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Abstract
Contemporary demands for computational complexity and fault tolerance have led to the development of 
different approaches toward building replicated and clustered environments. The foundational aspect of  
these  systems  is  a  set  of  underlying  consensus,  management  mechanisms,  and protocols.  It  is  quite 
common to have a centralized management plane responsible for deployment, task assignment, and result  
aggregation to avoid complexities intrinsic within a distributed consensus paradigm. However, the fault  
tolerance and trust decentralization capabilities of such an approach remain restricted. One of the most 
prominent  examples  of  a  distributed  system  is  blockchain  technology  and  its  off-chain  networks 
introducing  capabilities  for  managing  and  coordinating  the  assignment  of  computational  tasks.  
Blockchain  has  its  limitations,  mainly  related  to  response  times  and  throughput,  as  it  necessitates 
consensus  for  every  action  and  interaction.  A  lightweight  cluster  coordination  and  consensus 
management framework, the Replica State Discovery Protocol (RSDP), aims to provide rapid coordination 
of nodes. RSDP defines an interface for arbitrary logical extension of distributed computation modules 
and establishes a set of rules for nodes to follow to achieve consensus within the network. Nonetheless,  
RSDP was initially designed as a protocol for private coordination,  and in its  conception, it  was not  
constructed with Byzantine fault tolerance (BFT) in mind. The purpose of this paper is to advance the said  
coordination  method  to  incorporate  practices  that  allow  for  secure  decentralized  computation 
coordination even in the presence of malicious actors. Firstly, this article defines methods to achieve strict  
state transitions that  avoid trust  exploitations and flooding techniques.  Secondly,  this  paper presents 
multiple approaches toward building strict quorum state reducers within RSDP, which allow to initiation 
of BFT-compliant operations. Thirdly, an additional set of new mechanisms and methods are described in  
the context of RSDP to improve both efficiency and reliability. Finally, we propose the generalized BFT 
model  for  RSDP,  which leverages blockchain as  a  trusted source and enables  the establishment of  a 
completely decentralized public coordinated computing environment.
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1. Introduction

The rising popularity of Internet technology has been rapidly increasing over the past few decades.  
Nowadays, online interactions between remotely located parties have become quite common in 
both business and governance sectors. Distributed systems serve as a technical foundation for such 
operations [1, 2]. The demand led to numerous research and engineering efforts to improve the  
security, reliability, and availability characteristics of these systems [3].

One of the primary aspects that define architectural complexity is the coordination mechanism. 
Depending on the nature of managed nodes, the task of cluster management tends to be nontrivial  
and requires custom solutions to achieve state synchronization, failover, and availability. In that 
context,  there  are  two  approaches  based  on  the  type  of  managed  services:  replication  and 
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clusterization, which respectively correspond to stateless and stateful endpoints united under a 
single abstract amalgamation [4–11].

The replication approach applies to networks responsible for managing a set of homogeneous 
multiagent  systems [4–6].  Such installments  are  characterized  by the  interchangeability  of  the 
constituents; that is, every participating node can be substituted by another without disrupting the 
overall  performance  or  operational  stability  of  a  distributed  system.  In  that  case,  internal 
architecture is commonly composed of an external-facing request forwarder and an internal pool of 
replaceable  nodes  that  perform  the  desired  computation.  A  monitoring  solution  continuously 
probes the active nodes, and upon detection of any inconsistency or response delays, signals the 
control plane to simply redeploy the faulty instance.

On the other side, clusterization refers to a method of organizing, managing, and maintaining 
coordination between a set of heterogeneous multiagent systems. Clustered environments are often 
comprised  of  either  a  set  of  stateful  nodes  or  nodes  responsible  for  handling  unexchangeable 
procedures [9–11]. The said approach requires significant engineering effort to effectively manage 
request distribution and consistent operation within the system. In that case, it is quite common to 
represent the interactions in two abstract layers: coordination and execution.

The  coordination layer  taxonomy includes  decentralized  and  centralized  systems,  providing 
publicly  and  privately  governed  mechanisms  respectively.  Centralized  systems  are  also 
characterized by a single coordination responsibility service, where a server or a group of servers 
oversee  and  reconcile  operations  within  a  network  under  regulated  control  [12,  13].  In  turn, 
decentralized systems represent a network of participating peers coordinated through a consensus 
mechanism. We could further divide these into classes based on their adherence to the Byzantine 
fault tolerance principles, which outline the inherent complexities associated with open networks.

Having said that, the Replica State Discovery Protocol (RSDP) is the first consensus framework 
developed for coordination of the clustered and replicated decentralized systems [14, 15]. It defines 
the abstraction layers and foundations, upon which a plethora of arbitrary computational logic 
could be implemented to achieve lightweight, consistent, and coordinated execution management 
without requirements for a central responsible entity.

One of  the prominent examples of  contemporary decentralized technologies compliant with 
BFT is the blockchain [16–19]. Blockchain has recently become widespread, growing in interest 
rates and demand from its substantial user base worldwide. This technology defines a logical basis 
for verifiable public asset transfer and computation crucial to establishing a secure transactional 
environment. However, it is quite limited in its scalability and overall throughput, which is an area  
of active research [20–23].

