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Abstract
Permutation entropy (PEn) is a widely adopted nonlinear statistical measure for quantifying complexity in 
time series data.  Despite its  conceptual clarity and computational efficiency, classical  PEn has notable  
limitations, particularly its disregard for amplitude variations in time series data and the simplistic handling 
of sequences containing equal-valued observations. Although modified PEn methods exist, their potential as 
early-warning  indicators  for  cryptocurrency  market  crashes  remains  largely  unexplored.  This  paper 
addresses these limitations by conducting a comparative analysis  of  classical  PEn and three enhanced 
methods:  weighted permutation entropy (WPEn),  amplitude-aware permutation entropy (AAPEn),  and 
uniform quantization-based permutation entropy (UPEn). Specifically, these entropy metrics are employed 
to analyze the Bitcoin market crash from December 2017 to February 2018, utilizing a sliding window 
approach.  Empirical  results  demonstrate  that  amplitude-enhanced entropy methods effectively capture 
nuanced market dynamics and fluctuations, offering more precise and more reliable signals of impending 
market instability. This study confirms the value of advanced entropy measures in cryptocurrency markets 
and underscores their potential as robust indicators for detecting and forecasting financial crashes.
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1. Introduction

Quantifying the complexity inherent in temporal data offers profound insights into the underlying 
dynamics  of  complex  systems,  such  as  cryptocurrency  markets  [1,  2].  Despite  its  significance, 
complexity lacks a universally accepted definition [3, 4]. Among various methods proposed, entropy-
based metrics have emerged as particularly effective in assessing complexity, given their conceptual 
clarity and computational efficiency [5]. Entropy encapsulates complexity by measuring the degree of 
randomness or unpredictability in time series data. These entropy methods can be applied across 
diverse  types  of  data,  including deterministic,  chaotic,  stochastic,  stationary,  and  nonstationary 
processes [6].

Cryptocurrency markets, especially Bitcoin, exhibit pronounced volatility, high noise levels, and 
nonlinearity, making classical linear analytical techniques insufficient for comprehensive market 
analysis [7, 8]. Entropy-based approaches provide a viable alternative to traditional methods such as 
fractal dimension [9], Lyapunov exponent [10], or Lempel-Ziv complexity [11], particularly due to 
their robustness when dealing with short,  noisy,  and nonstationary data.  Previous research has 
successfully  demonstrated  the  efficacy  of  information-theoretic  entropy  measures  in  analyzing 
complex financial time series [12, 13, 14].
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The efficient market hypothesis (EMH), initially formulated by Fama [15], postulates that market 
prices rapidly incorporate all available information, leading to random walk-like behavior in asset 
price fluctuations. Under EMH conditions, informational efficiency implies maximum entropy states, 
where  no  predictable  profit  opportunities  remain  due  to  information  symmetry  among market 
participants. However, empirical observations suggest real-world cryptocurrency markets exhibit 
varying degrees of efficiency, with entropy levels fluctuating over time due to market sentiment,  
regulatory news, technological developments, or speculative trading activities [16]. Entropy metrics 
thus  provide  intuitive  and  practical  tools  for  capturing  shifts  in  market  efficiency  regimes, 
highlighting their utility in detecting impending market disruptions.

Cryptocurrency market crashes, particularly in Bitcoin, are characterized by complex, nonlinear 
interactions and rapid transitions from relatively stable states towards chaotic regimes [17, 18, 19]. 
Understanding these crashes demands a nuanced examination of their emergent properties, including 
increased correlation among market participants, evolving self-organized patterns, and heightened 
systemic risk. Permutation entropy (PEn), a powerful nonlinear complexity metric, and its various 
modified forms are promising tools to investigate these dynamics.

This study focuses specifically on the Bitcoin market crash occurring between December 2017 and 
February 2018 [2], a significant event marked by the bursting of a speculative bubble. Using classical 
permutation  entropy  and  several  enhancements  thereof,  we  employ  a  sliding  time-window 
methodology to observe temporal changes in complexity. This approach reveals patterns and trends 
indicative  of  impending  market  crises.  The  identification  of  early-warning  signals  based  on 
permutation entropy measures provides substantial benefits not only to traders and investors but also 
to policymakers and regulatory authorities. Recognizing precursor signals of market crashes enables 
stakeholders  to  implement proactive  measures,  mitigate systemic risks,  and formulate informed 
short- to long-term strategies.

