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Abstract
The paper  discusses  the  current  cybersecurity  challenges  in  intelligent  transport  systems  (ITS),  in 
particular,  the  growing  number  of  IoT  devices,  the  need  to  process  large  amounts  of  data,  and  
vulnerability  to  DDoS  attacks.  One  of  the  key  approaches  to  ensuring  cybersecurity  is  the  use  of 
mathematical models for risk assessment. The  paper analyses the use of mathematical models for risk 
assessment and prediction of attacks and anomalies based on historical data and current observations. The 
risks are modeled using the exponential distribution and the Weibull distribution, which allow assessing 
the  dynamics  of  threats  over  time,  taking  into  account  the  accumulation  of  vulnerabilities  and  the  
effectiveness of security measures. Mathematical functions for modeling the probability of cyberattacks 
and  anomalies  are  presented,  which  are  key  to  automating  threat  response  processes.  Examples  of  
practical  application  of  models  for  congestion  forecasting,  anomaly  analysis,  and  cyberattack  risk 
assessment in real-world ITS conditions are given.
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1. Introduction

An Intelligent Transport System (ITS) is a transport system that uses innovative developments in 
modeling and regulating traffic  flows,  which provides end users  with greater  information and 
safety,  as  well  as  qualitatively  improves  the  level  of  interaction  between  traffic  participants 
compared to conventional transport systems [1, 2].

ITS  is  the  systematic  integration  of  modern  information,  communication  technologies,  and 
automation tools with transport infrastructure, vehicles, and users, which focuses on improving the 
safety and efficiency of the transport process, as well as comfort for drivers and transport users [3].

They  are  complex  cyber-physical  systems  that  use  the  Internet  of  Things  (IoT),  artificial 
intelligence (AI), and big data technologies to manage urban traffic. Ensuring the cybersecurity of 
ITS is a critical task, as vulnerabilities in these systems can lead to serious disruptions in transport  
infrastructure, threats to public safety, and significant economic losses [5, 6].

Cybersecurity  in  ITS  is  becoming  increasingly  important  due  to  the  growing  number  of 
connected devices and the volume of data. A low level of protection for such systems can lead to 
serious consequences, including manipulating traffic lights, interfering with autopilots, or blocking 
emergency services [7–9].

One of the key approaches to cybersecurity is to use mathematical models to assess threats. 
Such models help predict  the likelihood of attacks and anomalies based on historical  data and 
current observations. This allows us to identify potential risks on time [10].
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Among the main threats to ITS are unauthorized access to the network, denial of service (DDoS) 
attacks, and the introduction of malicious code. All these threats can seriously affect the operation 
of  the  transport  system.  Probability  models  also  allow us  to  assess  the  effectiveness  of  cyber 
defense measures [10].

For example, it is possible to analyze how the introduction of new security protocols or system 
upgrades  affects  the  level  of  ITS  security.  An  important  component  of  security  is  modeling 
anomalies  in  network  traffic.  Anomalies  can  indicate  intrusion  or  malfunction  in  the  system. 
Detection of such anomalies is based on machine learning algorithms and Bayes’ theorem. The 
combination of threat models and anomaly analysis provides a multi-level security system. This 
allows you to identify both global risks and local problems in network traffic.

2. Issues

ITS is constantly evolving, introducing new technologies to improve efficiency and safety. The 
growing complexity of ITS is accompanied by an increase in cyber threats that can lead to serious 
consequences. One of the key issues is the risk of cyberattacks on critical ITS components, which 
can cause not only technical malfunctions but also threaten the safety of citizens. Thus, attacks can 
disrupt the operation of traffic management systems or autopilot vehicles. The ability of ITSs to  
detect anomalies in network traffic is the basis for randomly responding to some threats. However, 
this requires the use of complex algorithms and modeling to effectively assess and respond to risks.  
ITS cybersecurity requires the integration of  various approaches for monitoring and analyzing 
risks. The use of probabilistic models allows you to predict threats, and assess their likelihood and 
impact on the system.