Initially, RSDP was designed as a decentralized coordination solution to be used within private 
permissioned  networks.  The  protocol  assumes  that  a  secure  permissioned  environment  is  
provisioned for the cluster. Its primary role is to rapidly reconcile cluster-wide state and, as an  
implication,  dynamically  provide  all  the  necessary context  information for  cluster  members  to 
perform their  procedures.  RSDP  was  not  designed  to  withstand  any  potential  state  transition 
violations or malicious interactions and thus is not compliant with the BFT requirements.

The purpose of this article is to advance RSDP capabilities to the 2.0 version, which introduces a 
secure coordination layer required for both unstable and malicious environments. To achieve that,  
firstly, this article introduces a set of new phase transition controls to restrict possible abuse of 
participating nodes. In addition, this paper outlines a new consensus quorum approach defined on 
the state reducers level. The mechanisms allow to improve protocols’ resistance capabilities against 
both network losses and potential outlying coordination impact. Lastly, this article introduces a 
novel  approach  toward  open  decentralized  computation  coordination  based  on  RSDP  and 
blockchain technologies [24].
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2. Overview of the replica state discovery protocol

In its basis, RSDP relies on the communication layer responsible for handling message-sending and 
receiving procedures. Originally, the protocol defined an abstraction layer built on top of AMQP,  
called  a  Simulated  Local  Area  Network  (SLAN).  This  abstraction  allows  to  simplify  the 
development of cluster-wide network protocols and is described in its dedicated article [14].

The SLAN logical topology is shown in Fig. 1:

Figure 1: SLAN network topology

The SLAN network topology is comprised of participating nodes, their respective queues, and a 
central coordination entity responsible for initiating and managing communication channels. That 
is,  a central coordination is an AMQP server, where one of the most popular and widely used 
implementations is RabbitMQ [25–27].

In  its  paradigm,  the  communication  process  is  designed  to  be  reliable,  scalable,  and 
asynchronous. The message producer does not address the recipient but rather the queue or a set of 
queues  when  initiating  a  message-passing  procedure.  In  the  case  of  SLAN,  this  capability  is 
leveraged to both establish a broadcast basis and a direct message sending by assigning anonymous 
dynamic queues to each peer individually.

To begin with, let us define the core entities of SLAN:

 Nodes: N={n1 ,…,n|N|},  where each  n∈ N  is a network participant that can send and 
receive messages.

 Messages: M={m1 ,…,m|M|}, each m∈ M  is a data payload transmitted among nodes.

 Queues: Q={q1 ,…,q|Q|} with a bijection  Q :N→Q.  Each node  n has a unique queue 

Q (n ) holding messages before consumption.

In the context of SLAN, the individual queues are designed to be transient and accessible only  
within the confines of the established connection between the peer and the AMQP server. That 
approach  allows  for  simplified  dynamic  handling  of  joining  nodes  but  also  lacks  durability 
guarantees for messages.

The local  area networks provide two basic  communication operations:  broadcast  and direct 
message passing. Having these operations allows us to build advanced custom protocols. However, 
it is quite a challenge to provide these primitives within distributed systems that span multiple 
networks or even regions. By leveraging AMQP capabilities, SLAN allows for establishing such a 
basis  efficiently  and  securely  by  leveraging  direct  and  fanout  exchange  types  defined  in  the 
underlying protocol.
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We can define the routing structures as follows:

 Exchanges: E={Efanout , Edirect },  where  specific  exchanges  route  messages:  Efanout 

broadcasts to all queues, Edirect routes by a key.

 Fanout Bindings: ∀ q∈ Q , (Efanout , q )∈ Bfanout, where every queue is bound to Efanout.

 Routing Keys: K  is the set of keys,  and  R :N→K  is injective,  where each node  n is 
assigned a unique key R (n ) for direct routing.

 Direct Bindings: (Edirect ,Q (n ) , R (n ))∈ Bdirect for each n∈ N , where the direct exchange 

maps each key R (n ) to the corresponding queue Q (n ).

Within AMQP, routing keys play a pivotal role in its ability to establish complex interaction 
schemas  between  exchanges  and  queues.  For  instance,  the  protocol  defines  ways  to  establish 
pattern-like  routing,  where  a  queue  will  receive  each  message  that  was  successfully  matched 
against a regular expression. AMQP also defines even more advanced routing patterns, such as 
headers, providing even greater flexibility in network management. However, since the goal of 
SLAN is to provide basic primitives, direct matching against the key is sufficient.

The SLAN supports the following operations:

 Broadcast Operation: f broadcast (ns ,m) enqueues m into all Q (n ) , n∈ N , where a broadcast 

from ns via Efanout delivers m to every node.

 Direct Send Operation: f sendDirect (ns , nt ,m) enqueues  m into  Q (nt ), where a direct send 

uses Edirect and R (nt ) so that only nt’s queue receives m.

 Consumption Operation: f consume (n ,m ) such that if (n ,m )∈ C , then m is removed from 

Q (n ),  where  C⊆ N ×M  is a consumption relation such that if  (n ,m )∈ C ,  it  indicates 
node n has consumed message m (i.e., removed it from its queue). Once a node n processes 
m, it’s marked consumed and dequeued.

The simulated network could be perceived as an integral system that has its state and a set of  
internal processes that actively modify it. This approach allows us to gain a holistic understanding 
of  the  observed  Decentralized  Coordination  Network  (DCN)  built  on  top  of  the  underlying 
communication media.

