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Abstract
The  growing  adoption  of  cloud-native  and  microservices  architectures  has  revolutionized  how 
organizations  deploy  and  manage  applications,  bringing  enhanced  scalability,  agility,  and  speed. 
However,  these  advancements  also  introduce  significant  challenges  in  managing  access  control  in 
dynamic,  distributed environments.  Traditional  access  control  models  like  Role-Based Access  Control 
(RBAC) and Attribute-Based Access Control (ABAC) are foundational to securing sensitive resources but  
often struggle to scale and adapt to the complex, rapidly evolving demands of cloud infrastructures. RBAC 
systems face issues such as “role explosion”, while ABAC systems can become unmanageable due to the 
increasing complexity of attribute combinations.  These challenges necessitate innovative solutions for  
consistent, scalable, and automated access control management. Policy-as-Code (PaC) has emerged as a 
transformative  approach  to  address  these  challenges  by  codifying  access  control  policies,  enabling 
automation,  scalability,  and  real-time  adaptability.  PaC  integrates  seamlessly  into  modern  DevOps 
practices, allowing RBAC and ABAC policies to be managed, tested, and enforced as code within CI/CD 
pipelines. This approach ensures consistent policy enforcement across diverse environments, improves 
transparency  and  auditability  through  version  control,  and  facilitates  compliance  with  regulatory 
standards like GDPR, HIPAA, and PCI DSS. Tools such as Open Policy Agent (OPA) and HashiCorp 
Sentinel play pivotal roles in implementing PaC, providing granular control and automation for complex 
policy requirements. This research explores the integration of PaC with RBAC and ABAC in cloud-native 
infrastructures,  addressing  key  challenges  such  as  scalability,  compliance,  and  cross-cloud 
interoperability. It includes a comprehensive review of recent literature, practical implementation guides,  
and  real-world  case  studies  demonstrating the  application of  PaC for  automated access  control.  The 
findings  highlight  how organizations  can  achieve  continuous  compliance,  operational  efficiency,  and 
enhanced security by adopting PaC. For instance, the study outlines strategies for reducing operational  
overhead through automated policy validation and enforcement, mitigating risks of misconfigurations,  
and ensuring dynamic, context-aware access control. The research also identifies challenges associated 
with  PaC  adoption,  including  initial  setup  complexity,  performance  overhead  in  attribute-heavy 
environments, and managing policy sprawl in large-scale systems. It proposes future research directions,  
such  as  leveraging  AI  for  adaptive  policy  optimization,  enhancing  real-time  policy  evaluation,  and 
developing unified frameworks for multi-cloud environments. In conclusion, this study establishes PaC as  
a robust framework for implementing scalable and adaptive RBAC and ABAC in cloud-native and multi-
cloud environments. By automating policy management and integrating access control into the software 
development lifecycle, PaC empowers organizations to meet the demands of modern infrastructures while 
ensuring  security,  compliance,  and  operational  agility.  This  work  provides  actionable  insights  for  
practitioners and researchers seeking to leverage PaC for effective access control management.
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1. Introduction

Organizations are increasingly adopting cloud-native and microservices architectures to enhance 
scalability,  agility,  and  speed  of  deployment.  However,  as  these  environments 
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growmailto:orest.bobko.mkbas.2024@lpnu.ua,  the  challenge  of  managing  and  enforcing  access 
control  becomes  more  complex.  Established  access  control  models,  such as  RBAC and ABAC, 
remain crucial for ensuring that sensitive resources are accessible only to authorized users and 
services.

Yet,  implementing  these  models  in  distributed,  dynamic  infrastructures  poses  significant 
challenges, particularly in terms of scalability, granularity, and adaptability.

RBAC  has  long  been  the  foundation  of  access  control,  assigning  permissions  based  on 
predefined roles.  However,  in large-scale,  distributed environments,  the sheer volume of users, 
roles, and permissions can overwhelm conventional RBAC systems. Meanwhile, ABAC introduces 
a more granular approach, allowing access decisions based on user attributes, resource attributes, 
and environmental factors. While ABAC provides flexibility, it also increases complexity, as access 
policies must account for a wide range of attributes and conditions.

