
Research on Policy-as-Code for Implementation of Role-
based and Attribute-based Access Control⋆

Oleksandr Vakhula1,†, Ivan Opirskyy1,∗,†, Pavlo Vorobets1,†, Orest Bobko1,†

and Oleh Kulinich2,†

1 Lviv Polytechnic National University, 12 Stepan Bandera str., 79000 Lviv, Ukraine
2 National University of Life and Environmental Sciences of Ukraine, 19/1 Horikhuvatskyi Shliakh str., 03041 Kyiv, Ukraine

Abstract
The growing adoption of cloud-native and microservices architectures has revolutionized how
organizations deploy and manage applications, bringing enhanced scalability, agility, and speed.
However, these advancements also introduce significant challenges in managing access control in
dynamic, distributed environments. Traditional access control models like Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC) are foundational to securing sensitive resources but
often struggle to scale and adapt to the complex, rapidly evolving demands of cloud infrastructures. RBAC
systems face issues such as “role explosion”, while ABAC systems can become unmanageable due to the
increasing complexity of attribute combinations. These challenges necessitate innovative solutions for
consistent, scalable, and automated access control management. Policy-as-Code (PaC) has emerged as a
transformative approach to address these challenges by codifying access control policies, enabling
automation, scalability, and real-time adaptability. PaC integrates seamlessly into modern DevOps
practices, allowing RBAC and ABAC policies to be managed, tested, and enforced as code within CI/CD
pipelines. This approach ensures consistent policy enforcement across diverse environments, improves
transparency and auditability through version control, and facilitates compliance with regulatory
standards like GDPR, HIPAA, and PCI DSS. Tools such as Open Policy Agent (OPA) and HashiCorp
Sentinel play pivotal roles in implementing PaC, providing granular control and automation for complex
policy requirements. This research explores the integration of PaC with RBAC and ABAC in cloud-native
infrastructures, addressing key challenges such as scalability, compliance, and cross-cloud
interoperability. It includes a comprehensive review of recent literature, practical implementation guides,
and real-world case studies demonstrating the application of PaC for automated access control. The
findings highlight how organizations can achieve continuous compliance, operational efficiency, and
enhanced security by adopting PaC. For instance, the study outlines strategies for reducing operational
overhead through automated policy validation and enforcement, mitigating risks of misconfigurations,
and ensuring dynamic, context-aware access control. The research also identifies challenges associated
with PaC adoption, including initial setup complexity, performance overhead in attribute-heavy
environments, and managing policy sprawl in large-scale systems. It proposes future research directions,
such as leveraging AI for adaptive policy optimization, enhancing real-time policy evaluation, and
developing unified frameworks for multi-cloud environments. In conclusion, this study establishes PaC as
a robust framework for implementing scalable and adaptive RBAC and ABAC in cloud-native and multi-
cloud environments. By automating policy management and integrating access control into the software
development lifecycle, PaC empowers organizations to meet the demands of modern infrastructures while
ensuring security, compliance, and operational agility. This work provides actionable insights for
practitioners and researchers seeking to leverage PaC for effective access control management.

Keywords
policy-as-code, PaC, role-based access control, attribute-based access control, Kubernetes, continuous
integration, continuous development, security-as-code, open policy agent, gatekeeper

1. Introduction

Organizations are increasingly adopting cloud-native and microservices architectures to enhance
scalability, agility, and speed of deployment. However, as these environments

⋆CPITS 2025: Workshop on Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2025,
Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 oleksandr.p.vakhula@lpnu.ua (O. Vakhula); ivan.r.opirskyi@lpnu.ua (I. Opirskyi); pavlo.a.vorobets@lpnu.ua
(P. Vorobets); orest.bobko.mkbas.2024@lpnu.ua (O. Bobko); o.kulinich@nubip.edu.ua (O. Kulinich)

 0009-0008-5367-3344 (O. Vakhula); 0000-0002-8461-8996 (I. Opirskyy); 0009-0007-3870-829X (P.Vorobets); 0009-0005-
4224-1448 (O. Bobko); 0000-0002-0643-6898 (O. Kulinich)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

139

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-0643-6898
https://orcid.org/0009-0005-4224-1448
https://orcid.org/0009-0005-4224-1448
https://orcid.org/0009-0007-3870-829X
https://orcid.org/0000-0002-8461-8996
https://orcid.org/0009-0008-5367-3344
mailto:o.kulinich@nubip.edu.ua
mailto:orest.bobko.mkbas.2024@lpnu.ua
mailto:pavlo.a.vorobets@lpnu.ua
mailto:ivan.r.opirskyi@lpnu.ua
mailto:oleksandr.p.vakhula@lpnu.ua

growmailto:orest.bobko.mkbas.2024@lpnu.ua, the challenge of managing and enforcing access
control becomes more complex. Established access control models, such as RBAC and ABAC,
remain crucial for ensuring that sensitive resources are accessible only to authorized users and
services.

Yet, implementing these models in distributed, dynamic infrastructures poses significant
challenges, particularly in terms of scalability, granularity, and adaptability.

RBAC has long been the foundation of access control, assigning permissions based on
predefined roles. However, in large-scale, distributed environments, the sheer volume of users,
roles, and permissions can overwhelm conventional RBAC systems. Meanwhile, ABAC introduces
a more granular approach, allowing access decisions based on user attributes, resource attributes,
and environmental factors. While ABAC provides flexibility, it also increases complexity, as access
policies must account for a wide range of attributes and conditions.

To address these challenges, PaC has emerged as a transformative approach, enabling the
automation and codification of access control policies within development pipelines. PaC allows
RBAC and ABAC policies to be defined, enforced, and managed as code, providing consistent,
scalable, and adaptive access control across cloud environments. Through PaC, organizations can
implement access control policies that are versioned, tested, and deployed alongside application
code, ensuring alignment with changing application requirements and compliance standards.

In addition to enabling automation, PaC facilitates continuous compliance and auditability. By
maintaining a versioned history of policy changes, organizations can ensure that access control
decisions are transparent, traceable, and easy to review for compliance with regulations such as
GDPR [1], HIPAA [2], and PCI DSS [3]. Tools like Open Policy Agent (OPA) and HashiCorp
Sentinel have become popular for implementing PaC, offering the flexibility to enforce both RBAC
and ABAC in dynamic environments.

This research aims to explore how PaC can streamline and strengthen access control in
distributed environments, with a specific focus on RBAC and ABAC implementations. The paper
will investigate the key challenges in applying these access control models within cloud-native
infrastructures, evaluate the benefits of using PaC to manage and enforce these policies and
provide a practical implementation guide using tools like OPA and Sentinel. By examining real-
world case studies and assessing the limitations and advantages of PaC, this research seeks to
establish a framework for implementing scalable, compliant, and adaptive access control through
PaC.