State and its transitions could be defined in the following way:

 Broadcast Transition: δ broadcast (S ,ns ,m) adds m to all Q (n ). This transition signifies state 

change during the call of f broadcast (ns ,m).
 Direct Send Transition: δdirect (S ,ns , nt ,m) adds m to Q (nt ). This models the state change 

when a message is sent directly with f sendDirect (ns , nt ,m).
 Consume Transition: δconsume (S ,n ,m ) removes  m from  Q (n ) and  adds  (n ,m ) to  C , 

representing a state change when a node finishes processing a message.

The reliability management, congestion control, message persistence, and network tunneling 
are  devolved  to  the  SLAN  layer.  This  abstraction  allows  us  to  simplify  both  the  interface's  
complexity and functional concerns within RSDP, making it more digestible and robust. Further 
research could include finding different approaches towards establishing communication media 
between RSDP nodes appropriate for different environments.
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The RSDP phases and interactions are shown in Fig. 2:

Figure 2: RSDP phases and interactions
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The  RSDP cluster  could  modeled  as  a  directed  graph  Gcluster=(V , E ),  where  a  set  of  replicas 

V={v1 , v2 ,…, vn } and  a  set  of  directed  edges  E⊆ V ×V  representing  communication  links 

between nodes form a topology of a distributed system. In such a system, each node has si which is 

the  initial  state  of  the  node  v i and  a  dedicated  mutex  to  ensure  consistency  between  state 
transitions [15].

Let us first define utility functions such as node identifier:  f id (v i)→ id of node v i, derives the 

sender’s address for a given node; metadata extraction f meta (v i)→metadata of node v i, derives the 

initial or meta information for a given node.

Every state mutation operation starts with f acquire (v i) and ends with f release (v i) function calls, to 

lock and release the local state transition mutex respectively. These procedures are necessary to  
guarantee that no two-state mutation functions such as f agg or f update could be executed at the same 
time and interfere with the results of each other.

The “DEBATE” phase includes the following steps:

 Send “HELLO” Messages: each  v i sends a “HELLO” message to its out-neighbors  N
+(v i), 

where:  M hello (v i)=( f id (v i) , f meta (v i)) with a directed message propagation that could be 

denoted as: M hello (v i)
propagated to →N

+(v i).

 Receive “STATUS” Messages: upon receiving M hello, each v j∈ N
+(v i) sends its initial state: 

M status (v j)=( f id (v j) , f meta (v i) , s j).
 Aggregate  States: each  v i aggregates  the  received  states  {s j ∣ v j∈ N

−(v i)} into  a  local 

aggregated state: si
*=f agg status (si ,{M status (v j)∣ v j∈ N

−(v i)})

This process introduces replicas to each other within the system. Its purpose is to share the 
initial configuration or metadata to derive the initial view of the system’s state.

The “SHARE” phase includes the following steps:

 Broadcast  “SHARE”  Messages: each  v i broadcasts  its  aggregated  state  si
* to  its  out-

neighbors:  M share (v i)=( f id (v i) , f meta (v i) , si
*) with  the  directed  message  propagation  as 

follows: M share (v i)
propagated to →N

+(v i).

 Validate and Aggregate: each receiving node v j validates and merges the received state 

using ŝ j
*=f agg share (s j

* ,{M share (v i)∣ v i∈ N
−(v j)})where f agg share extracts state components si

* 

from each M share (v i) and performs operations declared within the reducer to derive a final 

operational state ŝ j
*.

After  validation  and  aggregation  processes  are  finished,  the  local  state  gets  updated  and 
represents a holistic view of the target cluster state. At this point, all the necessary steps were 
taken, and the participating nodes could execute their operations based on the derived states.

The “CLOSE” phase includes the following steps:

 Send “CLOSE” Messages: vk sends a “CLOSE” message containing its state  sk to its out-

neighbors:  M close (vk )=( f id (vk ) , f meta (vk ) , sk ) with directed message propagation denoted 

as: M close (vk )
propagated to →N

+(vk ).
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 Update Internal State: each receiving node  v i removes references to  vk and updates its 

si
'=f agg cl ose (s j , M close (vk )) where  f agg close is  a  function  defined  within  the  reducer  to 

update the internal state si based on incoming records within sk.

This phase is not necessary and is used to introduce dynamic participation handling capabilities for 
RSDP. The process allows to dynamically adjust the cluster state when a subset of nodes departs  
from the network.

3. Reinforcement of the phase transition control

Phase transition control is one of the primary aspects of the protocol’s consistency guarantees. In 
its initial version, RSDP defined mutexes as a main instrument to isolate state manipulation logic 
between phases [15, 28]. Mutexes create so-called critical sections that restrict access to a single  
abstract  execution  entity.  The  approach  allows  for  coordinating  multiple  such  entities,  viz., 
processes, their threads, or asynchronous threads in the case of event-driven architectures.

Nonetheless,  the  defined  transition  restrictions  are  not  sufficient  for  handling  outlying 
operations.  Critical  sections  forbid  parallel  execution  of  the  restricted  code  segments  with 
programmatically  defined  boundaries.  To  enter  the  critical  section  and  leave  it,  the  parallel 
execution entity must acquire and release the mutex, respectively. If there are multiple entry points 
to the critical section and some of them omit the ingress boundary, parallelism and inconsistencies 
are still quite possible.