2. Permutation entropy methodology

2.1. Classical Permutation Entropy

Permutation entropy (PEn) is a complexity measure that quantifies the predictability of a time series 
by analyzing the frequency distribution of its ordinal (permutation) patterns [20]. Inspired by Claude 
Shannon’s information entropy [21], PEn has proven effective for various real-world data analysis 
applications, particularly in finance and economics [22, 23].

Shannon entropy (ShEn) quantifies the uncertainty associated with a discrete random variable 𝑋 
having a probability distribution ( ) as follows:𝑝 𝑥

H (X )=−∑
x∈ χ

p (x ) log p (x ) , (1)

where χ  denotes the set of possible outcomes for X . ShEn measures the number of bits needed to 
encode information, thus reflecting the unpredictability of outcomes. Variations of ShEn, such as 
Rényi  entropy  and  joint  entropy,  have  also  been  successfully  employed  in  different  fields  to 
characterize random processes [24, 25].

PEn applies this concept to time series data by investigating ordinal patterns, thus capturing 
temporal dynamics and predictability. Consider a univariate time series {x t }t=1

N
 with N  data points. To 

identify ordinal patterns, the series is segmented into embedding vectors defined by two parameters: 
embedding dimension dE (length of the subsequences) and time delay τ . For each time t , embedding 
vectors are constructed as follows:

X⃗ t
dE , τ=(x t , x t+τ ,…, x t+(dE−1) τ ) , t=1 ,…,N−(dE−1) τ . (2)

Each embedding vector X⃗ t
dE , τ is mapped onto one of dE ! possible ordinal patterns {π i}i=1

dE !  based on 
the relative ordering of its elements. Specifically, the ordinal pattern represents the permutation 
required to sort vector components into ascending order. For example, given a time series segment 



(5 ,8 ,4 ) with dE=3 and τ=1, the ordinal pattern is classified as π i=(2,0,1) since the order of indices 
corresponding to ascending values is (3 ,1 ,2).

Table 1 summarizes all possible ordinal patterns for an embedding dimension of dE=3:

Table 1
Possible ordinal patterns for embedding dimension dE=3

Ordinal Pattern (xa , xb , xc ) Condition

π1 (3 ,2 ,1) x t>x t+τ>x t+2 τ
π2 (3 ,1 ,2) x t>x t+2 τ>x t+τ
π3 (2 ,3 ,1) x t+τ>x t>x t+2 τ
π 4 (2 ,1 ,3 ) x t+2 τ>x t>x t+τ
π5 (1 ,3 ,2) x t+τ>x t+2 τ>x t
π6 (1 ,2 ,3 ) x t<x t+τ<x t+2 τ

The probability of each ordinal pattern π i occurring in the time series is computed by

p (π i)
dE , τ=

¿ {X⃗ tdE , τ∨ X⃗ tdE , τ corresponds¿ pattern π i}
N−(dE−1) τ

, i=1 ,…,dE ! . (3)

Finally, the permutation entropy for the time series is defined as

PEn (X )dE , τ= −1
ln dE !

∑
i=1

dE !

p (π i)
dE , τ ln p (π i)

dE , τ , (4)

where  the  normalization  term  ( ln dE !)
−1 ensures  that  the  entropy  values  range  between  0 

(completely  predictable  series)  and  1  (completely  random  series),  thus  facilitating  meaningful 
comparisons across different time series and applications.

2.2. Weighted Permutation Entropy

While classical permutation entropy effectively captures complexity by analyzing ordinal patterns, it 
disregards amplitude-related information inherent in the original time series data. This limitation can 
lead to several drawbacks: (i) significant amplitude differences between data points within ordinal 
patterns are ignored, potentially losing critical information; (ii) patterns with substantial amplitude 
variations and those resulting from minor fluctuations (noise) contribute equally to the permutation 
entropy measure, diminishing the method’s sensitivity; and (iii) ignoring amplitude may reduce the 
discriminative power of permutation entropy when applied to real-world data, such as financial or 
physiological signals.

