based on their representations in the hidden layers of a 
convolutional neural network when processing satellite and UAV images. It doesn’t require any 
additional training and thus can be directly applied to any segmentation CNN and other types of 
objects.

The proposed approach is practically significant, as it addresses  the automatic identification of 
stable  landmarks  among  numerous  similar  objects.  For  example,  many  urban  buildings  share 
architectural features, materials, or colour schemes, reducing their distinctiveness for reliable visual 
identification. 

The structure of this paper is as follows: the Literature Review section surveys previous research on 
UAV visual  localisation,  including  marker-based  approaches,  semantic  dictionaries,  and  feature 
aggregation  methods.  The  Materials  and  Methods section  introduces  the  proposed  model  for 
extracting embeddings and automatically identifying landmark buildings. The Results and Discussion 
section  presents experimental  outcomes  using  the  VPAIR  dataset,  their  analysis,  and  potential 
improvements to the approach.

2. Literature review

Below, related research directions are reviewed. 
One  closely  related  approach  is  marker-based  localisation,  where  artificial  markers  ensure 

uniqueness. For instance, YoloTag [6] employs a YOLO-based detector for fiducial markers, enabling 
position estimation through geometric algorithms (e.g., EPnP [7]). Although effective in indoor or 
restricted  outdoor  environments,  it  depends  on  physical  marker  placement,  limiting  scalability. 
Marker optimisation methods [8] face similar scalability challenges.

Semantic mapping and object dictionaries maintain recognised object annotations with geometric 
or class characteristics. For example,  [9] combines detection with depth data (RGB-D cameras) to 
create semantic maps (doors, fire extinguishers, etc.). While conceptually similar, these solutions 
typically do not produce vector embeddings that differentiate objects within the same class, limiting 
the identification of distinctive landmarks. Additionally, dictionary-based approaches usually cover 
small-to-medium indoor areas, where objects appear repeatedly from various viewpoints within one 
route. 

Local CNN-descriptor aggregation into global vectors has been investigated in object retrieval 
contexts (e.g., SPoC, CroW, R-MAC, NetVLAD [10], [11], [12], [13]), usually tested on datasets for 
ground-level place recognition. Despite conceptual similarities, these methods rarely perform precise 
object segmentation, particularly from aerial imagery. Furthermore, these methods typically produce 
a  global  vector  representation  for  entire  images,  not  considering  individual  object  vector 
representations.

Domain  adaptation  methods  such  as  CLDA-YOLO  [14] address  environmental  variations 
(weather, lighting, etc.) in object detection tasks. These methods could enhance embedding robustness 
within the developed algorithm. 

Comprehensive surveys of  UAV navigation under GPS-denied conditions  [15] emphasise the 
importance of tracking visual reference points. Yet, systems like SLAM primarily track key surface 
points without treating objects holistically as unique landmarks. 

Literature analysis indicates limited attention to landmark-based UAV localisation methods. Most 
existing approaches  generate  descriptor  vectors  for  entire  UAV images,  matching them against 
annotated databases. However, these descriptors may be sensitive to changes in imaging conditions 
and background noise. 

Thus, this research aims to improve UAV localisation accuracy using stable landmarks derived 
from the hidden layers of a convolutional neural network when processing satellite images. These  
landmarks, based exclusively on unique objects, offer robustness to image noise. To achieve this goal, 
the following research tasks were formulated.

1. Develop  a  method  for  obtaining  embeddings  (vector  representations)  of  buildings  from 
convolutional neural network hidden layers, capable of preserving their visual and structural 
characteristics.

2. Create an automatic method for selecting landmark buildings based on embedding space 
analysis (e.g., via outlier detection).



3. Experimentally validate the proposed approach for accurately identifying buildings designated 
as landmarks (based on prior analysis of satellite images) on UAV images.

3. Materials and methods

3.1. Process model

For the problem under consideration, the input data consists of a set of satellite images, denoted by 
I=\{ I 1 , I 2 ,…, I N \}, covering a specific geographic area, and a fixed set of landmark object types, 
defined as  LandmarkTypes=\{Type1 ,Type2 ,…,Typet \} potentially comprising multiple  object 
categories.  Each  satellite  image  I n may  contain  several  objects  from the  set  LandmarkTypes, 
represented as \{On

1 ,On
2 ,… ,On

K n }. O – designates the set of all objects from all images I .
The proposed approach employs convolutional neural networks (CNNS) specialised for image 

segmentation tasks. These CNNs are trained to recognise object types from the LandmarkTypes set. 
The output of this network for each recognized object On

k is the corresponding segmentation mask 

M n
k.