Having said that, RSDP in its original definition does not verify whether “STATUS” messages 
were received during the “DEBATE” phase or not. The controlling mutex by definition was taken 
before sending the initial “HELLO” message and released after the “SHARE” message was sent. 
That  approach,  while  protecting  against  parallel  processing  of  consistent  sequential  messages, 
allowed for  some delayed messages  to  be  reprocessed after  the  “DEBATE” phase  was already 
finished.

To resolve this issue, a new state control mechanism is proposed leveraging the principles of the 
finite state machine (FSM) [29]. Let us first define a set of possible protocol execution statuses  
G={gINITIAL , gDEBATE , gIDLE , gSHARE , gCLOSE},  representing  associated  zones  with  the  respective 
phases and inter-phase execution states.

In  such  a  machine,  transitions  are  defined  as  a  set  T ,  where  each  transition  tn∈ T  is 

represented by:  tn=(gi , σ n , g j) where  gi , g j∈ G and  σ n is the event that triggers the transition. 

The transition rules could be defined as follows:

 INITIAL → DEBATE: t1=(gINITIAL , σ start , gDEBATE),  triggered by a start  signal  from the 

joining node. The gINITIAL status does not allow the execution of any operations besides the 
initiation of the protocol.

 DEBATE → IDLE: t2=(gDEBATE , σ status agg , gIDLE) triggered when the aggregation from the 

“STATUS”  messages  is  finalized.  The  gDEBATE status  does  not  allow  execution  of  any 
operations besides those within “DEBATE” phase.

 IDLE → DEBATE: t3=(gIDLE , σ hello , gDEBATE), triggered before sending the initial “HELLO” 

message during the “DEBATE” phase. The  gIDLE status does not allow execution of any 
operations besides transition to the next status.

 IDLE → SHARE: t 4=(gIDLE , σ share , gSHARE), triggered before sending or upon receiving the 

“SHARE”  message.  The  gSHARE status  does  not  allow  the  execution  of  any  operations 
besides those within “SHARE” phase.
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 IDLE → CLOSE: t5=(gIDLE , σ close , gCLOSE), triggered upon receiving the “CLOSE” message. 

The  gCLOSE status does not allow the execution of  any operations besides those within 
“CLOSE” phase.

 SHARE → IDLE: t6=(gSHARE , σ share agg , gIDLE) triggered when the aggregation from the 

“SHARE” messages is finalized. The  gDEBATE status does not allow the execution of any 
operations besides those within “SHARE” phase.

 CLOSE → IDLE: t7=(gCLOSE , σ close agg , gIDLE) triggered  when the  aggregation  from the 

“CLOSE” messages is finalized. The  gDEBATE status does not allow the execution of any 
operations besides those within “CLOSE” phase.

Let gi∈ G represent the current. The transition function δ  is defined as: δ (gi , σ )=g j and is used 

to formally change the current execution status. For example, δ (gINITIAL , σ start )=gDEBATE.

Based  on  the  defined  rules,  a  state  transition  matrix  could  be  constructed  that  visualizes 
available operations.

In the following matrix, states are indexed as follows:
1 →gINITIAL

2 →gDEBATE
3 →gIDLE
4 →gSHARE
5 →gCLOSE

Tmatrix=[0 1 0 0 0
0 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0

] (1)

The transition rules thereby forbid the execution of outlying operations and provide additional 
consistency guarantees for the protocol in addition to the already established mutex system. Before 
adding messages to the buffers or executing state mutating operations, the engine now also has to 
verify the validity of its status.

Having  resolved  the  state  transition  inconsistencies,  another  key  aspect  in  stochastic 
environments is to handle infrequent but still possible scenarios. One such scenario is an indefinite 
holding of a mutex due to unforeseen physical or logical interference. Since the protocol engine 
leverages such locks to modify the internal representation of the cluster state, it could potentially  
get stuck if for some reason the mutex was not released.

First, let us define mutex μ a binary variable where:

μ={ 0∧if unlocked
i∧if locked by t h read H i

In that case, μ represents a mutex state and i is an identifier of the thread that locked the mutex.
The mutex can have the following state transitions:

 Lock: μ=0→μ=i (mutex acquired by the thread i).
 Release: μ←0 (mutex available to be acquired again).

Mutex allows isolating resource access between multiple remote cooperating parties that are 
trying to perform a critical operation simultaneously. In that context, a critical section is part of a 
program that ensures mutual exclusion to the shared resource:
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∀ t ,∑
i=1

n

χ i (t )≤1 (2)

where t  is some point in time, n is some threads, χ i (t ): characteristic function; χ i (t )=1 if H i is in 

the critical section at time t , χ i (t )=0 otherwise.
To handle possible inconsistencies and deadlocks, a newer version of the protocol leverages the 

time-based mutexes. Essentially, this type of mutex enters a critical section with a commitment to 
release it within a certain time interval. A timeout-based mutex  μt introduces a timer  xi and a 

timeout τ i. The following state transitions and rules apply to the μt:

 Acquire Mutex: μt=0⟹ μt←i , xi≔ 0.

 Release Mutex: μt=i∧ xi<τ i⟹ μt←0.

 Timeout Exception: μt=i∧ xi≥ τ i⟹ exception raised , μt←0

Such a mutex does not resolve the underlying unexpected issues that led to the deadlock in the 
first place but allows us to detect the issues and react to them. The protocol engine could either go 
into recovery and try to reconcile the execution state or abort all operations and reinitialize itself,  
going through each synchronization phase again, starting with gINITIAL.