The problem of ensuring the stability of ITS operations is complicated by the availability of both 
historical data and current observations. This requires the development of mathematical models 
that can efficiently obtain both types of information. To assess the likelihood of a cyberattack,  
threat probability functions are used that take into account the time dependence of risks. This  
allows for the adaptation of defense mechanisms to a changing threat level. Modeling anomalies in  
network traffic is an aspect of security. Using machine learning algorithms and Bayes’ theorem, we 
can detect deviations from the normal system behavior [11].

The integration of threat and anomaly probability models into the monitoring process creates a 
multi-level protection system that covers both global and local risks. Implementing new security 
protocols requires evaluating their effectiveness. Using probabilistic models, you can analyze how 
these  measures  affect  the  likelihood  of  attacks  and  anomalies.  Automating  threat  response 
processes  is  critical  to  minimizing  the  risk  of  human error.  This  allows  you  to  automatically 
activate response measures based on predefined probability thresholds.

Various distributions, such as the exponential distribution and the Weibull distribution, are used 
to  model  the  probability  of  a  cyberattack,  taking  into  account  constant  and  changing  attack 
intensities. The exponential distribution models the constancy of the attack intensity, where the 
risk remains unchanged over time, while the Weibull distribution allows for a reduction in the 
change in threat intensity. The choice of parameters of the Weibull distribution allows the model to 
be  adapted  to  different  scenarios,  for  example,  the  growth  or  reduction  of  risks  over  time 
depending on the security measures taken.

Growing  threat  scenarios  imply  an  increase  in  probability  due  to  the  accumulation  of 
vulnerabilities in the system. This requires continuous improvement of security mechanisms. Risk 
mitigation scenarios show the effectiveness of security measures that reduce the likelihood of an 
attack.  This  is  achieved  through  regular  software  updates  and  the  introduction  of  new 
technologies. Mathematical models not only predict threats but also detect anomalies in network 
traffic, which are major indicators of deviations from the normal system of operation [12].

Anomaly detection based on traffic characteristics allows you to respond quickly to potential 
threats.  This reduces risks and increases system reliability.  The use of probabilistic models for  
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anomaly assessment allows you to integrate existing data and knowledge about the system to 
accurately predict deviations.

Machine learning algorithms are used to estimate the probability of an anomaly, which has lost  
various traffic characteristics, such as data volume, response time, and request frequency.

Continuous improvement of anomaly detection models and algorithms is essential to maintain a 
high level of ITS security. This allows for adaptive risk management and minimization of certain  
threats.

The main challenges in the field of ITS cybersecurity are:

 A high number of IoT devices.
 Real-time processing of big data.
 Vulnerability to DDoS attacks and unauthorized access. Let’s take a closer look at the above 

challenges [13, 14].

2.1. Vulnerabilities of IoT devices

The growing number of IoT devices is leading to a significant increase in vulnerabilities in ITS.  
Every device connected to the network becomes a potential entry point for attackers. Many of 
these devices have limited security resources,  making them easy targets.  Typically,  IoT device  
manufacturers are more focused on functionality and usability than security. This results in devices 
that often have outdated or non-existent security mechanisms such as encryption or authentication 
[15–17].

Many IoT devices do not support regular software updates, leaving them vulnerable to hacker 
attacks. The lack of uniform security standards for IoT devices makes it difficult to implement 
effective security measures. Each manufacturer of IoT devices implements its approaches to cyber 
defense, which leads to fragmentation and an overall reduction in security.

2.2. Processing big data in real-time

Processing large amounts of data in real-time is critical for modern ITS and requires significant 
computing  resources  and  efficient  algorithms  to  ensure  a  quick  response  to  potential  threats.  
Sophisticated cryptographic methods are required to ensure the confidentiality and integrity of 
data, which in turn puts an additional burden on intelligent systems, especially in real-time data 
processing.

Balancing security and performance is another challenge. The use of complex cryptographic 
methods reduces processing speed, which is unacceptable for many critical applications.

2.3. Vulnerability to DDoS attacks and unauthorized access

DDoS attacks remain one of the most common threats to ITS. They can be extremely large-scale,  
using thousands or even millions of zombie devices to generate powerful traffic impacts and lead to 
the shutdown of critical services, with significant consequences for business and society.