For each object On
k, it is necessary to apply a mapping function f  to a d-dimensional real-valued 

embedding vector spaceRd:

f ( I n , M n
k )=enk , enk∈ Rd .

(1)
The obtained vector representation of an object should possess the following properties:
 uniqueness  –  en

k must emphasise distinctive visual features of object  On
k, enabling reliable 

differentiation from others. Let us denote by S the set of visually similar objects to On
k, and by D 

the set of visually distinct objects. The following inequality must hold:

∀ e+¿∈ S ,∀ e−¿∈ D :d ¿¿¿

¿
where d (⋅ ,⋅) is a chosen distance metric (e.g., Euclidean distance).
 robustness – under minor transformations of the object, such as changes in viewpoint, lighting 
conditions, or partial occlusions, the vector representation en

k remains practically unchanged.

Suppose  T  is a transformation modelling changes in imaging conditions, and e (T (Onk )) is the 

object embedding after applying transformation T . Stability is ensured if:

||e (T (Onk ))−enk||<ϵ ,
(3 )

where ϵ  is a small constant defining the permissible deviation level, and ¿ | .∨| denotes a vector 
norm (for instance, Euclidean).

After obtaining all embeddings  en
k within the dataset, the task arises to automatically identify 

instances  that  stand  out  significantly  in  the  embedding  vector  space.  Formally,  let 
\{e1 , e2 ,…,eM \} denote all object embeddings. A criterion based on outlier detection algorithms is 
introduced, distinguishing objects with distinctive features from those forming dense clusters. Objects 
thus identified are labelled as landmarks. The set  L of such landmark objects represents the final 
output of the landmark detection task.

These landmark objects, identified through the described method, form the basis for UAV route 
planning. In scenarios lacking GPS signals, a UAV can determine its location by recognising selected 
stable and unique landmarks on the terrain.

3.2. Hypothesis

An object database along the flight trajectory is prepared before the mission to facilitate UAV 
navigation based on visual features. These objects are extracted from satellite images, each associated 
with geolocation markers. During flight, the UAV identifies objects from onboard camera images and 



searches for matching objects in this pre-formed database. Upon finding a match, the UAV uses the  
object’s geolocation marker to determine its current position.

Generally, it is reasonable to assume that if an object identified in a satellite image acts as a 
landmark, standing out from surrounding objects due to unique features, this distinction will persist  
in  images captured by UAV cameras.  Based on these assumptions,  the  core  hypothesis  can be 
articulated as follows: if a mapping into vector space preserving semantic and structural features is  
applied to the set of objects in an image, landmark objects will distinctly differ from other objects in 
the embedding space, regardless of whether they originate from UAV camera images or satellite  
imagery. Consequently, when receiving images from onboard cameras, the UAV can significantly 
more accurately identify precisely those objects recognised as landmarks by the approach proposed in 
this study.

Thus, the essence of the proposed method lies in the specific utilisation of convolutional neural  
networks to create an embedding vector space that preserves semantic and structural characteristics. 
It is well-known that convolutional neural networks learn hierarchical feature representations, with 
initial layers capturing local textures and edges, and deeper layers encoding higher-level forms or  
semantic  features.  An embedding with  hierarchical  features  of  the  specific  object  is  effectively 
obtained by constructing a vector from activations corresponding to a particular object from various 
hidden layers.

3.3. Method steps

The main steps of the proposed approach are illustrated in Fig. 1.

Figure 1: The main steps of the proposed approach

The input information of the approach (Fig. 1) consists of a set of satellite images of a specific  
territory  I  and  a  fixed  set  of  object  types  that  potentially  serve  as  landmarks,  referred  to  as 
LandmarkTypes.

In the first step of the proposed approach, the set O of potential landmark objects is formed by 
segmenting images from the satellite imagery database. A CNN-based segmentation model, trained to 
recognise objects from the LandmarkTypes set, is applied to each image I n, resulting in \{M n

k \} – a 
set of masks and corresponding confidence scores. Only objects with a confidence coefficient above a 
threshold θ are selected for reliability.