4. Status consensus quorum introduction within RSDP

The initial descriptions of RSDP have left uncovered mechanisms of reducers’ internal operation 
consistency. To begin a discussion about the importance of a quorum-based approach for a subset  
of distributed synchronization tasks, let us first define the failure and validity conditions for the 
protocol, its managed nodes, and the system as a whole.

The validity conditions could be evaluated from multiple perspectives and for different abstract 
objects.  Firstly,  there are perspectives of  every node  v i∈ V  within the system  Gcluster=(V , E ) 
defined in the previous sections. The failure condition could also be evaluated from the perspective 
of the Gcluster itself based on different protocol stages.

Let us begin the definition of validity conditions from the perspective of participating nodes. 
The “Local Validity” implies the repeatable results of the aggregation methods. Formally said: v i is 
locally valid if:

∀ t∈ N , f agg share (si
* ,{M share (v j)∣ v j∈ N

−(v i)})= ŝ j
* (3)

This means that repeated aggregator calls on the same data yield the same result. The validity 
implies  determinism and that  the  aggregation function does  not  perform any unexpected side 
effects that would lead to desynchronization.

The other part of the validity conditions from the replica’s perspective describes its relative 
operational  quality  in  comparison  with  other  participants.  The  “Global  Validity” could  be 
described formally as:

f agg status(si ,{M status (v j)∣ v j∈ N
−(v i)})=f agg share(si

* ,{M share (v j)∣ v j∈ N
−(v i)}) (4)

That  could  also  be  expressed  as  si
*= ŝ j

*,  the  locally  aggregated  view of  the  cluster  state  is 
representative and conforms with the holistic representation gained by merging the final states 
from participating nodes.

The perspective of a single node could be limited and thus biased. A simple binary validity 
condition is not indicative within the ambit of a distributed consensus-based system. Hence, the 
validation should be considered as a gauged estimation representing the degree of validity at some 
particular  time  point.  The  first  validation  condition  from  the  system’s  perspective  called 

129



“Transitional System Validity” defines the divergence degree based on the last sharing session of 
aggregated states. The estimation process could be described in the following steps:

 Collect Broadcasted States: S*=si
*⊆ M share (v i)∣ v i∈ V ;

 Group States: partition S¿ by identical values into classes {P1 ,…, Pl };

 Measure Divergence: apply one of the validity estimation functions defined below.

The measure could be performed by any participating node or external interceptor that has 
access  to  the  communication  media.  The  following  base  functions  could  be  used  for  such 
estimation:

 Entropy: Den=−∑
l=1

m |Pl|
n

log(|Pl|
n ) where evaluation is  based on entropy and a higher 

value means higher fragmentation [30].

 Concentration: Dco=∑
l=1

m (|Pl|
n )

2

, measure the squared distribution of elements, where a 

higher value means lover fragmentation.

 Magnitude: Dmg=
max

l
|Pl|
n

,  represents  the  normalized  maximum proportion,  where  a 

higher value means lover fragmentation.

A similar  approach could be leveraged to build  the  “Operational System Validity” which 
represents the divergence between the finalized states. The same steps for evaluation apply to the 

Ŝi
*={ ŝi

*∣ v i∈ V , ŝi
* belongs to v i } being  the  initial  set.  The  method  requires  access  to  the 

participating nodes to gather the finalized states.
Having discussed the validity conditions and their estimation, it is quite important to emphasize 

that  the  main metric  representing  the  cluster’s  state  is  “Operational  System Validity”.  That  is  
because it describes the system’s consistency rather than the individual node. Additionally, it is less 
susceptible to the biases of a single node. Thus, minimization of divergence is the primary goal of 
establishing a robust distributed consensus framework.

The  protocol  could  leverage  its  redundancy  to  improve  consistency.  To  achieve  that,  an 
additional layer is proposed to automatically reconcile inconsistent state aggregations. It introduces 
the popular and weighted voting mechanisms with a set of deterministic rules to be applied before 

the finalized state ŝi
* is settled for the replica [31, 32].

Let’s  start  with  the  basis  of  the  proposed  voting  consensus  system.  Suppose  each node  v j 

proposes a hash h (s j*), where s j
* is the state aggregation of v j. Then node v i receives the states and 

hashes from  N
−(v i)={v j∈ V ∣ (v j , v i)∈ E },  verifies  them and selects  one to represent its  own 

finalized state ŝi
*.

The “Unweighted Popular Vote” starts with the collection of H i={h (s j*)∣ v j∈ N
−(v i)}, where 

each h (s j*) represents the state aggregation from the perspective of a node v j. To evaluate the vote 

result, for each candidate hash hi , k
' ∈ H i, where k∈ N  and 0<k ≤|H i| compute C i , k (hi , k' ), which 

is the number of times hi , k
'  appears in H i:

C i , k (hi , k' )=|{h (s j*)∈ H i :h (s j*)=hi , k' }| (5)
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After each corresponding C i , k (hi , k' ) has been constructed, the vote decision could be expressed as 

follows:

C i , k=max
hi , k
' ∈ H i

C i , k (hi , k' ) ,T i={hi , k
' ∈ H i∣ C i , k (hi , k' )=C i , k } (6)

where T i is a set of winning unique hash values. In such a case there could be a tie between votes 

that has to be resolved. If  |T i|=1, choose that single hash  hi
* in  T i

. Otherwise, pick  hi
*=min

≺
T i, 

where ≺  is a total order (e.g., lexicographical) on H i.

