
Comparative Evaluation of StyleGAN3-Based 
Augmentation Strategies for Enhanced Medical Image 
Classification 

Faycal Touazi1, Djamel Gaceb1, Amira Tadrist1 and Sara Bakiri1  

1 LIMOSE Laboratory, Computer Science Department, University M’hamed Bougara, Independence Avenue, 35000 Boumerdes, 
Algeria

Abstract
Deep learning models for medical image classification face significant challenges due to class imbalance and 
the limited availability of annotated datasets, particularly for rare diseases. Traditional data augmentation 
techniques, such as rotation, translation, etc., often fail to provide sufficient diversity to perform a good 
classification for minor classes.  To address this issue,  various strategies have been explored, including 
oversampling,  undersampling,  cost-sensitive  learning,  and  synthetic  data  generation  using  generative 
adversarial  networks  (GANs).  In  this  study,  we  evaluate  the  impact  of  using  a  generative  AI  based  
approaches and demonstrate that the most effective strategy is to combine synthetic augmentation with  
traditional methods. Specifically, we employ StyleGAN3 to generate high-fidelity synthetic images that,  
when integrated with traditional data-augmentation techniques, may improve the performance of deep 
learning models on medical image classification. We validate our method on datasets, including COVID-19 
chest X-rays and HAM10000. Experimental results show that this hybrid approach leads to an improvement 
in classification accuracy, particularly for minority classes, surpassing standalone augmentation strategies.  
Our findings highlight the potential of AI-driven synthetic data generation as a complementary solution to 
traditional augmentation, offering a more balanced and diverse dataset for medical image analysis.
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1. Introduction

In the field of deep learning for medical imaging, one of the significant challenges is class imbalance 
coupled with small annotated data. It is especially challenging when working with rare diseases, 
where the low occurrence and brief duration of the appearance of symptoms can make the collect of 
data difficult, which may affect the quality of the model training.

As a result, such a deficiency affects classification model performance, particularly in classifying 
complicated pathologies that are important even their rarity in the datasets. This asymmetry degrades 
the performance of the model in favor of the majority classes, thus decreasing the precision and 
reliability of the predictions compared to the minority classes.

The imbalance datasets,  coupled with the limited availability of  annotated datasets,  presents 
obstacles to the development of efficient and high-quality models in the field of medical imaging. 
Traditional classification models become overfitted to the dominant classes, leading to a significant 
loss of accuracy for the minority classes. While traditional data augmentation techniques such as 
rotation, resizing, and cropping—are often applied to alleviate this issue, they often fail to generate the 
necessary diversity and do not notably enhance the generalization capacity of the models.

Classical data augmentation techniques [1], such as rotation, flipping, scaling, and cropping, are 
widely used to artificially increase the size of training datasets and improve model generalization.  
These methods help in introducing minor variations to the images, making the model more robust to 
small transformations. However, they have significant limitations, especially in the medical imaging 
domain. Since medical images often contain complex and subtle patterns that are crucial for diagnosis, 
simple  transformations  may  not  sufficiently  capture  the  variability  needed  to  enhance  model 
performance. Furthermore, these techniques do not create new pathological patterns but merely 
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modify existing ones, limiting their effectiveness in addressing class imbalance. As a result, they may 
not  significantly  improve  the  classification  of  rare  diseases,  which  require  more  sophisticated 
augmentation strategies capable of generating realistic and diverse samples.

To address class imbalance in deep learning, various strategies can be employed (see [2] for an 
exhaustive review).