In step 2, intermediate features of objects are extracted from the hidden layers of the convolutional 
neural  network.  To  describe  this  process,  denote  the  feature  map  of  a  CNN  at  layer  l as 

F l∈ R
C l×H l×W l, where C l is the number of channels at layer l, and H lтаW l represent the height and 

width,  in  pixels,  of  the  feature  maps  at  layer  l,  respectively.  Let  l1 , l2 ,…,lL be  parameters 
corresponding to the backbone CNN layers used for embedding formation. During segmentation in 
step 1, feature maps  F l are extracted from the backbone CNN layers  l1 , l2 ,…,lL. Each layer  l is 
associated with a stride ρl, defining the reduction in spatial resolution of feature maps compared to 

the  original  image.  Accordingly,  each  mask  M n
k is  resized  to  dimensions  

~
M n
kl based  on  the 

corresponding stride ρl of the feature map F l. This alignment ensures pixels in the mask correspond 
precisely to positions on the feature map, thus isolating only the area corresponding to the detected 
object On

k.
Step 3 involves aggregating intermediate features to form the final object embeddings. Since each 

object may vary in size, occupying different-sized regions on the activation maps, an aggregation 



function must be employed to obtain a fixed-dimensional vector. Generally, the aggregation function 
can be a parameterised function trainable via backpropagation, such as a graph neural network [16].

For each layer l and object k, the aggregation is computed as:

zc
l=agg({F l [c ,u , v ]|(u , v )∈

~
M n
kl}) ,

(4 )
where the aggregation function can be, for example, max pooling or average pooling.
Max pooling:

zc
l= max

(u , v )∈
~
M n
kl

F l [c ,u , v ] ,

(5 )
Average pooling:

zc
l= 1

|~M n
kl| ∑

(u , v )∈
~
M n
kl

F l [c ,u , v ] .

(6 )
Values  zc

l ,  computed for all  C l channels across selected convolutional layers  l1 , l2 ,…,lL,  are 

concatenated to form the final embedding en
k∈ Rd:

en
k=[ zcl|c∈ 1. .C l , l∈ l1 , l2 ,…,lL ] .

(7 )
Thus, the embedding dimension d is determined by the total number of channels in convolutional 

layers l1 , l2 ,…,lL, where each dimension effectively represents the presence of patterns detected by 
corresponding convolutional filters:

d= ∑
l∈ l1 , l2 ,…,lL

C l .

(8 )
Step 4 identifies landmark objects. Initially, all embeddings \{e1

1 , e1
2 ,… \} are combined into the 

set  E.  Since each embedding dimension corresponds to a specific convolutional filter trained to 
recognize particular image structures, embeddings implicitly represent visual features of objects. 
Based on the initial assumption, objects with atypical visual characteristics yield embeddings with 
atypical values. Consequently, the final stage entails differentiating "typical" points in the embedding 
space from those with rare features. Theoretically, this problem class corresponds to outlier detection 
methods aimed at identifying objects statistically deviating from the majority. 

Generally,  the  outlier  detection  task  can  be  formulated  as  follows:  let 
E=\{e1 , e2 ,…,eM \}⊂ Rd, where each vector  ei is an object embedding. Suppose that for most 

points, the feature distribution approximates a “typical” (“normal”) subset Enorm, while a few points 
e j∈ Eout significantly deviate from this distribution. Formally, an evaluation function is assumed:

s :Rd→R,
(9 )

which returns the deviation from the typical distribution for each ei. If s (ei) exceeds a threshold 

s thr, ei is considered an outlier (anomaly). In our context, objects with such embeddings possess 
distinctive  visual  characteristics  and can serve  as  stable  landmarks.  Hence,  applying an outlier 
detection algorithm to set E forms the final landmark object set L={ei∨s (ei)>sthr }.

The landmark object set L is the output of the proposed approach.

3.4. Evaluation metrics

The UAV localisation problem considered in this study is classically framed as a retrieval task. 
Consequently, literature conventionally evaluates UAV localisation methods using the Recall@N 
metric [17], [18]. This metric considers a retrieval result as a true-positive for a given query if the 
corresponding image from the database appears among the top N retrieved images:



Recall@N=
MQ

NQ
,

(10 )
where NQ is the total number of query images, and MQ is the number of queries with at least one 

correct match within the top-N results.
This metric is popular within computer vision communities and suits applications employing post-

processing to eliminate false-positive matches.