Within the “Weighted Popular Vote”, hash collection and hi
* vote decision process is the same. 

What is different is the approach to implementing C i , k (hi , k' ) by introducing the weight term w j>0. 

For each node v j∈ V , let us define a weight  w j∈ R0. These weights can be derived in multiple 

different ways. For example, from trust relationships or resource capacities:

 Trust-Based  Weights: w j=∑
v l∈ V

T (v l , v j) ,T (v l , v j)≥0,  where  T (v l , v j) measures  how 

much  v l trusts  v j. Summing over all  v l∈ V  yields a strictly positive real number if each 

node is trusted by at least one other node. The trust could belong to R>0 or a simpler binary 
version {0, 1}.

 Resource-Based  Weights: w j=f res (B W j ,CP U j ,RA M j),  where 

B W j ,CP U j ,RA M j∈ R≥0 denote the bandwidth, CPU, and memory resources of v j, and 

f res :R≥0
3 →R  >0 is a function that returns a positive real number representing the node’s 

capacity.

The weight function could be injected into the reducer, allowing for custom setups that adhere 
to the unique requirements of the system. It is important to emphasize that the weight assignment 
function  should  also  be  deterministic,  otherwise  it  would  negatively  influence  system  state 
fragmentation. The weighted count computation function could be represented as the following:

C i , k (hi , k' )= ∑
v j∈ N

−(v i)
[w j⋅ I {h (s j*)=hi , k' }] (7)

where I {X } returns 1 if X  is true and 0 otherwise. Each vote for hi , k
'  is multiplied by v j’s weight 

value w j. The model could be generalized to include the popular voting mechanism where every 
vote has the same weight. Thus, the reducer’s interface can simply expect a weight function where 
the default one would yield the same value for each node.

5. Enhancing protocol’s efficiency and reliability

Moving on to the efficiency and reliability improvements, let us first consider the updates related 
to the critical section management within the protocol. Critical sections are the base atomic units  
of  execution from the perspective  of  a  parallelized  system.  These points  are  responsible  for  a 
unified state update shared between multiple execution threads. As we’ve discussed in the previous 
section, the critical sections are defined and managed by respective mutex instances responsible for 
ensuring phase transition consistency.

It  is  quite  important  to  emphasize  that  while  controlled  critical  sections  allow  to  manage 
asynchronous access to the shared entity, they are one of the primary causes leading to bottlenecks 
and deadlocks in the systems. That is because critical sections practically merge multiple parallel  
execution threads into a single queue of operations. Therefore, they should be reduced to a minimal 
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required space to guarantee successful code execution and, at the same time, avoid excessive and  
greedy locking strategies that would unnecessarily stagger the protocol’s engine.

The proposed modification provides  a  new approach to  delimit  phase  transitions  and their 
internal operations. One of the most important is related to the “DEBATE” phase and its critical 
sections management. RSDP initially defined the said phase starting with the mutex acquisition 
before  sending  the  “HELLO”  message.  Subsequent  operations  involved  “STATUS”  message 
gathering, state aggregation, and broadcasting the “SHARE” message. The interphase mutex was 
supposed to be released only after the broadcast operation, holding the entire system at a halt  
during the message-passing process. Since in its initial conception, the notion of engine statuses 
was not introduced, such an approach allowed to delay the processing of the incoming “SHARE” 
messages and avoid inconsistencies.

In contrast with the initial version of RSDP, the proposed modification suggests acquiring a  
mutex exclusively for  the  aggregation and update  processes.  The initial  operations  during the 
“DEBATE” phase involving cluster status gathering could be executed outside the critical section 
while still guaranteeing state transition consistency due to the introduction of the FSM principles  
that postulate strict ordering of engine status transitions and hence executable operations. Such an 
improvement allows us to avoid potential congestion related to superfluous critical sections.

Another aspect that must be addressed is the reasoning behind the “CLOSE” phase’s existence  
and its purpose. This phase is responsible for gracefully and dynamically handling departing nodes 
from the cluster’s set. It has to be said that the approach could be done differently without an  
introduction  of  the  unique  phase  and  its  related  logic.  The  same  effect  could  be  potentially 
achieved by using the “SHARE” message, which contains a modified state by the departing replica  
itself  rather  than  the  “CLOSE”  message.  Though  the  latter  was  eventually  chosen  due  to  the 
following reasons:

 The addition of a “CLOSE” message allows for differentiation between state updates and 
reduction  requests.  Separation  of  concerns  greatly  simplifies  aggregation  logic  for  the 
incoming shared states.

 Broadcasting  “CLOSE” messages  are  more  efficient  than repetitively  going through the 
entire “DEBATE” and “SHARE” phases, which would be necessary in case the reducer’s 
logic is built on top of a newly proposed voting mechanism.

 The separated approach allows for the development of additional logic related to events 
management.  An  example  could  involve  side  effects  that  are  not  related  to  the  state 
management.

Overall, the decision to include the “CLOSE” phase introduces greater modularity, simplifies the 
codebase, and extends potential logical extensions within the cluster. Any operation defined for 
“CLOSE”  phase  handling  should  still  comply  with  deterministic  principles  to  avoid 
desynchronization.  If  the reducer’s  logic  relies  on side effects  during that  phase,  a  new synch 
process starting with “DEBATE” will have to be executed.