2. Literature and recent research review

The fast shift toward cloud-native environments has brought increased attention to the scalability
and flexibility of access control models. PaC is now widely discussed in the literature as an
innovative solution for implementing complex access control policies in distributed systems [4, 5].
This section provides an overview of foundational research and recent and older studies, that
explore PaC, RBAC, and ABAC.

PaC emerged from the DevOps and Infrastructure-as-Code (IaC) paradigms, which advocate for
the codification of infrastructure and configurations to enable versioning, automated testing, and
consistent deployments [6].

PaC extends these principles to security and access control, allowing policies to be codified,
tested, and managed as part of the software lifecycle. PaC has since gained popularity as a method
for defining and enforcing security controls across distributed environments, particularly for
organizations adopting microservices and serverless architectures.

RBAC was formally introduced in the 1990’s as a solution to simplify access management by
assigning permissions based on user roles [7]. RBAC has since been widely adopted in enterprise
environments due to its simplicity and ease of implementation. However, recent studies point out
limitations in scalability and flexibility when applied to dynamic, cloud-native environments.

140

ABAC, on the other hand, offers a more flexible approach by basing access decisions on a set of
attributes related to the user, resource, and environment [8].
The integration of PaC with RBAC and ABAC models offers promising solutions to address the
challenges associated with access control in cloud-native environments. Open Policy Agent (OPA)
has become a leading tool in this area, providing a declarative language, Rego, for defining PaC.

Moreover, Gartner Research identifies PaC as a critical component for achieving continuous
compliance, especially for organizations operating in regulated industries. Their report suggests
that by integrating PaC with identity and access management (IAM) solutions, organizations can
achieve a unified and automated approach to compliance that reduces the risk of human error and
regulatory violations [9].

While the benefits of PaC for implementing RBAC and ABAC are well-documented, researchers
have identified several limitations and problems. Languages that can simplify the management of
attribute-based policies in large-scale environments can have some weaknesses. The paper on the
Tenable blog highlights vulnerabilities associated with domain-specific languages (DSLs), using
Open Policy Agent (OPA) as a case study, and explores how attackers can exploit poorly
implemented policies or misconfigurations in these systems [10].

Future research should focus on developing adaptive PaC frameworks that can dynamically
adjust policies based on changing contextual factors, such as user behavior or network conditions.
Additionally, the integration of machine learning techniques with PaC holds promise for
automatically detecting and mitigating potential policy misconfigurations or security threats, an
area that is still underexplored.

3. Challenges in Implementing RBAC and ABAC in dynamic
environments

In distributed, cloud-native, and microservices architectures, managing access control presents a
complex set of challenges. RBAC and ABAC have been widely adopted to ensure that users can
access only the resources they are authorized to use. However, when applied to dynamic and large-
scale environments, traditional implementations of RBAC and ABAC face several significant
limitations [11].

3.1. Scalability and complexity

 RBAC Complexity in Large-Scale Systems: As organizations grow, the number of roles
and permissions required to control access can become overwhelming. In dynamic
environments, where services, users, and resources frequently change, managing a vast set
of static roles can lead to a “role explosion.” This situation occurs when the system requires
an excessive number of roles to accommodate diverse and evolving access needs. For
example, in large organizations, a single user might belong to multiple departments,
projects, or teams, each with distinct access requirements [12].

 ABAC Attribute Management: ABAC is designed for flexibility, allowing access based on
a combination of attributes such as user role, location, time, and device type. However, as
attribute-based policies grow more complex, they can become difficult to manage. The
number of potential combinations of attributes can quickly escalate, making it challenging
to track, update, and validate all possible policies. This complexity can lead to
administrative overhead and increased risk of misconfiguration, especially in highly
dynamic environments like microservices architectures [13].

3.2. Dynamic policy requirements

 Frequent Policy Changes: Cloud-native environments are highly dynamic, with frequent
changes in user roles, application states, and resource configurations. In such

141

environments, access policies must be regularly updated to reflect current conditions.
Traditional RBAC systems, which rely on static roles and permissions, struggle to adapt to
these changes without significant manual intervention. ABAC is more adaptable, but
managing attribute changes manually across distributed services is both time-consuming
and error-prone.

 Context-Aware Policies: Dynamic environments often require context-aware policies
that adapt based on real-time factors, such as a user’s location, device, or time of access. For
example, an ABAC policy may allow access to sensitive data only if the request is made
within a specific network range or during certain hours. Managing these conditional
policies at scale is challenging, as it requires continuous monitoring of contextual factors
and prompt enforcement of access rules based on changes in the environment.

3.3. Auditability and compliance

 Lack of Policy Transparency: Ensuring compliance with industry standards and
regulatory requirements, such as GDPR, HIPAA, or PCI DSS, demands a high level of
transparency in access control policies. Traditional RBAC and ABAC implementations may
not provide adequate visibility into policy changes, making it difficult to demonstrate
compliance or to perform audits. PaC offers some relief by enabling version control and
audit trails for policy changes, but implementing this at scale remains complex.

 Audit and Reporting Overhead: In distributed systems, access control policies often need
to be enforced across multiple services and locations, each with its own logging and
auditing mechanisms. Gathering and consolidating these logs to produce a unified access
report is challenging. The lack of centralized visibility can make it difficult to identify
unauthorized access or policy violations, increasing the risk of non-compliance with
regulations and standards. Implementing a comprehensive audit trail requires additional
resources and tools, which can be costly and time-consuming.

3.4. Performance and resource constraints

 Latency in Policy Enforcement: Dynamic environments require that access policies be
enforced in real-time. However, implementing complex RBAC and ABAC policies across
distributed systems can introduce latency, especially when policy evaluation involves
numerous attributes or complex conditional logic. This latency can impact the user
experience or slow down application performance, which is a significant concern for high-
demand environments.

 Resource Consumption: The enforcement of attribute-based policies, particularly those
with context-aware conditions, requires continuous monitoring of environmental factors
and frequent evaluation of access rules. This can consume significant computational
resources, especially in large-scale environments where multiple attributes must be
evaluated for each access request. High resource consumption not only affects performance
but also increases operational costs, making it challenging to implement ABAC effectively
in cost-sensitive environments.

3.5. Complexity of cross-platform and multi-cloud environments

 Inconsistent Policy Management: Organizations often use multiple cloud providers and
platforms to meet their business needs. Implementing RBAC and ABAC across these
platforms introduces complexity, as each provider may have different access control
mechanisms, policy languages, and enforcement strategies. Coordinating policies across
platforms can lead to inconsistencies, where policies are properly enforced on one platform
but not on others.