To  address  these  limitations,  Fadlallah  et  al.  [26]  introduced  weighted  permutation  entropy 
(WPEn),  which integrates amplitude information by assigning different weights  to each ordinal 
pattern based on the local variance or energy of the corresponding subsequences. The main idea 
behind WPEn is to emphasize ordinal patterns derived from subsequences with more considerable 
amplitude variations, thus incorporating valuable amplitude-related information.

Formally, for each embedding vector X⃗ t
dE , τ , weight w t is defined using the variance of the elements 

within the subsequence as

w t=
1
dE

∑
k=1

dE

(x t+(k−1) τ−⟨ X⃗ tdE , τ ⟩)
2
, (5)

where ⟨ X⃗ tdE , τ ⟩ represents the arithmetic mean of the subsequence:



⟨ X⃗ tdE , τ ⟩= 1
dE

∑
k=1

dE

x t+(k−1) τ . (6)

Once the weights are computed, the weighted probability of each ordinal pattern π i is given by

pw (π i)
dE , τ=

∑
t : X⃗ t

dE , τ∈ π i

w t

∑
t

w t
, i=1 ,…,dE ! , (7)

where  the  denominator  ensures  normalization,  preserving  the  probabilistic  interpretation 

∑
i=1

dE !

pw (π i)
dE , τ=1.

The WPEn is then defined analogously to the ShEn formulation as

WPEn (X )dE , τ=−∑
i=1

dE !

pw (π i)
dE , τ ln pw (π i)

dE , τ . (8)

WPEn can be seen as  an amplitude-sensitive  adaptation of  weighted Shannon entropy [27], 
providing  a  way  to  measure  complexity  when  outcomes  have  different  importance  levels  or  
intensities. Thus, WPEn significantly enhances permutation entropy’s utility by effectively combining 
both ordinal and amplitude information, making it particularly suitable for analyzing complex signals 
such as those encountered in financial markets and other noisy real-world environments.

2.3. Amplitude-Aware Permutation Entropy

Although WPEn successfully incorporates amplitude variance into the entropy calculation, it still 
exhibits some limitations. Specifically, WPEn cannot differentiate cases where a constant offset is 
added  to  a  time  series  since  the  variance  remains  unchanged  under  such  transformations. 
Additionally,  WPEn  is  less  sensitive  to  scenarios  involving  minor  amplitude  shifts  or  additive 
constants, potentially limiting its effectiveness in capturing subtle but meaningful amplitude-based 
information within a signal.

To address these limitations, Azami and Escudero [28] introduced amplitude-aware permutation 
entropy (AAPEn), a refined entropy measure explicitly designed to capture amplitude information 
more comprehensively. This method improves upon WPEn by assigning variable contributions to 
ordinal  patterns based on both the absolute amplitude levels  and the relative changes between 
consecutive samples.

To illustrate the shortcomings of standard permutation entropy methods regarding amplitude 
information:

1. Classical  permutation  entropy relies  solely  on  ordinal  relationships,  ignoring  amplitude 
magnitude. For instance, sequences such as (5 ,20 ,8 ) and (5 ,12 ,8 ) share an identical ordinal 
pattern (021), despite significant amplitude differences. Similarly, sequences (5 ,12 ,8 ) and 
(25 ,37 ,30 ) also  share  the  same  ordinal  pattern  due  to  the  absence  of  amplitude 
considerations.

2. In the presence of equal consecutive values, traditional ordinal analysis may yield ambiguous 
results. Bandt and Pompe [20] suggested resolving ties based on the order of occurrence or by 
adding small noise. However, this approach is problematic because, for example, the vectors 
(3 ,9 ,9 ) and (3 ,6 ,9 ) can both yield ambiguous ordinal patterns. This issue is particularly 
relevant in discretely sampled or digitized signals.

To  mitigate  these  issues,  AAPEn  modifies  the  traditional  histogram-based  ordinal  pattern 
encoding by introducing amplitude-based weighting. Specifically, each embedding vector contributes 



a variable amount to the ordinal pattern frequency histogram instead of uniformly incrementing by 
one:

p (π i)
dE , τ=p (π i)

dE , τ+L( X⃗ tdE , τ ) , if X⃗ tdE , τ corresponds ¿ pattern π i , (9)

where the amplitude-based adjustment coefficient L( X⃗ tdE , τ ) is defined as

L( X⃗ tdE , τ )= A
dE

∑
k=1

dE

|x t+(k−1) τ|+
1−A
dE−1

∑
k=2

dE

|x t+(k−1) τ−x t+(k−2) τ|, (10)

with  A∈ [0 ,1 ] balancing the  relative  importance  of  amplitude  magnitudes  and  consecutive 
amplitude changes.