To  address  these  challenges,  PaC  has  emerged  as  a  transformative  approach,  enabling  the 
automation and codification of access control policies within development pipelines. PaC allows 
RBAC and ABAC policies to be defined,  enforced,  and managed as code,  providing consistent, 
scalable, and adaptive access control across cloud environments. Through PaC, organizations can 
implement access control policies that are versioned, tested, and deployed alongside application 
code, ensuring alignment with changing application requirements and compliance standards.

In addition to enabling automation, PaC facilitates continuous compliance and auditability. By 
maintaining a versioned history of policy changes, organizations can ensure that access control  
decisions are transparent, traceable, and easy to review for compliance with regulations such as  
GDPR [1],  HIPAA [2],  and PCI  DSS [3].  Tools  like  Open Policy Agent  (OPA)  and HashiCorp 
Sentinel have become popular for implementing PaC, offering the flexibility to enforce both RBAC 
and ABAC in dynamic environments.

This  research  aims  to  explore  how  PaC  can  streamline  and  strengthen  access  control  in 
distributed environments, with a specific focus on RBAC and ABAC implementations. The paper 
will investigate the key challenges in applying these access control models within cloud-native 
infrastructures,  evaluate  the  benefits  of  using  PaC  to  manage  and  enforce  these  policies  and 
provide a practical implementation guide using tools like OPA and Sentinel. By examining real-
world case studies and assessing the limitations and advantages of PaC, this research seeks to 
establish a framework for implementing scalable, compliant, and adaptive access control through 
PaC.

2. Literature and recent research review

The fast shift toward cloud-native environments has brought increased attention to the scalability 
and  flexibility  of  access  control  models.  PaC is  now widely  discussed  in  the  literature  as  an 
innovative solution for implementing complex access control policies in distributed systems [4, 5]. 
This  section provides an overview of  foundational  research and recent  and older  studies,  that 
explore PaC, RBAC, and ABAC.

PaC emerged from the DevOps and Infrastructure-as-Code (IaC) paradigms, which advocate for 
the codification of infrastructure and configurations to enable versioning, automated testing, and 
consistent deployments [6].

PaC extends these principles to security and access control, allowing policies to be codified, 
tested, and managed as part of the software lifecycle. PaC has since gained popularity as a method 
for  defining  and  enforcing  security  controls  across  distributed  environments,  particularly  for 
organizations adopting microservices and serverless architectures.

RBAC was formally introduced in the 1990’s as a solution to simplify access management by 
assigning permissions based on user roles [7]. RBAC has since been widely adopted in enterprise 
environments due to its simplicity and ease of implementation. However, recent studies point out  
limitations in scalability and flexibility when applied to dynamic, cloud-native environments. 
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ABAC, on the other hand, offers a more flexible approach by basing access decisions on a set of  
attributes related to the user, resource, and environment [8].
The integration of PaC with RBAC and ABAC models offers promising solutions to address the 
challenges associated with access control in cloud-native environments. Open Policy Agent (OPA) 
has become a leading tool in this area, providing a declarative language, Rego, for defining PaC. 

Moreover, Gartner Research identifies PaC as a critical component for achieving continuous 
compliance, especially for organizations operating in regulated industries. Their report suggests 
that by integrating PaC with identity and access management (IAM) solutions, organizations can 
achieve a unified and automated approach to compliance that reduces the risk of human error and 
regulatory violations [9].

While the benefits of PaC for implementing RBAC and ABAC are well-documented, researchers 
have identified several limitations and problems. Languages that can simplify the management of 
attribute-based policies in large-scale environments can have some weaknesses. The paper on the 
Tenable blog highlights vulnerabilities  associated with domain-specific  languages (DSLs),  using 
Open  Policy  Agent  (OPA)  as  a  case  study,  and  explores  how  attackers  can  exploit  poorly 
implemented policies or misconfigurations in these systems [10].

Future research should focus on developing adaptive PaC frameworks that can dynamically 
adjust policies based on changing contextual factors, such as user behavior or network conditions.  
Additionally,  the  integration  of  machine  learning  techniques  with  PaC  holds  promise  for 
automatically detecting and mitigating potential policy misconfigurations or security threats, an 
area that is still underexplored.