The proposed RSDP 2.0 does not guarantee finalized state consistency. It is still quite possible  
for some replicas to diverge due to hardware, network, software conditions, or their combinations. 
Mechanisms  like  voting,  including  its  weighted  variants,  aim  to  reduce  the  state  groups' 
fragmentation degree, but they cannot guarantee eventual consistency.

For  that  reason,  the  proposed  version  introduces  the  “Mandatory  Resynchronization 
Mechanism”.  The  MRM  could  be  implemented  in  multiple  different  ways,  each  with  its 
implications:

 Asynchronous Scheduling: in that case, each replica would have an independent resynch 
period. The approach is straightforward but does not leverage the cluster’s capabilities to 
coordinate its operations, leading to inefficient monitoring.
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 Cron-Based Scheduling: this  would  lead  to  strict  synchronization  and result  in  near-
simultaneous RSDP status transitions on participating nodes, but discrepancies detection 
would take the entire schedule period [33].

 Evenly  Distributed  Intervals: through  RSDP  itself,  the  participating  replicas  could 
distribute the time slot and coordinate with each other in intervals to monitor the cluster’s 
state.

The  latest  approach would  start  with  the  initial  synchronization  round,  going through the 
“DEBATE”  and “SHARE”  phases.  Using the  dedicated  reducer,  every  replica  could  deduce  the 
network  size,  participant,  and  deterministically  assign the  time slots  for  resynch periods.  The 
approach minimizes the detection time of an inconsistency by leveraging the cluster’s capabilities.

Recall  that  upon  receiving  M he llo,  each  v j∈ N
−(v i) sends  its  initial  state: 

M status (v j)=( f id (v j) , f meta (v i) , s j) through the M status (v j) message that between other things like 

metadata or state, contains a routable sender’s address. That said, when the buffer of incoming 

messages  is  being  processed  into  an  aggregation  si
*=f agg status(si ,{M status (v j)∣ v j∈ N

−(v i)}),  it 

could be constructed as follows:

si
*={(f id (v j) ,

ΔT
|A|

⋅rank ( f id (v j) , A ))∣ v j∈ N
−(v i)∪ v i} (8)

where  ΔT  is  a  synchronization  period  provided  as  a  parameter,  |A| is  the  total  number  of 

addresses in the sorted set A , where A={f id (v j)∣ v j∈ N
−(v i)∪ v i }, and rank ( f id (v j) , A ) returns 

the position of f id (v j) within a sorted set A  for a given node v j. As a result, it would represent the 

assigned timeslots for every participating node.
Another  important  issue  that  must  be  addressed pertains  to  the  potential  attacks  aimed at 

service availability. Firstly, the designed version of RSDP is still supposed to be used within the 
private network,  where each node goes through authentication and authorization processes  to 
transmit messages inside the network. Though the attacks are not limited only to public services, in 
such  cases,  it  is  important  to  design  countermeasures  against  the  potential  abuse  of 
synchronization mechanisms.

Since every interaction process goes through the SLAN layer, which is comprised of a set of 
intermediary nodes,  additional  monitoring and security measures could be installed to prevent 
potential  message  spam  abuse.  This  is  possible  since  the  media  server  is  responsible  for  
authentication and the routing process which enables dynamic evaluation of requests. If it detects  
frequent messages of the same type coming from the same node, it could easily isolate it to avoid  
potential network congestion and malicious activities.

Additionally,  since  the  RSDP 2.0  introduces  quorum-based consensus,  the  acceptance of  an 
incoming shared state is resolved due to the BFT-compliant properties of the voting mechanism. 
That is,  for  a  new shared state to  be  accepted,  it  should be supported by the majority of  the 
network.  That  means  that  an  incoming  divergent  state  would  lead  to  a  new  phase  of  the 
synchronization period that would determine whether the transition should be accepted. Future 
research could be aimed at detecting anomalous behavior.

6. Decentralized byzantine fault tolerance

As was previously stated, RSDP is designed for controlled environments and relies on the SLAN 
layer for authentication and security measures. By leveraging a voting-based census, it is possible 
to limit the influence on the state distribution and coordination process since any malicious intent 
would be dismissed unless it comes from the majority of the network.
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Nonetheless,  RSDP  is  designed  as  a  cluster  solution  that  would  coordinate  a  group  of  nodes 
towards a common goal through the common state management capabilities. The protocol does not 
provide any side-effect verification mechanism and thus cannot guarantee that the designated tasks 
through state mapping were accomplished correctly. Additionally, it relies on participating nodes 
to provide status and aggregated data without malicious intent since every other node would trust 
it. For these reasons, to achieve decentralization and leverage the protocol’s capabilities outside the 
controlled environment, blockchain technology could be leveraged [16–20].

The RSDP-Blockchain layer interactions are shown in Fig. 3:

Figure 3: RSDP-Blockchain layers

As shown in Fig. 3, there are two distinct layers defined, the first being the blockchain network and 
its validator nodes and the other RSDP cluster nodes. Every node within the RSDP cluster has to 
have connections established with each other as well as with the validator node serving as an entry 
point for interactions with the ledger. To explain the reasoning behind such a combination, let us  
first discuss blockchain technology, its implications, limitations, and the problems it allows us to 
solve.