1. Oversampling  Methods:  Oversampling  techniques  aim to  increase  the  representation  of 
minority-  class samples to balance the dataset.  Synthetic Minority Over-sampling Technique 
(SMOTE) and its  variants generate synthetic data points to improve class distribution [3, 4].  
Additionally, data augmentation techniques introduce transformed versions of existing images to 
improve model generalization. While oversampling has been shown to be one of the most effective 
techniques for CNN-based classification [5], its effectiveness can be limited on images in general 
and for medical imaging.
2. Undersampling Methods: In contrast, undersampling reduces the number of majority-class 
samples to achieve a more balanced dataset, thereby improving class proportions and reducing 
computational cost. Random undersampling removes a subset of majority samples, while more 
advanced techniques, such as cluster-based undersampling, aim to retain the most informative 
samples. Although undersampling is effective in extreme imbalance scenarios, it  may lead to 
information loss, particularly in complex medical datasets [5].
3. Other Learning Approaches: Beyond sampling strategies, cost-sensitive learning modifies the 
loss function to assign higher penalties for misclassifications in the minority class, with focal loss 
being  a  notable  example  that  prioritizes  hard-to-classify  instances  [6,  7].  Ensemble  learning 
improves prediction accuracy by combining multiple classifiers, but its high computational cost 
can be prohibitive [8]. Hybrid approaches integrate data-level and algorithm-level solutions, such 
as clustering with sampling techniques or cost-sensitive learning with neural networks. Semi- 
supervised and self-supervised learning leverage unlabeled data to enhance feature representation 
and generalization, while deep metric learning and contrastive learning focus on learning more 
discriminative representations without altering class distribution.  Each of  these methods has 
trade-offs in efficiency, robustness, and complexity, so a choice can be made based on the nature of 
the dataset and the nature of application demands.
To  overcome  the  limitations  of  traditional  imbalance-handling  techniques,  AI-based  image-

generation methods [9, 10, 11, 12, 13], and particularly StyleGAN [14, 15, 16], have emerged as a 
groundbreaking solution for generating realistic synthetic medical images. StyleGAN’s ability to 
produce  high-fidelity  images  enables  dataset  augmentation  without  compromising  the  valuable 
pathological  characteristics  essential  for  medical  imaging.  By  generating  samples  for 
underrepresented classes, StyleGAN helps mitigate class imbalances and improves the stability of 
classification models.

In this work, we introduce a StyleGAN3-based data augmentation approach that combines state-
of-the- art generative modeling with classical balancing techniques to enhance the diversity and 
representation  of  minority-class  samples.  StyleGAN3,  with  its  improved  spatial  coherence,  is 
particularly well-suited for medical image synthesis, preserving intricate morphological features of 
pathological  conditions.  Unlike  conventional  oversampling  methods  that  risk  overfitting,  our 
approach generates diverse and realistic synthetic samples, enriching the dataset and improving the 
generalization of classification models.  By training StyleGAN3 on the minority class,  we aim to 
restore class balance, enhance dataset variability, and ultimately improve the robustness of medical 
image classification systems.

This paper is structured as follows: Section 2 is a literature review of data augmentation and GANs 
in medical  imaging.  Section 3 is  a  description of  the methodology of  our work,  including data 
preprocessing, model architecture, and performance metrics. Section 4 is the experimental results and 
their discussion. Section 5 concludes the paper and gives future directions of research

2. Related Works

2.1. Based on the Covid_19 Radiography Dataset

Abdul Waheed et al. [17] introduced CovidGAN, an ACGAN-based model generating synthetic chest 
X-ray (CXR) images to address data scarcity in medical imaging. Trained on three datasets (IEEE 



Covid Chest X-ray, COVID-19 Radiography Database, COVID-19 Chest X-ray Dataset), CovidGAN 
improved CNN classification accuracy from 85% to 95% with augmented data.

Sharmila V J et al. [18] proposed a DCGAN-CNN hybrid for classifying CXR images (normal, pneu- 
monia, COVID-19). The DCGAN generates 64×64 synthetic images, later resized for classification. The 
CNN, comprising eight convolutional layers, achieved accuracy between 94.8% and 98.6%, surpassing 
AlexNet and GoogLeNet.

2.2. Based on the HAM10000 Dataset

Bilal Ahmad et al. [19] developed TED-GAN, a hybrid VAE-GAN approach for skin lesion image 
generation.  Using  a  dual-GAN  framework,  their  model  significantly  improved  melanoma 
classification, increasing sensitivity from 53% to 82% and specificity from 75% to 94%.