3. Challenges in Implementing RBAC and ABAC in dynamic 
environments

In distributed, cloud-native, and microservices architectures, managing access control presents a 
complex set of challenges. RBAC and ABAC have been widely adopted to ensure that users can 
access only the resources they are authorized to use. However, when applied to dynamic and large-
scale  environments,  traditional  implementations  of  RBAC  and  ABAC  face  several  significant 
limitations [11].

3.1. Scalability and complexity

 RBAC Complexity in Large-Scale Systems: As organizations grow, the number of roles 
and  permissions  required  to  control  access  can  become  overwhelming.  In  dynamic 
environments, where services, users, and resources frequently change, managing a vast set  
of static roles can lead to a “role explosion.” This situation occurs when the system requires  
an  excessive  number  of  roles  to  accommodate  diverse  and  evolving  access  needs.  For 
example,  in  large  organizations,  a  single  user  might  belong  to  multiple  departments, 
projects, or teams, each with distinct access requirements [12].

 ABAC Attribute Management: ABAC is designed for flexibility, allowing access based on 
a combination of attributes such as user role, location, time, and device type. However, as  
attribute-based policies  grow more  complex,  they can become difficult  to  manage.  The 
number of potential combinations of attributes can quickly escalate, making it challenging 
to  track,  update,  and  validate  all  possible  policies.  This  complexity  can  lead  to 
administrative  overhead  and  increased  risk  of  misconfiguration,  especially  in  highly 
dynamic environments like microservices architectures [13].

3.2. Dynamic policy requirements

 Frequent Policy Changes: Cloud-native environments are highly dynamic, with frequent 
changes  in  user  roles,  application  states,  and  resource  configurations.  In  such 
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environments,  access  policies  must  be  regularly  updated  to  reflect  current  conditions. 
Traditional RBAC systems, which rely on static roles and permissions, struggle to adapt to  
these  changes  without  significant  manual  intervention.  ABAC  is  more  adaptable,  but 
managing attribute changes manually across distributed services is both time-consuming 
and error-prone.

 Context-Aware  Policies:  Dynamic  environments  often  require  context-aware  policies 
that adapt based on real-time factors, such as a user’s location, device, or time of access. For 
example, an ABAC policy may allow access to sensitive data only if the request is made 
within  a  specific  network  range  or  during  certain  hours.  Managing  these  conditional 
policies at scale is challenging, as it requires continuous monitoring of contextual factors 
and prompt enforcement of access rules based on changes in the environment.

3.3. Auditability and compliance

 Lack  of  Policy  Transparency:  Ensuring  compliance  with  industry  standards  and 
regulatory  requirements,  such as  GDPR,  HIPAA,  or  PCI  DSS,  demands  a  high  level  of  
transparency in access control policies. Traditional RBAC and ABAC implementations may 
not  provide  adequate  visibility  into  policy  changes,  making  it  difficult  to  demonstrate 
compliance or to perform audits. PaC offers some relief by enabling version control and 
audit trails for policy changes, but implementing this at scale remains complex.

 Audit and Reporting Overhead: In distributed systems, access control policies often need 
to  be  enforced  across  multiple  services  and  locations,  each  with  its  own  logging  and 
auditing mechanisms. Gathering and consolidating these logs to produce a unified access 
report  is  challenging.  The lack of  centralized visibility  can make it  difficult  to  identify 
unauthorized  access  or  policy  violations,  increasing  the  risk  of  non-compliance  with 
regulations and standards.  Implementing a comprehensive audit trail  requires additional 
resources and tools, which can be costly and time-consuming.

3.4. Performance and resource constraints

 Latency in Policy Enforcement: Dynamic environments require that access policies be 
enforced in real-time. However, implementing complex RBAC and ABAC policies across 
distributed  systems  can  introduce  latency,  especially  when  policy  evaluation  involves 
numerous  attributes  or  complex  conditional  logic.  This  latency  can  impact  the  user 
experience or slow down application performance, which is a significant concern for high-
demand environments.