142

 Interoperability Challenges: In multi-cloud or hybrid cloud environments, ensuring that
access control policies work seamlessly across different platforms is a significant challenge.
For instance, a policy defined in one cloud provider’s format may not be directly
translatable to another provider’s system. The lack of interoperability between platforms
can make it difficult to implement consistent RBAC or ABAC policies, increasing the risk of
unauthorized access or inconsistent policy enforcement.

Implementing RBAC and ABAC in dynamic environments is a complex task that requires
addressing scalability, adaptability, and transparency issues, among others. PaC offers promising
solutions to many of these challenges by allowing policies to be codified, versioned, and deployed
across distributed systems in an automated and consistent manner. However, as discussed, the
effective integration of PaC with RBAC and ABAC models remains a challenge in dynamic, multi-
cloud environments. The next sections of this paper will explore how PaC can help overcome these
challenges, providing an adaptable and scalable approach to access control in modern
infrastructures [14].

4. Policy-as-code for RBAC and ABAC

PaC enables organizations to define, manage, and enforce access control policies in a code-based
format, offering consistency, scalability, and automation in modern infrastructures [15]. When
applied to RBAC and ABAC, PaC brings automation and flexibility to these traditional access
models, addressing many of the challenges associated with managing access in dynamic,
distributed environments. This section explores how PaC transforms RBAC and ABAC into more
adaptable and manageable models and discusses the primary benefits of this approach.

4.1. Automated policy enforcement

 Consistency Across Environments: In distributed and multi-cloud environments,
maintaining consistent access control policies can be difficult. By defining RBAC and ABAC
policies as code, PaC enables organizations to apply the same policies across diverse
environments, ensuring that access controls are consistently enforced. This automation also
reduces the risk of discrepancies or misconfigurations between environments, a common
issue in large-scale deployments.

 Continuous Policy Enforcement: PaC integrates with CI/CD pipelines, ensuring that
access policies are continuously validated and deployed alongside application code. Any
changes to access control policies can be tested and enforced automatically, providing real-
time policy updates without manual intervention. This continuous enforcement is
especially beneficial for ABAC, where contextual attributes may change frequently,
requiring policies to adapt dynamically [16].

4.2. Policy versioning and change management

 Version Control for Policies: Storing RBAC and ABAC policies as code allows them to be
managed in version control systems (e.g., Git), enabling teams to track and audit changes
over time. Versioning provides a historical record of policy updates, allowing organizations
to roll back to previous policy states if needed. This capability is crucial for compliance, as
it ensures that organizations can document access control changes and demonstrate
adherence to regulatory requirements.

 Collaborative Change Management: With PaC, policy updates follow the same
processes as software development, including code review and testing. This enables
collaborative change management, where security teams, developers, and DevOps teams
can work together to define and refine access policies. Through this approach,

143

organizations can ensure that policies are well-tested and approved before being deployed,
reducing the risk of unintended access control changes.

4.3. Tools for policy-as-code in RBAC and ABAC

 Open Policy Agent (OPA): OPA is a popular open-source tool for defining and enforcing
policies in cloud-native environments. Using its declarative policy language, Rego, OPA
enables organizations to write RBAC and ABAC policies as code, which can be integrated
across various services (e.g., Kubernetes, CI/CD pipelines). OPA’s flexibility makes it
suitable for both RBAC and ABAC, allowing fine-grained control over access decisions
based on user roles and attributes [17].

 HashiCorp Sentinel: HashiCorp Sentinel is a policy as code framework designed to
enforce policies in HashiCorp’s suite of products, such as Terraform and Vault. Sentinel
supports both RBAC and ABAC implementations, making it ideal for organizations using
HashiCorp’s ecosystem. Sentinel enables administrators to define access control policies in
a code-based format, which can be applied across infrastructure resources, providing
consistent and automated access control [18].

 AWS IAM Policies: For organizations using AWS, Identity and Access Management (IAM)
offers built-in support for PaC through JSON-based policy documents. These policies can be
defined for both RBAC and ABAC models, allowing administrators to set role- and
attribute-based permissions for users and services within AWS. IAM policies integrate well
with AWS’s ecosystem and provide a straightforward way to enforce access control in
cloud-native applications [19].

4.4. Policy validation and testing

 Automated Policy Testing in CI/CD Pipelines: One of the key benefits of PaC is the
ability to test access policies as part of CI/CD workflows. By embedding policy tests in the
pipeline, organizations can validate that RBAC and ABAC policies are configured correctly
before deployment. For example, policies can be tested to ensure that only authorized users
have access to specific resources or that attribute-based conditions are applied correctly
[20].

 Policy Simulation and Validation: Tools like OPA offer simulation capabilities that
allow administrators to test policies in a sandbox environment. This feature is particularly
useful for ABAC, where policies can be complex due to the combination of multiple
attributes. By simulating policies before they are applied, organizations can verify that
access controls work as intended, reducing the risk of misconfigurations.

4.5. Compliance and auditability

 Auditable Policy History: PaC enables organizations to maintain a comprehensive record
of policy changes, which is essential for demonstrating compliance with regulatory
standards. By version-controlling access policies, organizations can provide auditors with a
traceable history of policy updates, showing how access decisions were made over time.
This level of transparency is beneficial for meeting compliance requirements, especially in
regulated industries like finance and healthcare.

 Automated Compliance Checks: PaC facilitates automated compliance validation, where
policies are continuously checked against regulatory standards. By integrating compliance
checks into CI/CD pipelines, organizations can ensure that their RBAC and ABAC policies
meet industry standards before deployment. For example, policies can be validated to
confirm that access restrictions align with GDPR, HIPAA, PCI DSS, or ISO 27001
requirements, reducing the risk of non-compliance [21].

144

4.6. Real-time policy enforcement and adaptability

 Dynamic Policy Adaptation: In environments where user roles or attributes frequently
change, PaC enables real-time policy adaptation to ensure that access controls remain
relevant. For ABAC, which depends on attributes like user location, device type, or time of
day, PaC provides the flexibility to enforce policies based on current conditions. This real-
time adaptability reduces the administrative burden of manually updating policies in
response to changing conditions.

 Proactive Incident Response: PaC allows organizations to enforce security policies
proactively, triggering incident response protocols when policy violations occur. For
example, if an ABAC policy detects an access attempt from an unauthorized location, the
system can automatically revoke access or alert the security team. This proactive
enforcement strengthens security by enabling rapid responses to potential threats.