Qinchen Su et al. [20] introduced STGAN, a GAN-based augmentation method for multi-class 
imbalanced skin lesion classification. Trained on the HAM10000 dataset, it improved FID, Inception 
Score, Precision, and Recall over StyleGAN2 and achieved an accuracy of 98.23% with a ResNet50 
classifier.

2.3. Based on Other Datasets

Bilal Ahmad et al. [21] proposed VAE-GAN, leveraging informative noise instead of Gaussian noise 
for  brain  tumor  image  generation.  Applied  to  3,064  CE-MR  images,  their  approach  boosted 
classification accuracy from 72.63% to 96.25%.

Guilherme C  et  al.  [22]  implemented  StyleGAN2-ADA,  enhancing  image  quality  for  fundus 
imaging via adaptive discriminator augmentation to mitigate data scarcity and imbalance.

Table 1
Summary of Related Works

Study Methodology Dataset Accuracy Year
Waheed et al. [17] CovidGAN (ACGAN) COVID-19 Radiography 95% 2020
Sharmila et al. [18] DCGAN-CNN COVID-19 Radiography 94.8%-98.6% 2021
Ahmad et al. [19] TED-GAN (VAE-GAN) HAM10000 Sensitivity: 82% 2022

Su et al. [20] STGAN HAM10000 98.23% 2021
Ahmad et al. [21] VAE-GAN (Brain Tumors) CE-MR Brain Tumor 96.25% 2023

Guilherme et al. [22] StyleGAN2-ADA Fundus Imaging 85% 2021

3. Proposed Approach

Our approach stands out by leveraging GANs not only for data augmentation but also for dataset  
balancing. To ensure fair evaluation and prevent data leakage, our dataset was initially divided into 
80% for  training and 20% for  testing.  This  split  remains  consistent  across  all  experiments,  and 
transformations are applied only to the test set. We conducted our study on two medical imaging 
datasets: HAM10000 [23] and COVID-19 Radiography [24]. We propose four augmentation strategies:

1. Approach 1 - Traditional Data Augmentation Classical transformations (rotation, flipping, 
resizing) are applied to enhance training data diversity.
2. Approach 2 - Targeted Augmentation for Balancing Augmentation is applied specifically to 
minority classes to balance the dataset.
3. Approach  3  -  StyleGAN3-Based  Augmentation  with  Batch  Injection  Synthetic  images 
generated by StyleGAN3 are injected into training batches to improve diversity.
4. Approach 4 - Hybrid StyleGAN3 Augmentation and Traditional Balancing A percentage of 
StyleGAN3-generated images is added, followed by traditional balancing techniques.

3.1. Approach 1: Traditional Data Augmentation

We apply standard transformations such as rotation, horizontal/vertical flipping, and color jittering 
before feeding images into ResNet50 and InceptionV3. Table 2 summarizes the transformations.



Table 2
Transformations applied for traditional augmentation

Transformation Value
RandomHorizontalFlip 0.5

RandomVerticalFlip 0.5
RandomRotation 30°

ColorJitter brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1 RandomAffine
RandomHorizontalFlip 0.5

RandomAffine translate=(0.1, 0.1)

3.2. Approach 2: Targeted Augmentation for Balancing

This approach is inspired by Random Over-Sampling (ROS), a common technique for handling im- 
balanced datasets by duplicating samples from minority classes to match the distribution of majority 
classes. However, instead of simply duplicating existing images, we apply targeted data augmentation 
techniques (e.g.,  rotation, scaling, contrast adjustments) to generate new synthetic samples.  The 
gener- ated images are saved and used to balance the dataset, ensuring that minority classes have the 
same number of images as the majority classes.