Effective protection against DDoS attacks requires the implementation of specialized solutions, 
such  as  continuous  monitoring  and  analysis  of  traffic,  traffic  filtering,  the  use  of  cloud-based 
security services, and other methods.

The threat of unauthorized access also remains a concern for many ITSs. Hackers can use a 
variety  of  methods,  such  as  password  guessing,  exploiting  software  vulnerabilities,  or  social 
engineering,  to gain access to an intelligent transport system. To prevent unauthorized access, 
comprehensive  security  measures  should  be  used,  including  multi-level  authentication,  data 
encryption, regular software updates, and cybersecurity training for staff.

Real-time  threat  analysis  is  critical  to  minimizing  risks.  This  is  achieved  by  combining 
predictive  models  with  network  traffic  monitoring  mechanisms.  However,  for  maximum 
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effectiveness, it is necessary to integrate these models with multi-factor analysis that takes into 
account both the current state of the system and the probability of future threats.

To  improve  the  efficiency  of  security  systems,  it  is  advisable  to  use  multivariate  analysis 
methods.  The  use  of  probabilistic  models  also  opens  up  the  possibility  of  automating  threat  
response processes. For example, when a certain probability threshold is reached, the system can 
automatically  activate  response  measures,  such  as  blocking  suspicious  traffic  or  notifying 
operators.  This  significantly  improves  the  efficiency of  ITS operations,  minimizing the  risk  of 
human error.

Thus, the probability functions of threats and anomalies are fundamental elements for building 
reliable and safe intelligent transport systems. The following sections describe these approaches, 
their mathematical foundations, and examples of real-world applications.

3. Presentation of the main material

In today’s world, ITS plays a key role in ensuring the efficient operation of transport infrastructure,  
improving road safety, and reducing negative environmental impact. Through the integration of 
IoT, big data, and artificial intelligence, ITS can process huge amounts of information in real-time, 
enabling traffic  optimization,  road condition monitoring,  and interaction between vehicles  and 
infrastructure.  However,  the  high  dependence  on  digital  technologies  makes  these  systems 
vulnerable to cyberattacks, technical failures, and network anomalies. For a detailed understanding 
of the principles of ITS functioning and approaches to their protection, it is advisable to consider 
the Model of Intelligent Transportation System.

The intelligent transport system model consists of three key components: the ITS Architecture 
Level, the Integrated Management Level, and the ITS protection levels. The model of an intelligent  
transport system is shown in Fig. 1.

An intelligent transport system consists of a multi-level architecture that integrates transport 
infrastructure, digital technologies, and users. The main modules of the ITS architectural layer are  
the Physical Level, the Communication Level, and the Computational Level.

Figure 1: Model of Intelligent Transportation System

The physical layer is the foundation of the ITS architecture and includes road transport 
infrastructure  such as roads, bridges, tunnels, traffic lights, parking meters, sensors, and IoT 
devices [18]. Equipment at this level collects data on traffic flows, road surface conditions, weather 
conditions, etc.
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IoT devices are key elements of the physical layer and provide continuous monitoring and data 
transmission:

 Traffic sensors detect the intensity and speed of traffic flows.
 Weather  sensors  detect  environmental  conditions  such  as  temperature,  humidity,  and 

precipitation that affect road safety.
 GPS trackers provide accurate positioning of vehicles in real-time.
 Video cameras analyze the traffic situation, detecting traffic violations or emergencies.

The physical layer not only collects data but also actively interacts with other layers of the 
system.  For example, traffic sensors and traffic lights change the traffic lights in real time 
depending on the traffic volume, and V2I (Vehicle-to-Infrastructure) technologies provide vehicles 
with data on the traffic situation, accidents, or speed limits.

The main challenges of the physical level are:

 Reliability of IoT devices, which must operate stably even in difficult weather conditions or 
in the presence of high traffic loads [19].

 Thorough real-time monitoring.
 The physical layer is vulnerable to physical attacks, such as damage to sensors or malicious  

access to equipment.

This layer is the basic component for collecting data that is then analyzed at the integrated 
management layer,  namely: sensor data is transmitted to the communication layer,  where it  is 
processed; video streams from cameras are analyzed at the analytical layer to detect violations; the 
collected data helps the management layer make decisions on traffic optimization or emergency.