PaC transforms RBAC and ABAC from static, manually managed models into flexible,
automated systems capable of adapting to dynamic, cloud-native environments. By enabling
versioning, testing, and real-time enforcement, PaC addresses many of the scalability and
compliance challenges inherent in traditional access control implementations. The integration of
tools like Open Policy Agent, HashiCorp Sentinel, and AWS IAM further enhances the ability to
manage and enforce access control policies as code, bringing consistency, auditability, and
scalability to access control in distributed environments [22].

5. Case studies and tools

This section presents real-world examples of implementing PaC for RBAC and ABAC using leading
tools. Each case study provides technical insights into how PaC helps automate, enforce, and
manage access control policies within dynamic environments. Additionally, we explore specific
tools such as Open Policy Agent (OPA), HashiCorp Sentinel, and AWS IAM, detailing their setup
and configurations for RBAC and ABAC.

5.1. Case study 1: RBAC implementation in Kubernetes with open policy agent

 Context: A financial services organization deployed a multi-tenant Kubernetes
environment to support microservices. They needed a secure and scalable way to enforce
RBAC policies, ensuring that each service could only access resources within its designated
namespace.

 Challenge: Kubernetes’s native RBAC lacked the granularity required for fine-tuned role
management across tenants. Additionally, managing roles at scale for hundreds of services
presented a risk of misconfiguration and permission sprawl.

 Solution: The organization integrated Open Policy Agent (OPA) with Kubernetes,
defining policies using the Rego language to enforce role-based permissions on resources
within each namespace.

Technical Details:

 Policy Definition: RBAC policies were written in OPA’s Rego language. Each policy was
stored as code in a Git repository and managed through CI/CD pipelines.

145

 Sample Rego Policy:

package kubernetes.authz

allow {
 input.user.roles[_] == "dev-role"
 input.resource.namespace == "development"
 input.verb == "get"
 input.resource.kind == "pod"
}

This policy allows users with the dev-role to perform get operations on pod resources within
the development namespace.

 OPA Integration with Kubernetes: OPA was deployed as an admission controller,
intercepting requests to the Kubernetes API server. When a request was made, OPA
evaluated the Rego policies and allowed or denied access based on the defined RBAC rules
[23, 24].

 Automated Testing and Validation: Policy changes were version-controlled, with
automated tests in CI/CD to validate access rules before deployment. This setup allowed the
organization to detect and fix policy misconfigurations before applying them to the live
environment.

5.2. Case study 2: ABAC implementation for data access control with HashiCorp
Sentinel

 Context: A healthcare provider requires ABAC to secure patient data based on user
attributes, such as job role, department, and access time. This setup ensured that only
authorized healthcare personnel could view sensitive information under specific conditions.

 Challenge: Ensuring fine-grained control over data access in a multi-cloud environment,
while enabling real-time access adjustments based on changing attributes (e.g., location).

 Solution: The organization used HashiCorp Sentinel within their IaC setup, managing
access control for data stored in AWS S3 and GCP buckets.

Technical Details:

 Policy Definition: Sentinel policies were written to define conditions for accessing
sensitive resources based on user attributes. For example, access to patient records was
restricted to healthcare professionals during their shift hours and only within designated
facilities.

 Sample Sentinel Policy:

import "strings"

main = rule {
 // Allow access if the requestor's job role includes "nurse" or "doctor"
 strings.contains(requestor.job_role, "nurse") or
 strings.contains(requestor.job_role, "doctor")
 // Restrict access to specific IP ranges for hospital facilities
 and requestor.ip_address in ["10.0.0.0/24", "10.1.0.0/24"]
 // Ensure access during working hours (8am - 8pm)
 and time.now.hour >= 8 and time.now.hour <= 20

146

}

This policy restricts access based on role, IP address, and time, allowing healthcare personnel to
access records within working hours and specific network locations [25].

 Real-Time Enforcement: The Sentinel policy engine was integrated into the provider’s
cloud environment using HashiCorp’s Terraform for IaC, enforcing policies each time
infrastructure or IAM roles were provisioned or updated. Changes to user attributes (e.g., IP
address) triggered an automatic re-evaluation of access permissions.

 Logging and Auditing: Sentinel logs were stored centrally and integrated with the
healthcare provider’s logging infrastructure, providing a complete audit trail for all access
decisions based on ABAC policies.

5.3. Case study 3: Multi-cloud ABAC for dynamic data access using AWS IAM and
OPA

 Context: A global e-commerce company needed to secure customer data across AWS and
Azure. The organization required ABAC to restrict access based on attributes such as
department, project, and user location, with automated enforcement across both clouds.

 Challenge: Coordinating access policies across multiple cloud environments while
ensuring consistency and security in data access.

 Solution: The company used AWS IAM for defining JSON-based policies for ABAC within
the AWS environment, while Open Policy Agent (OPA) managed cross-cloud access
policies. OPA acted as a centralized policy decision point for all data access requests [26].

Technical Details:

 AWS IAM Policy for ABAC:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::customer-data/*",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalTag/department": "customer-support",
 "aws:PrincipalTag/location": "us-west-2"
 }
 }
]
}

This IAM policy restricts S3 access based on department and location attributes, allowing only
customer support staff in the US West region to access customer data.

 Cross-Cloud Enforcement with OPA: OPA was deployed as a centralized policy engine
that processed ABAC policies for resources across AWS and Azure. OPA’s Rego policies
were stored in a Git repository and versioned, allowing the organization to enforce the
same access controls on both platforms.

147

 Automated Attribute Synchronization: Attributes were synchronized across clouds
using AWS Lambda functions and Azure Logic Apps, which updated user attributes in real
time to ensure consistency. This enabled OPA to evaluate access decisions based on up-to-
date attribute information from both clouds.

 Policy Evaluation and Monitoring: OPA’s decision logs were integrated with the
company’s monitoring tools (e.g., Datadog), allowing the security team to track policy
enforcement and respond to any anomalies in access patterns.

5.4. Tools Overview and Setup

The following tools are widely used for implementing PaC in RBAC and ABAC across dynamic
environments:

Table 1
Comparison of policy-as-code systems parameters

Open Policy Agent Hashicorp Sentinel AWS IaM Policies

Integration OPA integrates with
Kubernetes as an
admission controller, as
well as with CI/CD
pipelines and APIs in
multi-cloud environments

Sentinel works
seamlessly with
HashiCorp products like
Terraform and Vault,
making it ideal for
organizations using
HashiCorp’s ecosystem.

AWS IAM enables
JSON-based policy
documents for fine-
grained control over
resources in AWS.