The final amplitude-aware probabilities for each ordinal pattern are normalized as follows:

p (π i)
dE , τ=

p (π i)
dE , τ

∑
t=1

N−(dE−1) τ

L( X⃗ tdE , τ )
.

(11)

The parameter  A  allows flexibility in emphasizing either mean amplitude levels or amplitude 
difference. For anomaly detection tasks, setting  A≪ 0.5 emphasizes sudden amplitude changes, 
enhancing sensitivity. Conversely, for tasks like financial crash detection, where both mean amplitude 
and amplitude fluctuations carry importance, a balanced value (A=0.5) is recommended. 

Additionally, the choice of delay parameter τ  significantly impacts AAPEn results. While a delay of 
τ=1 is typically adequate, certain signal characteristics, such as single-sample spikes versus extended 
spikes, may benefit from greater delays (τ>1). Careful selection of τ  helps avoid aliasing-like effects, 
preserving the integrity of amplitude and frequency characteristics within the signal. For analyses at 
multiple temporal scales, frameworks such as those proposed by Costa et al. [29] or Azami et al. [30] 
can further enhance the robustness of AAPEn.

By effectively  capturing  amplitude  dynamics  alongside  ordinal  structure,  AAPEn provides  a 
powerful  and flexible  tool,  well-suited for  nuanced applications  such as  cryptocurrency market 
analysis, anomaly detection, and other complex time series tasks.

2.4. Uniform Quantization-Based Permutation Entropy

Chen et  al.  [31]  introduced  uniform quantization-based  permutation  entropy (UPEn),  a  refined 
entropy measure designed to capture amplitude variations and mitigate ambiguities associated with 
equal-valued  data  points.  Unlike  classical  PEn,  which  relies  solely  on  ordinal  patterns,  UPEn 
incorporates amplitude information through a quantization-based encoding approach. The method 
involves two primary steps:

1. Pattern Formation: Embedding vectors are symbolized via uniform quantization.
2. Entropy Estimation: The entropy is calculated based on the distribution of quantized patterns.

Initially, the time series is segmented into embedding vectors X⃗ t
dE , τ . The first elements of these 

embedding vectors X⃗ t ,1
dE , τ undergo uniform quantization (UQ), transforming the continuous data into 

discrete symbols. For a time series X , the UQ process assigns each value to one of D quantization 
levels, as defined by 

UQ (x )=⌊
x−xmin
Δ

⌋ ,where Δ=
xmax−xmin

D
, (12)



� �

with xmin and xmax representing the minimum and maximum values in the series, respectively, and 
D denoting the discretization level. 

After symbolizing the first column of the embedding vectors  St ,1, the subsequent elements are 
symbolized relative to the first quantized element. For each embedding vector, the quantized symbols 
for subsequent elements are computed as follows:

St , k=St ,1+⌊
X⃗ t , k
dE , τ− X⃗ t ,1

dE , τ

Δ
⌋ ,1≤ t ≤ N−(dE−1) τ ,2≤l≤dE . (13)

This procedure results in a symbolic pattern matrix S, where each row represents a quantized 

ordinal pattern π i
U . The probability distribution p (π iU ) of these quantized patterns is calculated by 

counting occurrences and normalizing by the total number of patterns:

p (π iU )=
¿ {StdE , τ∨StdE , τ corresponds¿ pattern π iU }

N−(dE−1) τ
, i=1 ,…,DdE . (14)

The UPEn is then computed similarly to ShEn, with normalization to ensure values range between 
0 and 1:

UPEn (X )dE , τ , D= −1
lnDdE

∑
i=1

DdE

p (π iU ) ln p (π iU ) , (15)

where the normalization factor lnDdE represents the theoretical maximum entropy achievable under a 
uniform pattern distribution.