4. Results and discussion

4.1. Dataset

The VPAIR dataset [19] was selected for conducting experiments – a dataset designed explicitly for 
evaluating  visual  place  recognition  tasks  and  UAV localisation  based  on  images  from onboard 
cameras. Data collection occurred on October 13, 2020, during a flight of a light aircraft at altitudes  
ranging from 300 to 400 meters above ground, covering an area between Bonn, Germany, and the Eifel 
Mountain  range,  with  a  total  route  length  of  107  km.  The  dataset  includes  imagery  captured 
perpendicular  to  the  Earth’s  surface  and  high-precision  pose/orientation  data  obtained  using 
GNSS/INS systems. The VPAIR dataset contains 2,788 aerial photographs paired with corresponding 
satellite images and does not provide any annotations about the objects in the images. The satellite 
images were gathered from Geobasis NRW, a state-funded geodata repository under a permissive 
open data license. It provides comprehensive coverage of the entire state of Nordrhein-Westfalen,  
Germany. During image capture, the aircraft maintained a speed of 150 km/h and a frame rate of 1 Hz, 
resulting in approximately 41.7 meters between consecutive image centres. 

      

Figure 2: Examples of images from the VPAIR dataset. Left – aerial images captured from aircraft; 
right – corresponding satellite images

4.2. Experiment description

The  YOLOv11  segmentation  convolutional  neural  network  [20],  pre-trained  for  building 
segmentation in satellite images, was utilised in the experiments. It is important to emphasise that the 
proposed method  uses the pre-trained CNN that segments the objects of interest and  requires no 
additional training on the target dataset. 

For outlier detection – specifically to identify landmark objects – Isolation Forest [21], a tree-based 
algorithm, was chosen. The selection of this algorithm was motivated by three main reasons: tree-
based algorithms are robust  against  variations in feature value ranges and thus do not  require 
normalisation; they operate rapidly; and they only need two primary parameters that are easily 
adjustable  (the  proportion  of  objects  considered  as  outliers  and  the  number  of  trees).  This 
straightforward algorithm facilitated focusing on hypothesis verification and proved sufficient to 
confirm it. Subsequent experiments present results obtained with Isolation Forest configured with 500 
trees and 1% outliers.

To validate the proposed hypothesis, the following sub-hypotheses must be tested:



1) The proposed embedding generation approach encodes structural and semantic information 
about objects.

2) The accuracy of landmark building retrieval from UAV images is significantly higher than that 
of typical (non-landmark) buildings. 

It should be noted that the VPAIR dataset contains no specific annotations for buildings; thus, the 
set of buildings used in this study was obtained using the YOLOv11 segmentation model. 

The absence of building ground-truth annotations in the dataset makes it impossible to quantify 
misclassifications, false positives, and false negatives in the object detection process on the VPAIR 
dataset. 

However, for the pre-trained YOLOv11 used in the experiments, the following metrics are reported 
by its developers: 18,794 true positives, 8,462 false positives, and 5,628 false negatives. At the same 
time, true-negative background pixels are undefined for segmentation. Across seven random splits the 
model attained mAP 0.754, precision 0.771, recall 0.680 and F1 0.722. The reported values establish a 
realistic error bound when the model is applied to the VPAIR dataset, and the manual inspection of the 
predictions confirms its high performance and generalisation to this dataset.

To verify the first hypothesis, visualisation of the building embeddings—obtained from segmented 
satellite images—was conducted using two dimensionality reduction methods: PCA for analysing 
linear dependencies and t-SNE for non-linear dependencies. Researchers then visually inspected the 
proposed method and provided qualitative assessments.

Validation of the second hypothesis required manual data labelling to create a benchmark set, as  
the VPAIR dataset contains no building annotations. Given corresponding satellite and UAV images 
and buildings previously segmented by YOLOv11, matching identical buildings across UAV and 
satellite images was necessary. Considering the time-intensive nature of manual labelling, a random, 
non-repetitive  sample  of  100  landmark  buildings  and  100  typical  buildings  was  selected  for 
annotation.  For  the  embeddings  of  each  of  the  selected  200  UAV  buildings,  the  five  nearest 
embeddings from satellite images were identified using the L2 norm. The metrics Recall@1 and 
Recall@5 were calculated separately for landmark and typical buildings.

4.3. Analysis of the obtained embedding space

        
a) b)

Figure 3:  Visualisation plots of building embeddings from satellite images using dimensionality 
reduction methods: left a) – PCA; right b) – t-SNE. Black points represent landmark buildings, and 
blue points represent typical buildings.

Visualisation results of building embeddings obtained via dimensionality reduction methods (Fig. 
3) demonstrate that the embedding space is structured. 