Policy
language

Rego, a declarative
language allowing detailed
rule definitions for RBAC
and ABAC.

Sentinel’s language
supports logical
operators and imports,
making it highly
configurable for ABAC.

JSON format with
built-in support for
both RBAC and ABAC
policies.

Setup OPA can be deployed in
Kubernetes using Helm
charts or manually
configured with YAML
files for fine-tuning
admission control policies.
Rego policies are stored in
Git for version control and
integrated with CI/CD for
automated validation.

Sentinel policies are
defined as .hcl files
within Terraform
modules. By integrating
Sentinel with
Terraform’s workflows,
organizations can
enforce policies
whenever infrastructure
changes are provisioned.

Policies are defined in
AWS IAM with
conditions that
reference user
attributes and are
automatically
enforced across AWS
resources. Policies can
also be combined with
Lambda functions for
real-time policy
adaptation based on
attribute changes.

These case studies demonstrate the versatility and effectiveness of PaC for implementing RBAC
and ABAC in cloud-native environments. By leveraging tools like OPA, Sentinel, and AWS IAM,
organizations can achieve consistent, scalable, and real-time access control enforcement across
distributed systems. In the following section, we present a practical implementation guide,
detailing step-by-step instructions for applying PaC in RBAC and ABAC models [27, 28].

148

6. Practical implementation guide

Implementing PaC for RBAC and ABAC involves defining, testing, deploying, and managing
policies within an automated workflow. This section provides a step-by-step guide for setting up
PaC, including policy definition, CI/CD integration, testing, and real-time enforcement across
dynamic environments. The guide focuses on using Open Policy Agent (OPA) and HashiCorp
Sentinel as examples but can be adapted for other tools.

Fig. 1 illustrates a general overview of the implementation process for PaC in validating RBAC
and ABAC policies.

Figure 1: Policy as Code in validating Attribute-Based Access Control and Role-Based Access
Control policies

6.1. Defining and managing policies-as-code

Step 1: Define Policies using Rego or Sentinel Language

 For RBAC, start by defining roles and associated permissions in a policy file. For ABAC,
define attribute-based rules to allow or deny access based on user and resource attributes.

Example RBAC Policy in Rego (Open Policy Agent):

package kubernetes.authz

allow {
 input.user.roles[_] == "admin"
 input.verb == "create"
 input.resource.kind == "pod"
}

This policy grants the admin role permission to create pod resources.

149

 Example ABAC Policy in Sentinel:

import "strings"

main = rule {
 // Permit only if the requestor’s department is "HR" and the access time is within working

hours.
 strings.contains(requestor.department, "HR") and
 time.now.hour >= 9 and time.now.hour <= 17
}

Step 2: Version Control Policies with Git

 Store policy files in a Git repository, allowing version control for tracking changes and
enforcing review processes. Set up branching for development, testing, and production
stages to prevent accidental deployment of untested policies [29].

6.2. Integrating PaC with CI/CD pipelines

Step 1: Set Up Policy Validation in CI/CD

 Configure automated checks in your CI/CD pipeline to validate policies before deployment.
For example, add a policy validation step in GitHub Actions, GitLab CI/CD, or Jenkins.

 OPA Example (using opa test command):

opa test ./policies/

This command runs tests on all policies within the ./policies directory. Failures will prevent the
policy from moving to the next stage.

Step 2: Policy Testing and Simulation

 Define unit tests for policies to verify expected behavior under various scenarios. This
includes tests for both allowed and denied actions based on specified roles or attributes.

Example Test for OPA (using Rego test files):

package kubernetes.authz

test_admin_can_create_pod {
 allow with input as {
 "user": {"roles": ["admin"]},
 "verb": "create",
 "resource": {"kind": "pod"}
 }
}

 Sentinel Test File:

test "HR access during work hours" {
 input = {
 requestor = {

150

 "department": "HR",
 "access_time": "10:00"
 }
 }
 assert main
}

Step 3: Automate Deployment of Policies

 Use CI/CD to automatically deploy validated policies to the environment. Policies can be
loaded to OPA as bundles or pushed directly to Sentinel’s policy repository.

6.3. Configuring real-time enforcement with OPA

Step 1: Deploy OPA as an Admission Controller (Kubernetes)

 In Kubernetes, OPA can be deployed as an admission controller to enforce policies in real
time. Use Helm to install OPA:

helm install opa stable/open-policy-agent

Step 2: Define Admission Controller Configuration

 Configure OPA to intercept specific Kubernetes API calls by defining admission controller
configurations. Specify which operations to monitor, such as creating or deleting resources,
and which roles or attributes are required.

Example Kubernetes Admission Controller Config:

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: opa-validation
webhooks:
- name: validation.openpolicyagent.org
 clientConfig:
 service:
 name: opa
 namespace: opa
 path: "/v1/data/kubernetes/authz/allow"
 rules:
 - operations: ["CREATE", "UPDATE"]
 apiGroups: ["*"]
 apiVersions: ["*"]
 resources: ["pods"]

Step 3: Test Real-Time Policy Enforcement

 Use kubectl or other clients to create resources and test the real-time application of policies.
Policies should automatically permit or deny requests based on defined rules, such as user
roles or attributes [30].

151

6.4. Implementing sentinel for ABAC in multi-cloud

Step 1: Define Sentinel Policies for ABAC

 In multi-cloud environments, Sentinel policies can enforce ABAC based on conditions like
department, job role, or environment type. Use logical expressions to define complex ABAC
rules that account for multiple attributes.

Step 2: Integrate Sentinel with Terraform for Infrastructure Provisioning

 Configure Sentinel policies to run whenever Terraform resources are provisioned or
modified, ensuring that access controls are applied consistently across resources.

Example Sentinel Policy to Enforce Departmental Access:

main = rule {
 requestor.department == "Engineering"
}

Step 3: Use Sentinel to Enforce Attribute-Based Controls Across Clouds

 Apply Sentinel policies across AWS and Azure environments by integrating Sentinel with
Terraform providers for each cloud. This allows organizations to enforce uniform ABAC
policies across platforms.

6.5. Logging and auditing for compliance

Step 1: Enable Centralized Logging of Policy Decisions

 Integrate OPA and Sentinel with a centralized logging solution, such as Elasticsearch or
AWS CloudWatch, to track all access requests and policy decisions. This setup provides an
auditable trail of access control decisions.

Step 2: Configure Alerting for Policy Violations

 Set up alerts to notify security teams of any unauthorized access attempts or policy
violations. For example, integrate OPA logs with Datadog or Prometheus to monitor access
control patterns in real-time and alert on suspicious activity.