Blockchain is a decentralized network of publicly linked nodes responsible for managing the 
ledger’s history. In its foundation, it relies on the linked list of hashes, representing a succinct state 
of the assigned block. One of the core problems that is solved with blockchain is the historical  
consensus regarding occurring interactions. Its operational consistency is guaranteed by a common 
consensus mechanism and strict validation rules [16–20].

There are myriads of approaches to establishing a voting mechanism, with the most common 
being proof of stake, proof of authority, and proof of work. Their purpose is to achieve network-
wide consensus about the next block value. In contrast with RSDP, we can define a clear distinction 
between the blockchain consensus layer and the designed protocol:

 RSDP  is  designed  as  a  solution  that  provides  distributed  state  management  and 
coordination, where every node contributes to the resulting aggregation while blockchain 
consensus protocols are aimed towards the validation process to verify the next block in the 
ledger.
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 Blockchain consensus protocols are designed to scale; they do not require a fully connected 
network for their operation, which is a current limitation of RSDP and will be addressed in 
future research.

 RSDP  emphasizes  distribution  rather  than  decentralization.  The  proposed  mechanisms 
allow for mitigating the influence of uncertain network conditions, but the purpose of the 
protocol is to coordinate a cluster rather than provide a trustless platform.

That being said, blockchain technology could serve as a trust provision layer, responsible for 
asset management and slashing penalties in case state inconsistency is detected. Every node within 
the RSDP cluster should be registered on-chain, and a prearranged amount of assets should be 
staked for both potential penalties and rewards. On top of that, every node must commit its state  
transition events to the chain for historical audit purposes.

Every interaction with the cluster would follow the following stages:

 A set of RSDP nodes register on the blockchain network, providing stakes to the designated 
smart contract.

 The task being published on the ledger through the contract would signify the beginning of  
cluster  processing.  The  task  could  include  execution  parameters,  target  goals  to  be 
achieved, and the chosen state reducer.

 Participating  nodes  register  a  cluster  through  the  smart  contract  and  sign  up  for  task 
execution.

 Moving through every state transition phase such as “HELLO”, “SHARE”, or “CLOSE”, logs 
would be published on the ledger to verify operational correctness.

 Once the task is finalized due to either an end condition or a revoking command by the 
client, the results and latest states are to be published on the ledger for verification.

The approach allows following the log trace at any point since the ledger is a publicly available  
structure. Recall that every state transition function within RSDP should be deterministic, and thus, 
every operation could be verified by outside entities. In case inconsistency was detected on the  
node during its  phases,  slashing could be applied based on the impact degree,  which could be 
determined by methods provided in previous sections such as “Operational System Validity” based 
on concentration, entropy, or the largest group.

Another concern that has to be addressed is the state mutation due to external information. It 
could happen that the cluster must agree upon a value that has a significant impact on other 
systems. For example, RSDP could be used for cluster-wide rate limits compliance, where every  
node tries to access a remote server and must avoid security policy violations. In such cases, it is  
quite common to have dynamic policies that adjust to the current demand. Hence, the state should 
periodically be updated to reflect the current demand.

Inside the controlled environment, it's possible to simply establish an additional communication 
channel or leverage existing SLAN’s capabilities to broadcast a new event that would update the  
system’s status and trigger a new “DEBATE” round. The said approach would not be applicable 
within the public environment due to trust limitations and accountability. Hence, the ledger must 
be utilized as a trustless event propagation medium that would record the originating address and 
provide economic guarantees for participants.

Conclusions

Modern requirements towards available computational capabilities, their coordination, and security 
inevitably lead to the rising academic and engineering interest of the networking community. As a 
result,  a  plethora  of  methods  of  achieving  dynamic  coordinated  network  extension  and 
maintenance  have  been  developed,  where  RSDP  stands  as  a  unique  approach  for  abstracting 
complexities related to distributed consensus management.
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Firstly, this article expounds on the definition of the updated RSDP model, including its protocol  
phases and consensus process. In addition to that, it introduces new methods aimed at safeguarding 
the phase transition process described within the protocol. This version of the protocol also defines 
additional mechanisms for handling lost updates and flooding conditions that may happen due to  
hardware issues or intentionally. The proposed approach allows for a significant improvement in 
the protocol’s resilience and reliability.

Secondly, this article introduces a new BFT-compliant approach with RSDP by defining a set of  
quorum  state  reducers.  The  quorum  coordination  allows  for  effectively  discovering  malicious 
operations during consensus, both intentional and accidental, which is a primary property required 
from shared distributed systems. The designed foundation for quorum support is flexible and easy 
to modify due to the open definition of the weight control mechanism.

Finally, this article defines a new computational coordination approach by incorporating both 
RSDP and blockchain technologies.  Such design allows for an efficient,  rapid,  and incentivized 
collaboration of interlinked nodes within a decentralized system. Blockchain technology in that 
case works as both an incentive and governance platform, providing additional resources for the 
correct cooperation with the nodes and slashing procedures otherwise. Future applications of this  
technology could lead to an expansion of accessible, low-cost cloud computation engines suitable 
for various tasks.

Overall,  the  tenet  of  this  article  is  to  further  expansion of  the possibility  horizon within a  
decentralized  network  coordination  paradigm.  This  paper  is  intended  to  ameliorate  decision-
making processes done by network engineers and architects. It is also a goal of this article to spark 
a further surge in research and engineering efforts within decentralized coordination technology.
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