The communication  layer  ensures  data transfer  between  all components  of  the intelligent 
transport system. The goal of this layer is to organize efficient, reliable, and secure information 
exchange between physical devices, computing centers, and users and includes wireless protocols  
(Wi-Fi, 5G, V2X), fiber-optic communication lines, and satellite systems [20]. This layer provides 
low latency and reliable real-time data exchange and is responsible for ensuring that data from 
traffic lights, motion sensors, and vehicles is transmitted in real-time for processing and analysis.

The  communication  layer  integrates  various  technologies using  modern  communication 
protocols, such as:

 V2X (Vehicle-to-Everything) protocols for the exchange of data between vehicles (V2V), 
vehicles and infrastructure (V2I), pedestrians (V2P), and cloud platforms (V2C).

 5G provides high bandwidth, minimal latency, and stable communication even in congested 
networks, which is critical for transmitting video from surveillance cameras or coordinating 
traffic in real time.

 The  use  of  fiber-optic  networks  and  wireless  devices  for  high-speed  data  transmission 
between large data centers and servers.

The  communication  layer  faces  many  challenges,  including  delays  in  data  transmission; 
ensuring that data transmitted over the network is protected from interception, tampering, or loss; 
supporting a system consisting of different types of devices and communication protocols that may 
have different technical standards, etc.

The communication layer is critical to the operation of the entire system, as, without reliable  
communication, coordination between vehicles, infrastructure, and control centers is impossible. It 
provides the basis for the other layers of the architecture, such as the analytics and control layers.  
For  example,  fast  and  accurate  data  exchange  allows  machine  learning  algorithms  to  detect 
anomalies in traffic or predict congestion, and users to receive up-to-date information about traffic 
conditions.
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The Computational Level provides the computing power of the intelligent transport system, which 
includes  servers,  cloud  platforms,  and  data centers where the collected  data is  processed  and 
analyzed;  it  is  responsible  for  executing  artificial  intelligence  algorithms to  predict  traffic  and 
manage  resources.  For  example,  data  from sensors,  such  as  vehicle  speed,  number  of  cars  at 
intersections,  or  road  surface  conditions,  are  sent  to  computing  platforms,  and  distributed 
computing systems quickly analyze the information, transmitting the results to the analytical level 
or directly to control devices (e.g. traffic lights).

At the computing level, machine learning and artificial intelligence algorithms are implemented 
to help analyze traffic  flows,  predict  congestion,  and detect emergencies and deviations in the 
system’s functioning.

The  computing  layer  plays  the  role  of  a  link  between  the  physical,  communication,  and 
analytical layers, receives data from the physical layer through the communication layer, processes 
it, and transmits the results for further analysis.

3.1. Integrated management level

This component consists of the following modules: Analytical level and Management and 
Integration level.

The analytical level analyses big data collected from sensors and communication systems and 
uses machine learning algorithms to analyze and interpret the collected data, detect anomalies, and 
support decisions to optimize transport processes. This level uses advanced Big Data technologies 
and machine learning algorithms. Systems at this level are capable of processing both structured 
and unstructured data, such as video streams, sensor signals, and event logs. Clustering, prediction, 
neural network, and anomaly detection algorithms help:

 Analyse  historical  data  and  current  conditions  to  predict  scenarios  such  as  traffic 
congestion and journey times.

 Adapt the system’s behavior to the current conditions.
 In finding optimal solutions for the distribution of vehicles, traffic lights, parking spaces, 

and other elements of transport infrastructure.
 Detect  deviations  from normal  system behaviour,  such  as  suspicious  network  activity, 

equipment failures,  anomalies in traffic lights power consumption, or inconsistencies in 
traffic flow.

 Model possible scenarios and assess risks associated with various factors, such as weather  
conditions, accidents, or cyberattacks.

The analytical layer works in close connection with the computing layer, which provides it with 
processed data, and with the management layer, which uses the results of the analysis to make 
decisions. For example, the traffic forecast generated by the analytical layer can be transmitted to 
traffic light control systems to dynamically change their operation. Analytics results can also be 
sent to the user interface to provide drivers with up-to-date information about the traffic situation.