The PCA plot shows that most buildings concentrate on the left side, with the remaining points 
forming an elongated, sparse tail. It is logical to hypothesise that the dense concentration corresponds 
to numerous typical  buildings,  while  the progressively extending tail  represents  buildings with 
increasing  visual  uniqueness.  Visual  inspection  of  points  in  these  areas  (Fig.  4)  confirms  this  
assumption (Fig.5 and Fig.6). Thus, the selection of buildings at the tail end of this distribution by the 
outlier detection algorithm as landmarks aligns with expectations, as these points correspond to the 
most distinctive structures. 



Figure 4: Visualisation plot of building embeddings from satellite images using PCA dimensionality 
reduction. Segment a) highlights a region with a high density of points corresponding to typical small 
buildings (Fig. 5), while segment b) represents a cluster of landmark buildings (Fig. 6)

Figure 5: Examples of typical small buildings, outlined with red rectangles, corresponding to selected 
points in Fig. 4a.

Figure 6: Examples of landmark buildings, outlined with red rectangles, corresponding to points from 
the highlighted cluster in Fig. 4b.

The t-SNE visualisation, which reveals non-linear relationships, displays multiple small clusters 
grouping  visually  similar  buildings  or  identical  buildings  from  adjacent  frames.  The  fact  that  
landmark buildings cluster at the edges of the point cloud, rather than being dispersed throughout, 
indicates good embedding space structure. A particularly notable cluster emerges distinctly in the left 
region of the t-SNE plot. Visual inspection revealed that this cluster corresponds to small buildings 
with typical structures positioned at image boundaries (so buildings partially extend beyond the frame 
edge). Examples of these buildings and their corresponding points in the t-SNE visualisation are 
illustrated in Fig.7-9.

Thus, the proposed method effectively distinguishes landmark buildings from typical ones within 
the embedding space.  Selected landmark buildings exhibit  unique characteristics,  often large or 
irregular shapes. Visually similar buildings in size, colour, and form have close embeddings. The 
neighbourhoods  around  embeddings  situated  in  regions  of  greater  uniqueness  mostly  contain 
embeddings  of  the  same  buildings  from  adjacent  frames,  indicating  stability  of  the  vector 
representation across different viewpoints. However, as uniqueness decreases, the neighbourhoods 
increasingly  include  buildings  that,  although  visually  similar,  originate  from  spatially  distant 
locations. 



  
  

Figure 7: Visualisation plot of building embeddings from satellite images using t-SNE dimensionality 
reduction. On the segment a) – a region with a high density of points corresponding to typical small 
buildings is highlighted (Fig. 8); on the segment b) – a cluster of landmark buildings is selected.

Figure 8: Examples of typical small buildings, outlined with red rectangles, corresponding to selected 
points in Fig. 7a. These buildings have the distinctive characteristic of being located at the image 
boundaries, partially extending beyond the image frame

Figure 9: Examples of landmark buildings, outlined with red rectangles, corresponding to points from 
the highlighted cluster in Fig. 7b.

4.4. Comparison of retrieval accuracy for typical and landmark buildings

The quantitative measurements presented in Table 1 demonstrate that the accuracy of UAV-based 
searches for landmark buildings nearly doubles compared to searches for typical buildings, thus 
confirming the efficacy of the proposed approach. The Recall@5 value indicates that incorporating a 
post-filtering  stage  for  the  top-5  most  similar  buildings  could  potentially  increase  the  current 
implementation’s Recall@1 up to 0.66. 

Several special cases were observed during the evaluation phase. For example, YOLOv11 may 
detect the same building twice at the building segmentation stage from images. Still, in one instance, 
YOLO might merge the building with an adjacent one, as illustrated in cases a) and b) in Figure 10. 
However, the proposed approach effectively generates embeddings that robustly encode semantic and 
structural information, rendering these representations resilient to CNN segmentation errors; in both 
cases, the correct matching building was identified successfully.