3.3. Approach 3: StyleGAN3-Based Augmentation with Batch Injection

StyleGAN3 is used to generate high-quality synthetic medical images that are directly injected into 
training  batches  during  model  training.  Unlike  traditional  augmentation,  which  applies 
transformations to existing images, StyleGAN3 synthesizes new samples that mimic the distribution 
of real medical images.

In this approach, synthetic images are generated before training and dynamically included in mini- 
batches alongside real images. This ensures that the model learns robust representations by exposing 
it to a more diverse dataset. The dataset split remains unchanged, with synthetic images used only  
during training, preventing bias in the test evaluation.

3.4. Approach 4: Hybrid StyleGAN3 Augmentation and Traditional Balancing

This approach combines StyleGAN3-generated images with traditional dataset balancing techniques 
to optimize model performance. The augmentation process consists of two steps:

1. Generation of Synthetic Images: StyleGAN3 is used to generate additional images. We test 
four strategies by adding synthetic samples to the original training dataset, increasing the minority 
classes by 10%, 20%, 30%, and 40%, respectively.
2. Traditional Balancing Techniques: Once the synthetic images are added, classical balancing 
methods are applied. This includes oversampling the minority class and targeted augmentations 
(rotation, flipping, and intensity scaling) to equalize class representation.
This  hybrid  strategy  ensures  that  the  dataset  remains  well-balanced  while  introducing  new 

variations through GAN-generated samples. The classifier is trained on the augmented dataset using 
ResNet50 and InceptionV3, and performance is evaluated based on classification metrics.

4. Results of data-augmentation

4.1. Results of StyleGAN3

The generated images show appreciable diversity in the characteristics of each class. This diversity is 
crucial to avoid overfitting and to improve the generalization of classification models by including 
realistic variations in the data.

Below, you will find samples of the images generated by StyleGAN3 for each minority class.



Figure 1: Images generated by StyleGAN3 for the COVID-19 related classes of the Covid-19 dataset  
and for HAM10000 MEL class.

4.2. Results of Augmentation

4.2.1. Approach 1: Traditional Augmentation

Table  3  presents  the  performance  of  the  ResNet50  and  InceptionV3  models  on  the  COVID-19 
Radiography and HAM10000 datasets  using Approach 1,  evaluated in terms of  accuracy,  recall,  
precision, and F1-score.

It is observed that the InceptionV3 model slightly outperforms the ResNet50 model in terms of 
accuracy and F1-score, achieving an accuracy of 94.82% compared to 91.26% for ResNet50 on the 
COVID-19 dataset and 82.49% compared to 81.48% on the HAM10000 dataset

Table 3
Performance results of the models with Approach 1: Traditional augmentation

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 91.26% 91.20% 91.26% 91.50% 82.59% 81.27% 82.59% 81.48%
InceptionV3 94.82% 94.84% 94.83% 94.88% 83.09% 82.02% 83.09% 82.49%



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3

Figure  2:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets with Approach 1.

The  confusion  matrices  in  (see  Figure  2)  visualize  the  performance  of  the  ResNet50  and 
InceptionV3 models on the COVID-19 Radiography and HAM10000 datasets using the traditional 
augmentation approach. They allow for evaluating the quality of each model’s predictions on these 
two datasets in terms of correct and incorrect classifications.

4.2.2. Approach 2: Traditional Data Augmentation with Balancing

Table 4 presents the performance of the ResNet50 and InceptionV3 models on the COVID-19 
Radiography and HAM10000 datasets  using Approach 2,  evaluated in terms of  accuracy,  recall,  
precision, and F1-score.

It is noteworthy that the InceptionV3 model slightly surpasses the ResNet50 model in terms of 
accuracy and F1-score on the COVID-19 Radiography dataset,  achieving an accuracy of  95.46% 
compared to 94.33% for ResNet50. Conversely, for the HAM10000 dataset, it is the ResNet50 model 
that displays better performance, achieving an accuracy of 83.19% compared to 71.77% for InceptionV3

Table 4
Performance results of the models with Approach 2: Traditional data augmentation with balancing

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 94.40% 94.37% 94.40% 94.40% 84.49% 84.49% 83.68% 83.16%
InceptionV3 95.89% 95.88% 95.89% 95.89% 86.03% 86.03% 85.11% 82.02%



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3

Figure 3: Confusion matrices for ResNet50 and InceptionV3 on the COVID.