The management and integration layer provides the interaction between users, control systems, 
and other infrastructure components and ensures the strategic management of the entire transport 
network in real-time. Its main function is to coordinate the work of all  system components to  
achieve optimal efficiency, safety, and convenience.

The management and integration layer collects data from the  other layers (physical, 
communication, computing, and analytical) and uses this data to make decisions about optimizing 
the system, which is  then passed on to the other layers for execution. For example, data from the 
analytical layer that indicates an increase in traffic in a particular area can be used to redirect traffic 
through alternative routes.

The management layer provides integration with other important infrastructure elements:
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 For energy systems,  we manage charging stations for  electric  vehicles,  monitor  energy 
consumption, and plan the operation of low-carbon vehicles.

 For the public safety system, data is transmitted to emergency response services in the 
event of accidents or natural disasters.

 For the environmental system, the level of emissions of pollutants such as nitrogen oxides  
(NOx),  carbon  dioxide  (CO2),  and  particulate  matter  from  vehicles  is  monitored  and 
measures are taken to minimize their environmental impact.

The level of governance and integration is critical to creating reliable and flexible transport 
systems that can operate efficiently even in complex urban environments.

3.2. Levels of ITS protection

Since  intelligent  transport  systems  are  vulnerable  to  cyberattacks  and  technical  failures,  it  is  
necessary to provide multi-level protection covering all components of the model. The main levels  
of protection:

1. Physical Layer Protection (Physical Layer Protection) ensures the security of equipment 
and physical sensors; and provides access to equipment only for authorized persons using 
surveillance cameras and other physical security features.

2. Network  Protection  uses  firewalls,  VPNs,  traffic  encryption,  and  protection  of 
communication protocols (for example, V2X). The main goal is to prevent unauthorized 
access to the network and reduce the risk of DDoS attacks.

3. Data  Protection  provides  data  encryption,  user  authentication,  and  access  control;  and 
minimizes the risks of data leakage and privacy breaches.

4. Protection of Computer Systems (POCS) involves regular software updates, monitoring of 
server  activity,  and  the  use  of  intrusion  detection  systems  (IDS).  Cloud  computing  is  
protected through access control and backup policies.

5. Monitoring and detection of anomalies uses algorithms to analyze traffic in real-time to 
detect anomalies and respond to suspicious activity.

To analyze risks and ensure the stability of ITS operations, it is important to use mathematical 
models that allow you to estimate the probability of threats and anomalies. These models are based 
on probabilistic approaches that take into account both historical data and current observations, 
making them indispensable for predicting potential problems.

One of the key tasks is to estimate the probability of a cyberattack on ITS at a certain point in  
time. This task is solved with the help of a threat probability function that takes into account the 
dependence of risks on time. The use of an exponential distribution or its generalizations, such as  
the Weibull distribution, allows the modeling of both fixed and variable risks, including those that 
increase  due  to  the  accumulation  of  vulnerabilities  in  the  system or  decrease  due  to  security 
measures.

Another important aspect is the modeling of anomalies in network traffic, which is the basis for 
timely  threat  detection.  The  anomaly  probability  functions  are  based  on  machine  learning 
algorithms and use Bayes’ theorem to estimate the probability of anomalies based on current traffic 
characteristics. This approach takes into account both the normal behavior of the system and its 
deviations that indicate potential problems.

The integration of these two approaches into the monitoring process allows you to create a 
multi-level security system that takes into account both global risks (e.g. cyberattacks) and local 
network  anomalies.  This  is  especially  important  to  ensure  security  in  the  face  of  the  ever-
increasing complexity of ITS and the growing number of connected devices.

Mathematical probability models allow not only to predict potential threats but also to assess  
the effectiveness of security measures. For example, when implementing new security protocols, it  
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is possible to analyze how the probability of attacks and anomalies changes over time, which is 
critical for adaptive risk management.