Step 3: Maintain a Versioned History of Policies

 Version control all policy changes and keep records of updates. This history is essential for
auditability, allowing organizations to demonstrate how access policies evolved and to
investigate potential security incidents related to policy changes.

6.6. Best practices for PaC in RBAC and ABAC

 Separate Policy Definitions for Different Environments: Keep separate policies for
development, staging, and production to prevent test policies from affecting live
environments.

 Use Least Privilege: Design RBAC and ABAC policies based on the principle of least
privilege, granting the minimum necessary access required by roles or attributes.

152

 Automate Policy Updates: Establish a CI/CD pipeline to automate policy validation and
deployment. This automation minimizes manual errors and enforces consistent security
controls across environments.

 Regularly Test Policies: Schedule regular policy tests and simulations to ensure that
RBAC and ABAC controls remain effective as environments and access requirements
change over time.

Implementing PaC for RBAC and ABAC allows organizations to manage access control in a
scalable, automated, and auditable way. By defining PaC, integrating them into CI/CD pipelines,
enforcing them in real-time, and maintaining logs for compliance, PaC provides a robust
framework for secure access management in dynamic environments. The next section will explore
the outcomes, benefits, and limitations of implementing PaC for access control, based on case
studies and recent research findings [26].

7. Results and discussion

Implementing PaC for RBAC and ABAC offers measurable improvements in security, operational
efficiency, and compliance. By automating access control management, PaC enables organizations
to enforce policies consistently across dynamic environments, such as multi-cloud and Kubernetes
infrastructures. This section examines the outcomes of PaC implementations in terms of security,
scalability, compliance, and adaptability, as well as challenges and limitations identified during the
research [31].

7.1. Enhanced security and consistency

Results: With PaC, organizations achieved more consistent and reliable enforcement of access
control policies. The automation provided by PaC reduced manual interventions, minimizing the
risk of misconfiguration and unauthorized access.

Impact: Implementing PaC in dynamic environments like Kubernetes and multi-cloud setups
has significantly improved access security by ensuring that RBAC and ABAC policies are enforced
in real time. Organizations observed fewer access control incidents, such as privilege escalation and
policy drift, due to the version-controlled and testable nature of PaC.

Discussion: PaC’s versioning and automated validation allows for precise and transparent
control over policy changes. By deploying policies alongside application code, organizations
maintain security alignment with changing application requirements, creating a more agile
security approach.

7.2. Scalability and reduced operational overhead

Results: PaC enabled scalable management of RBAC and ABAC policies, even in environments
with a high volume of resources, roles, and users. Teams noted a significant reduction in the
operational burden associated with managing access controls manually.

Impact: By using PaC, organizations could scale their access control systems in line with their
infrastructure growth, without a corresponding increase in administrative overhead. Automated
policies reduced the need for constant manual updates and mitigated the risks of “role explosion”
in RBAC and attribute sprawl in ABAC.

Discussion: PaC frameworks, like Open Policy Agent (OPA) and HashiCorp Sentinel, allowed
teams to define and manage policies in a consistent, centralized format, making it easier to scale
access control policies across complex architectures. However, some organizations noted initial
setup challenges as they transitioned to code-based access management, particularly in aligning
policies across multiple cloud providers.

153

7.3. Continuous compliance and auditing

Results: PaC’s integration with CI/CD pipelines and centralized logging systems provided
organizations with a continuous compliance framework, automating audit trails and policy
validation processes. Real-time logging of access requests and policy enforcement decisions
enabled comprehensive auditing and traceability.

Impact: By maintaining a versioned history of all policy changes, PaC facilitated audit
readiness and regulatory compliance. Organizations operating in regulated industries, such as
healthcare and finance, observed improved compliance outcomes, as policies were automatically
validated against industry standards like GDPR and HIPAA.

Discussion: The ability to store policies in version control systems such as Git provided
transparency, traceability, and ease of auditing. PaC’s compatibility with CI/CD workflows ensured
that access control configurations were validated continuously, minimizing the risk of non-
compliance and allowing organizations to address regulatory requirements proactively.

7.4. Improved adaptability and real-time enforcement

Results: PaC empowered organizations to adopt policies in real-time, applying attribute-based
access controls that responded to contextual conditions, such as user location, device type, and
time. This adaptability allowed organizations to meet dynamic access control needs effectively.

Impact: Real-time enforcement was especially beneficial in environments where attributes
change frequently. For instance, in ABAC implementations, PaC allowed policies to adapt to
changes in user roles, environmental factors, and other attributes, enabling more granular and
responsive access control.

Discussion: PaC’s real-time adaptability is an advantage in cloud-native environments, where
rapid changes in infrastructure demand a flexible approach to access control. However, some
organizations encountered latency issues with attribute-heavy ABAC policies, indicating a need for
optimization to maintain performance at scale.

7.5. Limitations and challenges

While PaC significantly enhances access control capabilities, challenges remain in its
implementation and scalability. Key limitations encountered include:

7.5.1. Complexity in policy management

Issue: For organizations implementing attribute-based access control, the management of
attributes can become complex as the number of attributes grows. High attribute diversity often
requires highly specific policies, which can lead to “policy sprawl”.

Discussion: Although PaC offers tools for versioning and automation, managing numerous
detailed policies and attributes can be challenging in large-scale environments. Simplifying
attribute management, possibly through consolidated or hierarchical policies, could help mitigate
complexity and improve operational efficiency.

7.5.2. Initial setup and integration effort

Issue: Integrating PaC into existing CI/CD pipelines and infrastructure required a significant initial
setup effort, particularly for organizations new to policy automation. Setting up and configuring
tools like OPA and Sentinel involved custom configurations and, in some cases, additional training
for teams.

Discussion: The initial setup and learning curve may present challenges, especially for teams
that are less experienced in DevSecOps practices. Providing training or building templates for
common RBAC/ABAC configurations could streamline the adoption of PaC for access control.

154

7.5.3. Performance overhead in real-time policy evaluation

Issue: Organizations using attribute-heavy ABAC policies noted increased latency during policy
evaluations, especially in environments with real-time enforcement requirements. This latency
may impact user experience or system performance, particularly in high-demand applications.

Discussion: Optimizing policy evaluation processes, such as caching frequently accessed
policies or balancing attribute granularity, can help reduce latency. Additionally, some
organizations may need to evaluate the trade-offs between detailed, attribute-rich policies and
simpler, role-based policies for performance-critical applications.