4.2.3. Approach 3: Augmentation using StyleGAN3 with Batch Injection

Table  5  presents  the  performance  of  the  ResNet50  and  InceptionV3  models  on  the  COVID-19 
Radiography and HAM10000 datasets  using Approach 3,  evaluated in terms of  accuracy,  recall,  
precision, and F1-score.

Table 5
Performance results of the models with Approach 2: Traditional data augmentation with balancing

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 94.33% 94.31% 94.33% 94.33% 83.19% 82.64% 83.19% 82.77%
InceptionV3 95.46% 95.45% 95.47% 95.48% 86.08% 86.19% 86.08% 86.54%

We observe that the InceptionV3 model slightly outperforms the ResNet50 model in terms of 
accuracy and F1-score on the COVID-19 Radiography dataset,  achieving an accuracy of  95.46% 
compared to 94.33% for ResNet50. However, on the HAM10000 dataset, the InceptionV3 model also 
achieves better results with an accuracy of 86.08% compared to 83.19% for ResNet50 (see Figure 4 for 
the confusion matrices).



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  4:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets using Approach 3.

4.2.4. Approach 4: Augmentation using StyleGAN3 and Balancing with 
Traditional Methods

In this approach, we tested different levels of data augmentation, namely 10%, 20%, 30%, and 40%.

4.2.5. With 10% Augmentation

Table  6  presents  the  performance  of  the  ResNet50  and  InceptionV3  models  on  the  COVID-19 
Radiography and HAM10000 datasets with 10% data augmentation using Approach 4, evaluated in 
terms of accuracy, recall, precision, and F1-score.

Table 6
Performance results of the models with Approach 1: Traditional augmentation

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 93.76% 93.77% 93.77% 93.78% 85.28% 84.97% 85.29% 84.95%
InceptionV3 95.37% 95.36% 95.37% 95.36% 86.43% 85.61% 86.43% 85.96%



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  5:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets using Approach 4 with 10% augmentation.

Table 7
Model  performance  results  with  approach 4:  augmentation by StyleGAN3 and balancing  with 
traditional methods

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 94.49% 94.48% 94.50% 94.49% 83.99% 82.51% 83.99% 83.26%
InceptionV3 95.96% 95.96% 95.96% 95.96% 86.43% 86.20% 86.43% 86.14%

It is observed that the InceptionV3 model continues to outperform the ResNet50 model in terms of 
accuracy and F1-score with this  approach on the COVID-19 Radiography dataset,  achieving an 
accuracy of 95.84% compared to 94.49% for ResNet50. Furthermore, on the HAM10000 dataset,  
InceptionV3 also demonstrates better performance with an accuracy of 86.43% versus 83.99% for 
ResNet50.

4.2.6. With 20% Augmentation

Table  8  presents  the  performance  of  the  InceptionV3  and  ResNet50  models  on  the  COVID-19 
Radiography and HAM10000 datasets with a 20% data augmentation using approach 4.

Table 8
Performance results of the models with approach 4: augmentation using StyleGAN3 and balancing 
with traditional methods

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 93.76% 93.75% 93.77% 93.75% 84.88% 84.31% 84.89% 84.22%
InceptionV3 95.58% 95.60% 95.58% 95.62% 85.73% 85.33% 85.74% 85.65%



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  6:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets with approach 4 at 30%.

It can be observed that in the COVID-19 Radiography dataset, InceptionV3 outperforms ResNet50 
with an accuracy of 95.58% compared to 93.76%. The F1 scores, recall, and precision further confirm 
this trend, indicating better overall performance for InceptionV3.