The use of probabilistic models also opens up the possibility of automating threat response 
processes.  For  example,  when  a  certain  threshold  of  probability  is  reached,  the  system  can 
automatically  activate  response measures, such as blocking suspicious traffic or notifying 
operators. This greatly improves the efficiency of ITS, minimizing the risk of human error.

To model the probability of a cyberattack P(T) on a transport system over a certain time T, one 
can use, for example, an exponential distribution, which is often used to describe the time between 
random events such as attacks or system failures.

The probability function has the form:

P(T )=1−e−λT , (1)

where  λ > 0 is the intensity frequency)  of cyberattacks, which reflects  the average number of 
attacks per unit of time; T ≥ 0 is the time for which the probability of an attack is considered.

P(T)  increases as  T  increases since the probability of a cyberattack increases over time. The 
coefficient λ determines how fast P(T) grows. The larger λ, the more frequent the attacks are, and 
thus the higher the probability of an attack occurring in a fixed time T.

If  the  attacks  have  different  intensities  over  time,  a  generalization  can  be  used,  such  as  a  
function based on the Weibull distribution. This function is a generalized model for describing the 
time to an event that has a variable intensity over time.  So the probability function for cyber 
attacks looks like this:

P(T )=1−e−(λT )k , (2)

where  λ > 0 is a scale parameter that  reflects the basic intensity of attacks;  k > 0 is  a shape 
parameter that takes into account the dependence of the frequency of attacks on time (for example, 
the risk increases over time).

Interpretation of the parameter k:

• When k = 1, the model reduces to an exponential distribution, where the intensity of attacks 
remains constant.

• When k > 1, the intensity of attacks increases over time. This can model a situation where 
threats accumulate or cybercriminals become more active over time.

• When  k < 1,  the intensity of  attacks decreases over  time,  which may reflect  a  situation 
where cyber defense or threat mitigation efforts reduce the likelihood of attacks.

Let’s take an example of situations that may arise when changing the parameter k:
Situation 1, when the parameter k = 1, the Weibull distribution model reduces to an 

exponential distribution:

P(T )=1−e λT , (3)

where λ > 0 is the attack intensity that remains constant over time. A constant attack intensity (λ) 
means that the risk does not increase or decrease over time.

The ITS traffic monitoring system on the highway is equipped with a standard set of network 
devices,  such as cameras and  motion sensors. All of these devices have the usual levels of 
protection that are not updated but also do not have obvious vulnerabilities, i.e. the presence of 
self-driving  cars  that  are  connected  to  the  network  but  operate  at  a  standard  level  of  cyber 
protection; traffic management systems with fixed authentication rules, where the risk of attacks is 
stable. This is a typical scenario for systems with fixed security parameters,  where there is no 
accumulation of vulnerabilities or improvement of protection mechanisms.
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The function P(T) linearly approaches 1 as T grows, which means that the more time passes, the 
more likely it is that an attack will occur. In this case, the probability of cyberattacks remains 
constant, as the intensity of hacking attempts does not depend on time.

Thus, the scenario with  k=1  is a basic model for situations where there are no complex risk 
dynamics over time. This is a good choice for systems that are stable in terms of complexity and 
security.

Situation 2, when the parameter k>1, i.e. the scenario of an increasing threat.
The intelligent transport system operates in an environment where risks are increasing due to 

the accumulation of vulnerabilities, which is what is happening:

 Increase in connected devices and IoT sensors without proper security updates.
 An increase in the amount of data on the network (which creates new points for potential  

attacks).
 Adaptation of attackers to existing security mechanisms.

In  this  case, the probability of  an  attack increases  over time as  the system becomes  more 
vulnerable. To model such a scenario, you can use a Weibull distribution with k > 1, which takes 
into account the increasing intensity of attacks. The probability function in this situation looks like  
this:

P(T )=1−e−(λT )k , k>1. (4)

This situation is possible if the traffic management system in a large metropolis has not been 
updated for several  years.  Every month,  the likelihood of  cyberattacks on servers that  control  
traffic lights and exchange data with vehicle autopilots is increasing.

Situation 3, when the parameter k < 1, i.e. the risk reduction scenario.
Let’s consider a situation where an intelligent transport system is constantly improving its 

protection mechanisms, i.e:

 Regular updates of ITS software.
 Implementing machine learning algorithms to detect anomalies in real time.
 Installing additional cybersecurity measures (firewalls, encryption, etc.).