7.6. Future directions and improvements

To address these challenges, future research and development in PaC should focus on:
Adaptive Policy Management: Developing methods to dynamically adjust policies based on

changing organizational and environmental contexts can improve the scalability and flexibility of
PaC for RBAC and ABAC.

Enhanced Integration with AI for Policy Optimization: Leveraging machine learning to
optimize policy decisions and identify anomalies can further enhance PaC’s ability to scale
effectively in complex environments. Also we can use methods of context analysis for optimizing
policies [32].

Unified Policy Frameworks for Multi-Cloud Environments: Establishing unified policy
standards for multi-cloud setups would simplify policy management and enforcement across
diverse platforms, reducing integration overhead and ensuring consistent access control.
PaC provides a powerful framework for implementing RBAC and ABAC in distributed, cloud-
native, and multi-cloud environments. By automating policy management, ensuring real-time
enforcement, and enabling continuous compliance, PaC improves security, scalability, and
suitability for access control systems. While challenges related to complexity, integration, and
performance persist, ongoing developments in PaC tools and methods offer promising solutions for
addressing these limitations. The final section will summarize the main findings, highlighting the
advantages and future potential of PaC for access control in dynamic environments [33].

Conclusions

As organizations adopt increasingly complex, cloud-native architectures, the need for scalable,
flexible, and automated access control mechanisms has become paramount. PaC represents a
transformative approach to access control, enabling organizations to define, enforce, and manage
RBAC and ABAC policies through automated, code-driven processes. This research has explored
the benefits of implementing PaC for RBAC and ABAC, emphasizing its impact on security,
scalability, compliance, and adaptability in dynamic environments.

PaC’s ability to integrate with CI/CD pipelines has made continuous compliance a reality,
providing automated policy validation and real-time policy enforcement across cloud and multi-
cloud environments. By managing policies in code, organizations gain the advantages of version
control, collaborative change management, and comprehensive audit trails, all of which contribute
to a more transparent and compliant access control framework. Additionally, the real-time
adaptability offered by PaC allows organizations to implement context-aware policies that respond
dynamically to changes in user roles, attributes, and environmental conditions, further enhancing
security in high-demand applications.

Despite its advantages, PaC presents challenges that organizations must address, such as
managing the complexity of attribute-heavy policies in ABAC, optimizing policy evaluation for
high-performance applications, and overcoming the initial integration effort required for CI/CD
environments. As PaC continues to evolve, future developments—such as adaptive policy
management and AI-enhanced policy optimization—promise to address these limitations, making
PaC even more accessible and effective in a wider range of use cases.

155

In conclusion, PaC offers a robust framework for modern access control, enabling organizations to
enforce RBAC and ABAC policies at scale, with enhanced security, compliance, and efficiency. As
organizations continue to navigate the demands of cloud-native infrastructures, PaC provides a
scalable solution to automate, simplify, and strengthen access control, laying the groundwork for a
more secure and adaptable future in access management.

Declaration on Generative AI

While preparing this work, the authors used the AI programs Grammarly Pro to correct text
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors
reviewed and edited the content as needed and took full responsibility for the publication’s content.

References

[1] M. Iavich, et al., Classical and post-quantum encryption for GDPR, in: Classic, Quantum, and
Post-Quantum Cryptography, vol. 3829 (2024) 70–78.

[2] S. Shevchenko, et al., Protection of information in telecommunication medical systems based
on a risk-oriented approach, in: Workshop on Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3421 (2023) 158–167.

[3] P. Skladannyi, et al., Improving the security policy of the distance learning system based on
the zero trust concept, in: Cybersecurity Providing in Information and Telecommunication
Systems, vol. 3421 (2023) 97–106.

[4] O. Vakhula, I. Opirskyy, O. Mykhaylova, Research on security challenges in cloud
environments and solutions based on the “Security-as-Code” approach, in: Cybersecurity
Providing in Information and Telecommunication Systems II, vol. 3550, 2023, 55–69.

[5] O. Vakhula, et al., Security-as-code concept for fulfilling ISO/IEC 27001:2022 requirements, in:
in: Cybersecurity Providing in Information and Telecommunication Systems, vol. 3654, 2024,
59–72.

[6] Palo alto what is secuirty as a code, 2024. URL: https://www.paloaltonetworks.com/
cyberpedia/what-is-policy-as-code

[7] D. F. Ferraiolo, D. R. Kuhn, Role-based access controls, arXiv, 2009. doi:10.48550/
arXiv.0903.2171

[8] E. Yuan, J. Tong, Attributed based access control (ABAC) for Web services, in: IEEE
International Conference on Web Services (ICWS’05), 2005. doi:10.1109/ICWS.2005.25

[9] Gartner Research 2022, Policy as Code’ to Secure Application Deployments and Enforce
Compliance, 2024.

[10] S. Raban, The Dark Side of Domain-Specific Languages: Uncovering New Attack Techniques
in OPA and Terraform, 2024.

[11] T. Baumer, M. Mueller, G. Pernul, System for Cross-domain Identity Management (SCIM):
Survey and Enhancement with RBAC, IEEE Access 11 (2023) 86872–86894.
doi:10.1109/ACCESS.2023.3304270

[12] S. Aboukadri, A. Ouaddah, A. Mezrioui, Boosted-3R: Towards a novel framework for inferring
ABAC policies, 2024.

[13] A. Biswas, G. Baranwal, A. Tripathi, ABAC: Alternative by alternative comparison based
multi-criteria decision making method, Expert Syst. Appl. 208 (2022).
doi:10.1016/j.eswa.2022.118174

[14] B. Lee, Using open policy agent (OPA) to apply policy-as-code to infrastructure-as-code, 2022.
URL: https://cloudsecurityalliance.org/blog/2020/04/02/using-open-policy-agent-opa-to-apply-
policy-as-code-to-infrastructure-as-code/

[15] M. Sánchez-Gordón, R. Colomo-Palacios, Security as culture: A systematic literature review of
DevSecOps, in: ICSEW’20: Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, 2020, 266–269. doi:10.1145/3387940.3392233

156

https://doi.org/10.1145/3387940.3392233
https://cloudsecurityalliance.org/blog/2020/04/02/using-open-policy-agent-opa-to-apply-policy-as-code-to-infrastructure-as-code/
https://cloudsecurityalliance.org/blog/2020/04/02/using-open-policy-agent-opa-to-apply-policy-as-code-to-infrastructure-as-code/
https://doi.org/10.1016/j.eswa.2022.118174
https://doi.org/10.1109/ACCESS.2023.3304270
https://doi.org/10.1109/ICWS.2005.25
https://doi.org/10.48550/arXiv.0903.2171
https://doi.org/10.48550/arXiv.0903.2171
https://www.paloaltonetworks.com/cyberpedia/what-is-policy-as-code
https://www.paloaltonetworks.com/