Regarding  the  HAM10000  dataset,  although  the  gap  is  smaller,  InceptionV3  maintains  an 
advantage with an accuracy of 85.73% compared to 84.88% for ResNet50. This difference demonstrates 
better handling of complex classes by InceptionV3.

4.2.7. With 30% Augmentation

Table  9  presents  the  performance  of  the  ResNet50  and  InceptionV3  models  on  the  COVID-19 
Radiography  and  HAM10000  datasets  with  approach  4,  evaluated  in  terms  of  accuracy,  recall,  
precision, and F1-score.

Table 9
Performance results of the models with approach 4: augmentation using StyleGAN3 and balancing 
with traditional methods

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 94.49% 94.48% 94.50% 94.49% 83.99% 82.51% 83.99% 83.26%
InceptionV3 95.96% 95.96% 95.96% 95.96% 86.43% 86.20% 86.43% 86.14%

It can be noted that the InceptionV3 model continues to surpass the ResNet50 model in terms of  
accuracy and F1-score with this  approach on the COVID-19 Radiography dataset,  achieving an 
accuracy of 95.84% compared to 94.49% for ResNet50. Furthermore, on the HAM10000 dataset,  
InceptionV3 also demonstrates better performance with an accuracy of 86.43% compared to 83.99% 
for ResNet50.



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  7:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets with approach 4 at 20%.

4.2.8. With 40% augmentation

The table 10 presents the performance of the InceptionV3 and ResNet50 models on the COVID-19 
Radiography and HAM10000 datasets with a 40% data augmentation using approach 4.

Table 10
Performance results of the InceptionV3 model with approach 4: augmentation by StyleGAN3 and 
balancing with traditional methods

Model COVID HAM10000
Acc F1 Recall Prec Acc F1 Recall Prec

ResNet50 93.24% 93.21% 93.25% 93.27% 82.94% 81.58% 82.94% 81.93%
InceptionV3 95.18% 95.18% 95.18% 95.19% 85.38% 84.99% 85.39% 84.91%

The results show that InceptionV3 continues to exhibit better performance compared to ResNet50 
in terms of accuracy and F1-score. For the COVID-19 dataset, InceptionV3 achieves an accuracy of 
95.18%, while ResNet50 shows an accuracy of 93.24%. Regarding the HAM10000 dataset, InceptionV3 
achieves an accuracy of 85.38%, compared to 82.94% for ResNet50, confirming the effectiveness of 
InceptionV3 for this approach.



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  8:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets with approach 4 at 30%. 

4.3. Discussion and comparison

For the COVID-19 Radiography dataset, approach 4, which includes a 30% increase in generated 
data, proved to be the most effective. It achieved an accuracy of 95.96% for the InceptionV3 model and 
94.49% for ResNet50, outperforming all other tested approaches.

In the HAM10000 dataset, approach 4 also delivered the best results, especially for InceptionV3,  
which reached an accuracy of 86.43%, surpassing other methods.

Approach 1 relies on traditional data augmentation, but its limitations quickly become apparent. 
On the COVID-19 Radiography dataset, it allows InceptionV3 to achieve an accuracy of 94.82% and 
ResNet50 91.26%, while on the HAM10000 dataset, the performances are 83.09% for InceptionV3 and 
82.59% for ResNet50. However, this unbalanced approach does not provide significant improvements 
and may even lead to decreased performance due to the persistent class imbalance. This is where  
approach 2, which incorporates class balancing along with data augmentation, proves to be more 
effective.  Indeed,  on the  COVID-19 Radiography dataset,  it  achieves  an accuracy of  95.89% for 
InceptionV3 and 94.40% for ResNet50, and on HAM10000, the results are also improved, with 86.03% 
for InceptionV3 and 84.49% for ResNet50. This demonstrates that the addition of class balancing 
allows for better model generalization, particularly on unbalanced datasets, making approach 2 more 
effective than approach 1.