In this case, the risk of cyberattacks decreases over time due to these measures. To model such a 
scenario, you can use a Weibull distribution with k < 1, which takes into account the decrease in 
attack intensity. The probability function looks like this:

P(T )=1−e−(λT )k , k<1. (5)

This situation is possible if the intelligent transport system and software of self-driving cars are 
regularly updated and algorithms for detecting suspicious activity in the network are improved. As 
a result, the likelihood of successful attacks is significantly reduced every month.

The mathematical formula (1) is based on the exponentially distributed time between events 
(cyberattacks) and is used to assess the reliability and security of a system. It allows us to predict  
the probability of a successful attack depending on the time and intensity of the attacks.

Imagine a situation in which an ITS serving a large metropolitan area is subject to a cyberattack, 
and  the  probability  of  a  cyberattack  increases  over  time  if  the  system  is  operated  without 
intervention or updates. You can graphically visualize the probability function of the time to a 
cyberattack. First, let’s write a Python code to visualize this function:

import matplotlib.pyplot as plt 
import numpy as np
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# Define the parameters for the formula 
lambda_value = 0.1
T = np.linspace(0, 50, 400)
P_T = 1 - np.exp(-lambda_value * T) 

# Create the plot

plt.figure(figsize=(8, 6))
plt.plot(T, P_T, label=r’$P(T) = 1 - e^{-\lambda T}$’, colour=‘blue’) 
plt.title(‘Probability of Cyber Attack Over Time’)
plt.xlabel(‘Time (T)’) 
plt.ylabel(‘Probability $P(T)$’) 
plt.grid(True)
plt.legend() 
plt.tight_layout()

# Save the plot to a file
plt.savefig("/mnt/data/probability_formula_plot.png") plt.show()

The X-axis displays the time (Time (T)) elapsed since the start of the system operation and 
displays time in the range from 0 to 50 (time units can be seconds, hours, or days, depending on the 
system context). This is an independent variable that defines the point in time before which the 
probability of an attack is estimated.

The Y-axis represents the probability that a cyberattack will occur by time T. At the beginning, 
P(T) = 0 means that the probability of an attack is zero.  P(T) = 1  means that the probability of a 
cyberattack is almost 100% (given a sufficiently long time).

The parameter λ = 0.1 (attack intensity) reflects the average frequency with which cyberattacks 
occur (Fig. 2).

Figure 2: Probability of cyber attack over time

The graph shows the dependence of the probability of a cyberattack on time. Initially, P(T) is low, 
as the probability of an attack in a short time is negligible. As T increases, the probability of a  
cyberattack increases and asymptotically Approaches 1.
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Analyzing the above graph allows you to assess the risks to the system and identify critical time 
points when security measures need to be taken.

The  probability  density  function  of  the  Weibull  distribution  for  ITS  has  the  following 
mathematical expression:

f (T )=k λkT k−1+e−(λT )k , (6)

where f(T) shows how likely an attack is at a given time T.
Thanks to the k parameter, the model can adapt to different scenarios (increasing or decreasing 

risks over time).
The expected time to attack can be calculated as the average time between attacks:

[ ] = 𝐸 𝑇 𝜆−1 × 𝛤(1 + 1/k), (7)

where Γ() is the gamma function.
To ensure effective analysis of the state of an intelligent transport system, it is important not 

only to model the likelihood of threats but also to assess the likelihood of anomalies that may 
indicate potential  cyberattacks  or  malfunctions. Anomalies  in network traffic are important 
indicators of deviations from normal behavior, and their detection allows for a quick response to 
risks.

For this purpose, machine learning algorithms based on probabilistic models can be used. Let 
X(t) be  a set of network traffic characteristics at time t. Then the probability of an anomaly 
P(Anomaly∣X(t)) can  be  described  based  on  Bayes’  theorem,  which  allows  the  integration  of 
available data and knowledge about the system.