Parameter selection is crucial in UPEn analysis. Typically, an embedding dimension  dE=3 is 
employed, balancing computational simplicity and capturing realistic dynamics of most real-world 
signals.  Additionally,  a  delay  parameter  τ=1 is  chosen  to  preserve  the  structural  integrity  of 
sequential observations [32]. The discretization level D significantly influences the performance of 
UPEn. A higher retains more amplitude detail, enhancing sensitivity but also increasing susceptibility 
to noise and requiring larger sample sizes for stability. Conversely, lower values of D provide noise 
robustness at the expense of amplitude resolution. Chen et al. [31] recommend a discretization level of 
D=4 for practical applications such as financial crash detection, providing an optimal compromise 
between detail preservation and robustness.

3. Methods and Empirical Results 

To comparatively evaluate classical PEn and its variants, as well as to identify potential early-warning 
indicators of cryptocurrency market crashes, we specifically focus on the significant Bitcoin market 
crash  period  spanning  from August  21,  2017,  to  April  3,  2018.  This  period  includes  the  well-
documented speculative bubble burst at the end of 2017 and early 2018, which provides an exemplary 
scenario for studying complexity dynamics within cryptocurrency markets.

The analysis utilizes daily Bitcoin price data, transformed into standardized returns to ensure 
stationarity and comparability across entropy measures. The returns are computed as:

G (t )=
x (t+Δt )−x ( t )

x ( t )
, (16)

and subsequently standardized as: 

g (t )=G
(t )−⟨G ⟩
σ

, (17)

where ⟨G ⟩ denotes the mean and σ  the standard deviation of returns G. 



All computational analyses in this study were executed using the Python programming language 
within the Jupyter Notebook interactive environment. Implementation of the entropy calculation 
methods, including permutation entropy variations, leveraged the Entropy Hub software package 
[33], ensuring consistency and reproducibility of the results.

A sliding window technique was adopted for calculating entropy values, facilitating a dynamic 
and temporal  assessment  of  complexity changes. Specifically, the chosen window length was 
w=50 days, determined through preliminary experimentation as optimal for capturing significant 
complexity fluctuations during the studied Bitcoin crash period. The window was incrementally 
shifted along the time series with a step of Δt=1, allowing a comprehensive temporal analysis.

Comparing the dynamics of the actual Bitcoin returns and corresponding entropy measures  
provides insights into complexity trends that precede and characterize market crashes. Consistent 
complexity behavior patterns, such as noticeable rises or drops during the pre-crash phase, could 
serve as reliable precursor indicators for impending market disruptions [34, 35, 36, 37, 38]. These 
findings contribute to the broader understanding of cryptocurrency market behavior, enhancing 
predictive capabilities and risk management strategies.

In Figure 1, we present the comparative dynamics of Bitcoin prices (BTC-USD) alongside the 
classical PEn metric during the critical period spanning from August 21, 2017, to April 3, 2018. The 
dashed green line marks December 6, 2017, indicating the onset of the major Bitcoin market crash.

Figure 1: Comparative dynamics of the Bitcoin market crash (2017-2018) and the standard PEn

Initially, from late August to early December 2017, Bitcoin prices exhibit an exponential upward 
trend, reaching unprecedented highs and reflecting market optimism and speculative interest. During 
this pre- crash phase, the classical permutation entropy metric remains relatively high, indicative of  
significant  market  complexity  and  unpredictability,  characteristic  of  dynamically  healthy 
cryptocurrency markets. Approaching early December 2017, Bitcoin price growth accelerates sharply, 
reaching its historical peak. Correspondingly, the PEn measure begins a notable and rapid decrease 
from  its  previously  elevated  values,  signaling  a  crucial  shift  from  a  highly  complex  state  to 
increasingly  predictable  dynamics.  This  reduction  in  entropy clearly  precedes  the  actual  crash, 
highlighting the emergence of ordered patterns within price movements. Such a drop in complexity 
implies that market participants’ behavior is becoming more synchronized and less diverse, reflecting 
reduced market efficiency and heightened systemic risk.

Following the green dashed line marking December 6, 2017, Bitcoin prices rapidly decline, marking 
the  onset  of  the  cryptocurrency  market  crash  characterized  by  high  volatility  and  investor 
uncertainty. During this crash period, permutation entropy continues to decline and reaches its 
lowest values, underscoring significantly increased predictability and reduced market complexity. 
This entropy minimum effectively coincides with the deepest market downturns, capturing the peak 
synchronization of trader behavior indicative of panic-driven selling and herd-like market dynamics.