 Resource Consumption: The enforcement of attribute-based policies, particularly those 
with context-aware conditions, requires continuous monitoring of environmental factors 
and  frequent  evaluation  of  access  rules.  This  can  consume  significant  computational 
resources,  especially  in  large-scale  environments  where  multiple  attributes  must  be 
evaluated for each access request. High resource consumption not only affects performance 
but also increases operational costs, making it challenging to implement ABAC effectively 
in cost-sensitive environments.

3.5. Complexity of cross-platform and multi-cloud environments

 Inconsistent Policy Management: Organizations often use multiple cloud providers and 
platforms  to  meet  their  business  needs.  Implementing  RBAC  and  ABAC  across  these 
platforms  introduces  complexity,  as  each  provider  may  have  different  access  control 
mechanisms,  policy  languages,  and enforcement  strategies.  Coordinating policies  across 
platforms can lead to inconsistencies, where policies are properly enforced on one platform 
but not on others.
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 Interoperability Challenges: In multi-cloud or hybrid cloud environments, ensuring that 
access control policies work seamlessly across different platforms is a significant challenge. 
For  instance,  a  policy  defined  in  one  cloud  provider’s  format  may  not  be  directly 
translatable to another provider’s system. The lack of interoperability between platforms 
can make it difficult to implement consistent RBAC or ABAC policies, increasing the risk of 
unauthorized access or inconsistent policy enforcement.

Implementing  RBAC and  ABAC in  dynamic  environments  is  a  complex  task  that  requires 
addressing scalability, adaptability, and transparency issues, among others. PaC offers promising 
solutions to many of these challenges by allowing policies to be codified, versioned, and deployed 
across distributed systems in an automated and consistent manner.  However,  as discussed, the  
effective integration of PaC with RBAC and ABAC models remains a challenge in dynamic, multi-
cloud environments. The next sections of this paper will explore how PaC can help overcome these 
challenges,  providing  an  adaptable  and  scalable  approach  to  access  control  in  modern 
infrastructures [14].

4. Policy-as-code for RBAC and ABAC

PaC enables organizations to define, manage, and enforce access control policies in a code-based 
format,  offering consistency,  scalability,  and automation in modern infrastructures  [15].  When 
applied  to  RBAC and ABAC,  PaC brings  automation and flexibility  to  these traditional  access 
models,  addressing  many  of  the  challenges  associated  with  managing  access  in  dynamic, 
distributed environments. This section explores how PaC transforms RBAC and ABAC into more 
adaptable and manageable models and discusses the primary benefits of this approach.

4.1. Automated policy enforcement

 Consistency  Across  Environments:  In  distributed  and  multi-cloud  environments, 
maintaining consistent access control policies can be difficult. By defining RBAC and ABAC 
policies  as  code,  PaC  enables  organizations  to  apply  the  same  policies  across  diverse 
environments, ensuring that access controls are consistently enforced. This automation also 
reduces the risk of discrepancies or misconfigurations between environments, a common 
issue in large-scale deployments.

 Continuous Policy Enforcement:  PaC integrates with CI/CD pipelines,  ensuring that 
access policies are continuously validated and deployed alongside application code. Any 
changes to access control policies can be tested and enforced automatically, providing real-
time  policy  updates  without  manual  intervention.  This  continuous  enforcement  is 
especially  beneficial  for  ABAC,  where  contextual  attributes  may  change  frequently, 
requiring policies to adapt dynamically [16].

4.2. Policy versioning and change management

 Version Control for Policies: Storing RBAC and ABAC policies as code allows them to be 
managed in version control systems (e.g., Git), enabling teams to track and audit changes 
over time. Versioning provides a historical record of policy updates, allowing organizations 
to roll back to previous policy states if needed. This capability is crucial for compliance, as  
it  ensures  that  organizations  can  document  access  control  changes  and  demonstrate 
adherence to regulatory requirements.

 Collaborative  Change  Management:  With  PaC,  policy  updates  follow  the  same 
processes  as  software  development,  including  code  review  and  testing.  This  enables 
collaborative change management, where security teams, developers, and DevOps teams 
can  work  together  to  define  and  refine  access  policies.  Through  this  approach, 
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organizations can ensure that policies are well-tested and approved before being deployed, 
reducing the risk of unintended access control changes.