Table 1
Metrics for the retrieval of typical buildings and landmark buildings

Metric
Recall@K

K=1 K=5

Buildings
Landmark 0.51 0.66
Typical 0.28 0.46

While cases a) and b) focused on searches of landmark buildings, case c) involved a building 
classified as typical, characterised by medium size and a visually distinct angular shape. Despite the 
corresponding satellite image building being rotated by more than 90°, it was accurately identified as 
the top-1 match, demonstrating the embeddings’ robustness to object rotations. Case d) involved a 
typical building—a long residential structure with an orange roof. Such buildings are numerous in the 
dataset, and semantically retrieved buildings were correct, matching the elongated rectangular shape 
and roof colour. However, none matched the UAV-captured building, emphasising the importance of 
selecting truly unique buildings for search accuracy.

a) b) c) d)

Figure 10: Examples demonstrating the performance of the proposed approach in edge cases. The 
first row shows the UAV-captured building for which a match is searched from the satellite-based 
building database. The second row presents the corresponding satellite-based reference building. The 
subsequent  rows  illustrate  the  most  similar  buildings  based  on  L2  distance  embeddings.  For 
compactness, we show only the top-2 most similar samples. In cases a) and b), the same landmark 
building was segmented twice by YOLOv11—case a)  shows correct  segmentation,  while  case b) 
merges  the  building  with  an  adjacent  one  into  a  single  segment.  Despite  this  segmentation 
discrepancy, the correct corresponding satellite building was successfully identified within the top 5 



in both cases, demonstrating the robustness of embeddings against CNN segmentation errors. Case c) 
involves a uniquely shaped yet classified as a typical building that was rotated more than 90° in the 
satellite imagery. Despite this rotation, the correct corresponding building was identified as the top-1 
match,  indicating  robustness  of  embeddings  to  object  rotations.  In  case  d),  a  typical  elongated 
residential  building  with  an  orange  roof  is  considered.  Although  the  retrieved  buildings  are 
semantically correct, being elongated rectangles with similar roof colours, none precisely match the 
UAV-based query building. This emphasises the importance of selecting unique landmark buildings to 
ensure retrieval accuracy.

4.5. Limitations

The experimental validation in this study was conducted within an urban environment, using 
buildings as landmarks. Both satellite and UAV images were captured during daylight from the same 
vertical, top-down perspective. 

Significantly, the specific set of landmark objects for a given set of satellite images depends on the 
convolutional  neural  network  used.  Different  neural  networks  might  segment  the  same  image 
differently, potentially failing to identify buildings or merging multiple adjacent buildings into a 
single segment. Additionally, object embeddings generated by these networks may differ, resulting in 
variations in the final landmark object set.

The calculation of Recall@1 and Recall@5 metrics for matching accuracy between UAV and 
satellite images required human labelling of search results. Due to the time-intensive nature of this 
task, the test dataset size was limited to 200 unique buildings.

4.6. Future work

Future  directions  for  improvement  include  extending this  approach to  other  types  of  urban 
landmarks (e.g., intersections, roads, sports fields) and different environments (e.g., forests, fields). 

An interesting research aspect involves the impact of aggregation functions on the embedding 
space and the objects forming the final landmark set. Combining graph neural networks, trainable via 
backpropagation, with Contrastive Learning methods  [22] could enhance the invariance of object 
embeddings to variations in viewing angles or lighting conditions.

To create landmark sets without the strict requirement for a fixed number (as seen in Isolation 
Forest),  and considering additional practical constraints, future improvements may involve more 
flexible outlier detection algorithms. An alternative approach could replace outlier detection with 
clustering algorithms that do not require a fixed cluster count. Here, landmarks could be represented 
by  objects  in  tiny  clusters  or  those  lying  outside  of  any  cluster,  with  the  introduction  of 
supplementary constraints, such as a maximum allowable distance between neighbouring landmarks.

5. Conclusions

This work proposes an approach for identifying unique landmark objects by analysing embeddings 
obtained from convolutional  neural  networks.  The study aims to  enhance  UAV localisation by 
isolating distinctive landmark buildings within an embedding space encoding structural and visual 
features.

Experimental  results  successfully  met  this  goal,  revealing  landmark  building  identification 
accuracy nearly twice as high as typical building recognition (Recall@1 = 0.51 and Recall@5 = 0.66 
versus 0.28 and 0.46, respectively).

Nevertheless, the current implementation has limitations, notably its application to navigation 
within urban and suburban environments under good lighting conditions, and dependency on a 
particular segmentation model.

Future work aims to broaden this approach to various object and terrain types and investigate 
more  adaptable  feature  aggregation and anomaly  detection methods.  Such enhancements  could 
expand the system’s applicability and navigational accuracy. Ultimately, refining this approach could 
enable fully automated UAV route planning based on visual features in GPS-denied environments. 
The only parameters needed would include satellite surface imagery, specific landmark set constraints 
derived from UAV technical specifications, the selected convolutional neural network deployed on the 
UAV, and defined start and end route points.
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