After the steepest phase of the crash, beginning approximately mid-February 2018, Bitcoin prices 
start to stabilize and gradually recover, though remaining volatile due to ongoing uncertainty. In 
parallel,  the PEn values gradually recover,  reflecting the slow return of  market complexity and 
efficiency. The increasing entropy during this recovery phase suggests that diverse market behaviors 
and a broader range of trading strategies are slowly being restored, signaling a cautious re-emergence 
of market resilience.

In summary, Figure 1 emphasizes the potential utility of classical permutation entropy as an early 
indicator for cryptocurrency market crashes. Its distinctive temporal pattern – high entropy during 
stable market growth, rapid entropy decrease preceding the crash, minimal entropy at the crash peak, 
and a gradual entropy recovery afterward – provides valuable insights for traders, investors, and 
policymakers concerned with predicting and managing risks associated with cryptocurrency market 
instability.

Figure 2 illustrates the comparative dynamics of Bitcoin prices (BTC-USD) and the WPEn metric  
during the Bitcoin market crash period from August 21, 2017, to April 3, 2018. The dashed green 
vertical line denotes December 6, 2017, the identified starting point of the significant crash in Bitcoin 
prices.

Figure 2: Comparative dynamics of the Bitcoin market crash (2017-2018) and the WPEn

In contrast to classical PEn, WPEn explicitly incorporates amplitude variations, assigning greater 
importance to patterns derived from subsequences with significant variance or energy. This property 
enables WPEn to detect and reflect subtle yet crucial fluctuations in market volatility and price  
amplitude, providing additional depth to complexity analysis in cryptocurrency markets.

During  the  pre-crash  period  from late  August  to  early  December  2017,  Bitcoin  prices  rose 
substantially, reaching historical highs amid strong market enthusiasm and speculative activities. 
WPEn values remained relatively elevated throughout this phase, indicating a highly complex and 
diverse  market  environment  characterized  by  dynamic  interactions  among  market  participants 
without dominant or overly coordinated patterns.

As the market approaches early December 2017, WPEn exhibits notable and sharp fluctuations,  
corresponding closely with significant price movements in Bitcoin. Unlike the gradual decline seen in 
classical PEn, WPEn demonstrates abrupt drops associated directly with intense volatility events and 
pronounced amplitude variations. These sudden entropy reductions reflect rapid transitions toward 
less  complex  and  more  predictable  market  dynamics,  capturing  critical  moments  of  increased 
instability immediately preceding and during the early phases of the crash.

At the peak of the crisis (around late December 2017 to January 2018), WPEn values reach their 
lowest points, aligning precisely with the most severe declines in Bitcoin prices. This pronounced 
entropy drop illustrates  the  increased market  synchronization  and collective  investor  behavior,  
typical  of  panic-driven sell-offs,  and highlights WPEn’s  sensitivity to  substantial  amplitude and 
volatility shifts. Following the main phase of the crash, Bitcoin prices enter a volatile recovery period, 



accompanied by rapid increases and fluctuations in WPEn. The post-crisis recovery shows multiple 
sharp  entropy  variations,  indicating  persistent  periods  of  instability  and  uncertainty  in  market 
dynamics.  These  fluctuations  underscore  the  continued  vulnerability  and  complexity  of  the 
cryptocurrency market as it attempts to regain equilibrium.

In summary, Figure 2 demonstrates WPEn’s capability to detect immediate market instabilities and 
significant amplitude variations effectively. While WPEn does not provide as clear an anticipatory 
signal as classical PEn, its acute responsiveness to abrupt market fluctuations makes it a powerful  
analytical  tool  for  identifying  and  characterizing  critical  moments  of  cryptocurrency  market 
instability. 

Figure 3 presents a comparative analysis of Bitcoin prices (BTC-USD) alongside the AAPEn metric 
for the period from August 21, 2017, to April 3, 2018. The green dashed line marks December 6, 2017, 
denoting the onset of the Bitcoin market crash.

Figure 3: Comparative dynamics of the Bitcoin market crash (2017–2018) and the AAPEn

Unlike  classical  PEn  and  weighted  permutation  entropy  (WPEn),  the  amplitude-aware 
permutation entropy explicitly considers amplitude differences between consecutive data points, 
enhancing its  sensitivity  to  detect  significant  structural  shifts  and sudden anomalies  in  market 
behavior.