In approach 3, although the generated images are of good quality, the main issue lies in the  
constant variation of the images injected into the batches at each training step. This fluctuation 
prevents the model from converging effectively, as it cannot adapt well to changing data. The lack of 
consistency in the batches disrupts the model’s learning, limiting overall performance improvements. 
In comparison, approach 2, which uses static data balancing, offers greater stability and enables the  
model to converge better, thus explaining its superior results.



a) COVID-19 - ResNet50 b) COVID-19 - InceptionV3

c) HAM10000 - ResNet50 d) HAM10000 - InceptionV3
Figure  9:  Confusion matrices  for  ResNet50 and InceptionV3 on the COVID-19 and HAM10000 
datasets with approach 4.

5. Conclusion

Conclusion Data augmentation is key to optimizing the performance of deep learning models in 
medical imaging, especially in the presence of imbalanced and challenging datasets. In this work, the 
application of StyleGAN in generating synthetic images was investigated and its impact on the 
training of classification models evaluated.

Our  experiments  demonstrated  that  while  the  synthetic  images  generated  by  StyleGAN are 
realistic and useful for augmenting datasets, they alone are not sufficient to surpass the performance 
obtained using traditional data augmentation methods. The diversity and realism of the generated 
images remain a concern, especially with the complexity and variability of medical images, which are 
not always well-modeled by generative models.

However, this study shows the potential of GANs for enhancing medical classification datasets. 
While  ResNet50  and  InceptionV3  have  worked  effectively,  other  architectures  and  fine-tuning 
strategies can potentially improve model robustness.

Prospective Pathways To supplement this study, there are numerous paths that can be taken:
 Hybrid methods: Combining GANs with other generation techniques, i.e., variational auto-
encoders, would further improve synthetic data quality. Systematic clinical validation: Testing 
these techniques in actual clinical environments to determine their feasibility.
 Combining imbalance handling techniques: Addressing dataset imbalance by integrating two 
approaches, such as undersampling the majority classes through pruning while simultaneously 
oversampling the minority classes, can improve model generalization and mitigate bias.



Table 11
Model performance results across different approaches

COVID-19 Radiography HAM10000
Model A F1 R P A F1 R P

Approach 1
ResNet50 91.26% 91.20% 91.26% 91.50% 82.59% 81.27% 82.59% 81.48%

InceptionV3 94.82% 94.84% 94.83% 94.88% 83.09% 82.02% 83.09% 82.49%
Approach 2

ResNet50 94.40% 94.37% 94.40% 94.40% 84.49% 84.49% 83.68% 83.16%
InceptionV3 95.89% 95.88% 95.89% 95.89% 86.03% 86.03% 85.11% 82.02%

Approach 3
ResNet50 94.33% 94.31% 94.33% 94.33% 83.19% 82.64% 83.19% 82.77%

InceptionV3 95.46% 95.45% 95.47% 95.48% 86.08% 86.19% 86.08% 86.54%
Approach 4

10% ResNet50 93.76% 93.77% 93.77% 93.78% 85.28% 84.97% 85.29% 84.95%
InceptionV3 95.37% 95.36% 95.37% 95.36% 86.43% 85.61% 86.43% 85.96%

20% ResNet50 93.76% 93.75% 93.77% 93.75% 84.88% 84.31% 84.89% 84.22%
InceptionV3 95.58% 95.60% 95.58% 95.62% 85.73% 85.33% 85.74% 85.65%

30% ResNet50 94.49% 94.48% 94.50% 94.49% 83.99% 82.51% 83.99% 83.26%
InceptionV3 95.96% 95.96% 95.96% 95.96% 86.43% 86.20% 86.43% 86.14%

40% ResNet50 93.24% 93.21% 93.25% 93.27% 82.94% 81.58% 82.94% 81.93%
InceptionV3 95.18% 95.18% 95.18% 95.19% 85.38% 84.99% 85.39% 84.91%

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling 
check. After using this tool, the authors reviewed and edited the content as needed and take full 
responsibility for the publication’s content.
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