[16] Guest Expert on GitGuardian, What is policy-as-code? An introduction to open policy agent,
2022. URL: https://blog.gitguardian.com/what-is-policy-as-code-an-introduction-to-open-
policy-agent/

[17] W. Salami, HashiCorp Sentinel: An introduction, 2024. URL: https://www.globallogic.com/
uki/insights/blogs/hashicorp-sentinel-an-introduction/

[18] X. Zhang, Cloud governance and compliance on AWS with policy as code, 2021. URL:
https://aws.amazon.com/ru/blogs/opensource/cloud-governance-and-compliance-on-aws-
with-policy-as-code/

[19] M. Ferris, A Comprehensive Guide to Automated Testing for CI/CD Pipelines, 2023. URL:
https://qameta.io/blog/automated-testing-ci-cd-guide/

[20] Y. Kurii, I. Opirskyy, L. Bortnik, ISO/IEC 27001:2022. Analysis of changes and compliance
features of the new version of the standard, in: 9 th International Scientific and Technical
Conference Information Protection and Information Systems Security, 2023, 15–17.

[21] O. Vakhula, I. Opirskyy, Research on security as code approach for cloud-native applications
based on Kubernetes clusters, in: Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3800, 2024, 58–69.

[22] Policy as code in Kubernetes: security with seccomp & network policies, ArmoSec, 2024. URL:
https://www.armosec.io/blog/policy-as-code-in-kubernetes-security-seccomp-and-network-
policies/

[23] R. Ferreira, Policy design in the age of digital adoption: Explore how PolicyOps can drive
policy as code adoption in an organization’s digital transformation 1st Edition, Packt
Publishing, 2022.

[24] Hashicorp Sentinel Documentation, 2024. URL: https://developer.hashicorp.com/sentinel/docs
[25] V. Khoma, et al., Comprehensive Approach for Developing an Enterprise Cloud Infrastructure,

in: Cybersecurity Providing in Information and Telecommunication Systems, vol. 3654, 2024,
201–215.

[26] S. I. Shamim, F. A. Bhuiyan, A. Rahman, XI Commandments of Kubernetes security: A
systematization of knowledge related to Kubernetes security practices, in: 2020 IEEE Secure
Development (SecDev), 2020, 58–64. doi:10.1109/SecDev45635.2020.00025

[27] Y. Martseniuk, et al., Shadow IT risk analysis in public cloud infrastructure, in: Cyber Security
and Data Protection, vol. 3800, 2024, 22–31.

[28] Y. Martseniuk, et al., Universal centralized secret data management for automated public cloud
provisioning, in: Cybersecurity Providing in Information and Telecommunication Systems II,
vol. 3826, 2024, 72–81.

[29] B. Burns, et al., Borg, Omega, and KUBERNETES, Queue 14(1) (2016) 70–93.
doi:10.1145/2898442.2898444

[30] Y. Martseniuk, et al., Automated conformity verification concept for cloud security, in: Cyber-
security Providing in Information and Telecommunication Systems, vol. 3654, 2024, 25–37.

[31] Y. Dreis, et al., Restricted Information Identification Model, in: Cybersecurity Providing in
Information and Telecommunication Systems Vol. 3288 (2022) 89–95.

[32] S. Yevseiev, et al., Development of a method for determining the indicators of manipulation
based on morphological synthesis, Eastern-European J. Enterp. Technol. 3(9(117)) (2022) 22–35.
doi:10.15587/1729-4061.2022.258675

[33] D. Shevchuk, et al., Designing secured services for authentication, authorization, and
accounting of users, in: Cybersecurity Providing in Information and Telecommunication
Systems II, vol. 3550, 2023, 217–225.

157

https://doi.org/10.15587/1729-4061.2022.258675
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1109/SecDev45635.2020.00025
https://developer.hashicorp.com/sentinel/docs
https://www.armosec.io/blog/policy-as-code-in-kubernetes-security-seccomp-and-network-policies/
https://www.armosec.io/blog/policy-as-code-in-kubernetes-security-seccomp-and-network-policies/
https://qameta.io/blog/automated-testing-ci-cd-guide/
https://aws.amazon.com/ru/blogs/opensource/cloud-governance-and-compliance-on-aws-with-policy-as-code/
https://aws.amazon.com/ru/blogs/opensource/cloud-governance-and-compliance-on-aws-with-policy-as-code/
https://www.globallogic.com/uki/insights/blogs/hashicorp-sentinel-an-introduction/
https://www.globallogic.com/
https://blog.gitguardian.com/what-is-policy-as-code-an-introduction-to-open-policy-agent/
https://blog.gitguardian.com/what-is-policy-as-code-an-introduction-to-open-policy-agent/

	1. Introduction
	2. Literature and recent research review
	3. Challenges in Implementing RBAC and ABAC in dynamic environments
	3.1. Scalability and complexity
	3.2. Dynamic policy requirements
	3.3. Auditability and compliance
	3.4. Performance and resource constraints
	3.5. Complexity of cross-platform and multi-cloud environments

	4. Policy-as-code for RBAC and ABAC
	4.1. Automated policy enforcement
	4.2. Policy versioning and change management
	4.3. Tools for policy-as-code in RBAC and ABAC
	4.4. Policy validation and testing
	4.5. Compliance and auditability
	4.6. Real-time policy enforcement and adaptability

	5. Case studies and tools
	5.1. Case study 1: RBAC implementation in Kubernetes with open policy agent
	5.2. Case study 2: ABAC implementation for data access control with HashiCorp Sentinel
	5.3. Case study 3: Multi-cloud ABAC for dynamic data access using AWS IAM and OPA
	5.4. Tools Overview and Setup

	6. Practical implementation guide
	6.1. Defining and managing policies-as-code
	6.2. Integrating PaC with CI/CD pipelines
	6.3. Configuring real-time enforcement with OPA
	6.4. Implementing sentinel for ABAC in multi-cloud
	6.5. Logging and auditing for compliance
	6.6. Best practices for PaC in RBAC and ABAC

	7. Results and discussion
	7.1. Enhanced security and consistency
	7.2. Scalability and reduced operational overhead
	7.3. Continuous compliance and auditing
	7.4. Improved adaptability and real-time enforcement
	7.5. Limitations and challenges
	7.5.1. Complexity in policy management
	7.5.2. Initial setup and integration effort
	7.5.3. Performance overhead in real-time policy evaluation

	7.6. Future directions and improvements

	Conclusions
	Declaration on Generative AI
	References