In  the  pre-crash  period,  spanning  from late  August  to  early  December  2017,  Bitcoin  prices 
experience  rapid  growth  and  pronounced  volatility.  During  this  phase,  AAPEn  values  remain 
elevated, indicative of a complex and diverse market state characterized by relatively unsynchronized 
market participant behavior. High AAPEn values here reflect a healthy market condition without 
clear early warnings of the impending crash.

As the market approaches early December 2017, AAPEn exhibits more pronounced fluctuations 
and begins a discernible downward trend. This early entropy decline, particularly noticeable before 
the actual onset of the crash (marked by the green dashed line), underscores AAPEn’s sensitivity and 
effectiveness  in  capturing  subtle,  amplitude-driven market  disturbances.  Thus,  AAPEn provides 
valuable precursor signals of rising market instability earlier than traditional entropy metrics.

At the crash peak between December 2017 and January 2018, Bitcoin prices sharply decline, and 
concurrently,  AAPEn  significantly  decreases,  reaching  its  minimum  values.  This  drop  clearly 
illustrates  the  transition  toward  more  predictable,  amplitude-coordinated  patterns  arising  from 
synchronized panic-driven selling behaviors, characteristic of severe market crises.

In the subsequent recovery phase, from late January to April 2018, AAPEn demonstrates partial 
recovery toward higher complexity levels, albeit with substantial fluctuations reflecting continued 
market uncertainty and episodes of heightened volatility. These entropy fluctuations during the 
recovery phase underscore the lingering instability within the cryptocurrency market as it attempts to 
regain equilibrium.



Overall, Figure 3 highlights the superior capability of amplitude-aware permutation entropy in 
detecting and interpreting nuanced market dynamics. Its sensitivity to subtle amplitude fluctuations 
allows it to serve effectively as both an early-warning indicator and a detailed analytical tool, offering 
deeper insights into the structural and behavioral complexities of cryptocurrency markets during 
periods of significant turbulence.

Figure 4 presents the comparative dynamics of Bitcoin prices (BTC-USD) and the UPEn metric  
from August 21, 2017, to April 3, 2018. The green dashed line indicates December 6, 2017, marking the 
onset of the significant Bitcoin market crash.

Figure 4: Comparative dynamics of the Bitcoin market crash (2017–2018) and the UPEn

Unlike  traditional  permutation  entropy  approaches,  UPEn  utilizes  uniform  quantization  to 
explicitly incorporate amplitude information and address the issue of equal-value observations. This 
allows UPEn to provide a more robust and stable complexity representation by effectively capturing 
longer-term  structural  changes  in  market  dynamics  while  minimizing  sensitivity  to  minor 
fluctuations.

In the initial period from late August to early December 2017, Bitcoin prices steadily rise amid 
market optimism and speculative activities, accompanied by moderate volatility. UPEn values during 
this phase gradually increase, reflecting growing market complexity and active dynamics, though 
remaining  relatively  stable  and  moderate  overall.  This  stability  indicates  balanced  complexity 
conditions without immediate signs of market distress.

As the Bitcoin market approaches early December 2017, the UPEn metric begins to exhibit a 
discernible decline, signaling the early emergence of structural instability preceding the crash. Unlike 
the more volatile behavior seen in classical or amplitude-aware permutation entropy metrics, UPEn’s 
decline is smoother and more gradual, effectively filtering short-term volatility while emphasizing 
longer-term market changes.

During the peak crash period between December 2017 and January 2018, Bitcoin prices experience 
rapid declines. Correspondingly, UPEn reaches its lowest point, clearly reflecting diminished market 
complexity and increased predictability resulting from coordinated, panic-driven selling behavior. 
This minimum entropy period effectively captures the structural transition from a complex, healthy 
market to a more ordered but fragile state characteristic of crisis conditions.

In the post-crash recovery phase, beginning around February 2018, UPEn gradually increases,  
indicating a slow yet consistent restoration of market complexity and stability. Compared to other 
permutation entropy methods, UPEn shows fewer abrupt fluctuations during this recovery phase,  
suggesting it effectively emphasizes sustained structural recovery rather than short-term volatility.  
This characteristic makes UPEn particularly valuable for detecting and interpreting the longer-term 
complexity evolution in cryptocurrency markets during periods of recovery and restabilization.