Another important aspect is  the use of  machine learning algorithms to detect  anomalies in 
network  traffic. Let  X(t) be a set of network traffic characteristics at time t. The anomaly 
probability function can be defined as follows:

P (Anomaly|X (t ))=
P (X (t )|Anomaly )×P( Anomaly )

P(X (t ))
(8)

where P(Anomaly∣ X(t)) is the probability that the anomaly occurs given the observed 
characteristics of X(t); P(X(t)∣ Anomaly) is the probability of observing the characteristics of X(t) 
if the presence of an anomaly is known; P(Anomaly) is the a priori probability of an anomaly (the 
probability  of  an  anomaly  without  taking  into  account  X(t);  P(X(t)) is the total probability of 
observing the characteristics of X(t).

Model (8) allows us to estimate the probability of an anomaly based on the characteristics of 
network traffic X(t).

The total probability of observation X(t) is defined as:

P(X (t ))  = 

P(X (t )|Anomaly )×P(Anomaly )+P(X (t )|−Anomaly )×P(−Anomaly )
(9)

where  P(–Anomaly) = 1 – P(Anomaly) is the probability of no anomaly;  P(X(t)∣ –Anomaly) is the 
probability of observing X(t) in the absence of  an anomaly.  Thus,  the  formula  for  calculating 
P(Anomaly∣X(t)) is:

P (Anomaly|X (t )) =
P(X ( t )∨Anomaly )×P( Anomaly )

P(X ( t )∣ Anomaly )×P( Anomaly )+P(X ( t )∣−Anomaly )×P(−Anomaly )
(10)

Thus, model  (10) allows us  to estimate the  probability of an  anomaly based  on the 
characteristics of network traffic X(t).
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Consider an intelligent transport system (ITS) that exchanges data between vehicles, roadside 
sensors,  and a central  control  server.  Under normal conditions,  the traffic between the system 
components has stable characteristics such as data volume, request frequency, and response time.  
However, anomalies, such as a sharp increase in the number of requests or a change in packet 
structure, can indicate potential cyberattacks or system malfunctions.

To  estimate  the  probability  of  an  anomaly  P(Anomaly∣  X(t)),  a  set  of  network  traffic 
characteristics X(t) is used, such as:

 X1(t) is the amount of data per unit of time.
 X2(t) is the average response time.
 X3(t) is the frequency of requests per device.

Suppose that the system has recorded the following traffic characteristics at time t:

 X1(t) = 500 MB/s (a significant excess of the average data volume).
 X2(t) = 5 seconds (increase in response time).
 X3(t) = 2000 requests/second (abnormally high request frequency). 

Determined based on historical data:

 P(X(t)∣ Anomaly) = 0.9 (such characteristics often occur in anomalies).
 P(Anomaly) = 0.01 (a priori probability of anomaly is low).
 P(X(t)) = 0.02 (the total probability of observing such characteristics).  Let’s  calculate the 

probability of an anomaly using formula (8):

P (Anomaly|X (t ))=0.9×0.01
0.02

=0.45 .

The probability of an anomaly in the system is 45%. This is high enough for the system to  
activate response protocols, for example:

 Blocked suspicious traffic.
 Notified the operators of the potential threat.
 Performed an additional network check.

This example demonstrates how the anomaly probability function helps an intelligent transport 
system detect suspicious activity in network traffic. The use of such models allows ITS to provide high 
reliability and security.

Conclusion

Intelligent transport systems are becoming increasingly complex systems where the processing of 
large  amounts  of  data  in  real-time  is  critical.  An  important  component  in  automating  threat 
response  processes  is  coordination  between  different  ITS  components,  such  as  traffic  control 
centers, self-driving vehicles, and infrastructure sensors. The use of machine learning algorithms 
and Bayes’ theorem allows for the identification of deviations from normal system behavior, which 
is critical to preventing cyberattacks.

Consistency of data and cybersecurity protocols is a key factor in system reliability. Modern 
approaches to ITS cybersecurity involve the use of hybrid models that combine statistical methods,  
machine learning algorithms, and predictive analysis. Further research should focus on improving 
these  mathematical  models  and  algorithms  for  even  more  effective  risk  management  and 
cybersecurity in ITS.
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