Overall, Figure 4 underscores the effectiveness of UPEn as a reliable, robust indicator for capturing 
structural  complexity  changes  associated  with  cryptocurrency  market  crashes.  Its  capability  to 



highlight  gradual  complexity  shifts  and filter  short-term noise  makes  UPEn highly  suitable  for 
policymakers, investors, and analysts aiming for stable and long-term market stability indicators.

4. Conclusion

In this paper, we performed a comprehensive comparative analysis of classical permutation entropy 
(PEn)  and  its  enhanced  variants  –  weighted  permutation  entropy  (WPEn),  amplitude-aware 
permutation  entropy  (AAPEn),  and  uniform  quantization-based  permutation  entropy  (UPEn)  – 
specifically applied to the Bitcoin market crash from August 21, 2017, to April 3, 2018. Our primary 
goal was to evaluate the effectiveness of these entropy measures as early-warning indicators of 
cryptocurrency market instability, overcoming traditional PEn’s limitation of disregarding amplitude 
information.

Our empirical findings underscore the unique strengths of each entropy method in capturing 
distinct  aspects  of  cryptocurrency market  dynamics.  The classical  PEn measure proved notably 
effective  in  detecting  a  gradual  complexity  decline  prior  to  the  crash,  accurately  reflecting the 
transition from a complex and efficient market to a predictable and vulnerable state. Its ability to 
identify reduced entropy preceding the actual market downturn highlights its robustness as a reliable 
precursor metric for cryptocurrency market crashes.

The  WPEn  metric,  through  its  variance-based  weighting  of  ordinal  patterns,  demonstrated 
significant sensitivity to abrupt market fluctuations,  capturing immediate instability events with 
notable precision. Although WPEn was less effective in identifying gradual complexity reductions 
compared to classical  PEn,  its  rapid responsiveness  makes  it  particularly  valuable for  real-time 
detection of severe volatility episodes typical in cryptocurrency markets.

AAPEn emerged as exceptionally effective due to its refined incorporation of amplitude differences 
among  consecutive  data  points.  It  captured  subtle  but  meaningful  market  shifts  with  greater 
sensitivity and offered more transparant early-warning signals compared to both classical PEn and 
WPEn.  The  flexibility  in  tuning  its  parameters  also  enhances  its  adaptability  to  diverse 
cryptocurrency market  conditions,  improving predictive  accuracy and interpretability  regarding 
structural shifts and emerging instabilities. UPEn, leveraging uniform quantization to incorporate 
amplitude data, provided stable and robust indicators by emphasizing sustained structural changes 
while effectively filtering out short-term volatility. Although less sensitive to immediate fluctuations 
compared to WPEn or AAPEn, UPEn was particularly effective in revealing longer-term complexity 
trends, making it highly suitable for strategic monitoring of cryptocurrency markets over extended 
periods.

Overall, our analysis confirms the utility of permutation entropy methods, especially amplitude-
enhanced variants, as powerful tools for predicting and analyzing cryptocurrency market crashes. 
While classical PEn continues to serve as a straightforward and reliable early indicator, advanced 
entropy measures such as WPEn, AAPEn, and UPEn significantly enrich the analytical toolkit by 
capturing deeper market complexities and subtle signals of impending instability.

Future  research  directions  include  applying  these  entropy  methodologies  to  analyze  other 
cryptocurrency crashes and market anomalies, exploring their applicability across diverse digital 
assets and market conditions. Integrating these entropy metrics with advanced machine learning 
algorithms, including deep learning techniques,  could further improve forecasting precision and 
enable  the  development  of  sophisticated  real-time  alert  systems  for  cryptocurrency  market 
monitoring. Additionally, exploring multivariate extensions of these entropy measures may provide 
deeper insights into interdependencies and collective dynamics among different cryptocurrencies, 
further enhancing their value as decision-support tools for investors, market analysts, and regulatory 
authorities. Furthermore, combining entropy-based complexity analysis with clustering techniques 
may provide novel insights into market regime identification and trading strategy optimization, 
ultimately leading to better-informed trading decisions and improved risk management practices in 
cryptocurrency markets [39].
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