4.3. Tools for policy-as-code in RBAC and ABAC

 Open Policy Agent (OPA): OPA is a popular open-source tool for defining and enforcing 
policies in cloud-native environments.  Using its  declarative policy language,  Rego, OPA 
enables organizations to write RBAC and ABAC policies as code, which can be integrated 
across  various  services  (e.g.,  Kubernetes,  CI/CD  pipelines).  OPA’s  flexibility  makes  it 
suitable  for  both RBAC and ABAC, allowing fine-grained control  over  access decisions 
based on user roles and attributes [17].

 HashiCorp  Sentinel:  HashiCorp  Sentinel  is  a  policy  as  code  framework  designed  to 
enforce policies in HashiCorp’s suite of products, such as Terraform and Vault. Sentinel 
supports both RBAC and ABAC implementations, making it ideal for organizations using 
HashiCorp’s ecosystem. Sentinel enables administrators to define access control policies in 
a  code-based  format,  which  can  be  applied  across  infrastructure  resources,  providing 
consistent and automated access control [18].

 AWS IAM Policies: For organizations using AWS, Identity and Access Management (IAM) 
offers built-in support for PaC through JSON-based policy documents. These policies can be 
defined  for  both  RBAC  and  ABAC  models,  allowing  administrators  to  set  role-  and 
attribute-based permissions for users and services within AWS. IAM policies integrate well  
with AWS’s ecosystem and provide a  straightforward way to enforce access control  in 
cloud-native applications [19].

4.4. Policy validation and testing

 Automated Policy Testing in CI/CD Pipelines: One of the key benefits of PaC is the 
ability to test access policies as part of CI/CD workflows. By embedding policy tests in the 
pipeline, organizations can validate that RBAC and ABAC policies are configured correctly 
before deployment. For example, policies can be tested to ensure that only authorized users 
have access to specific resources or that attribute-based conditions are applied correctly 
[20].

 Policy  Simulation  and  Validation:  Tools  like  OPA offer  simulation  capabilities  that 
allow administrators to test policies in a sandbox environment. This feature is particularly 
useful  for  ABAC,  where  policies  can  be  complex  due  to  the  combination  of  multiple 
attributes.  By simulating policies  before  they are  applied,  organizations  can verify  that 
access controls work as intended, reducing the risk of misconfigurations.

4.5. Compliance and auditability

 Auditable Policy History: PaC enables organizations to maintain a comprehensive record 
of  policy  changes,  which  is  essential  for  demonstrating  compliance  with  regulatory 
standards. By version-controlling access policies, organizations can provide auditors with a 
traceable history of policy updates, showing how access decisions were made over time. 
This level of transparency is beneficial for meeting compliance requirements, especially in 
regulated industries like finance and healthcare.

 Automated Compliance Checks: PaC facilitates automated compliance validation, where 
policies are continuously checked against regulatory standards. By integrating compliance 
checks into CI/CD pipelines, organizations can ensure that their RBAC and ABAC policies 
meet  industry  standards  before  deployment.  For  example,  policies  can  be  validated  to 
confirm  that  access  restrictions  align  with  GDPR,  HIPAA,  PCI  DSS,  or  ISO  27001 
requirements, reducing the risk of non-compliance [21].
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4.6. Real-time policy enforcement and adaptability

 Dynamic Policy Adaptation: In environments where user roles or attributes frequently 
change,  PaC enables  real-time  policy  adaptation  to  ensure  that  access  controls  remain 
relevant. For ABAC, which depends on attributes like user location, device type, or time of 
day, PaC provides the flexibility to enforce policies based on current conditions. This real-
time  adaptability  reduces  the  administrative  burden  of  manually  updating  policies  in 
response to changing conditions.

 Proactive  Incident  Response:  PaC  allows  organizations  to  enforce  security  policies 
proactively,  triggering  incident  response  protocols  when  policy  violations  occur.  For 
example, if an ABAC policy detects an access attempt from an unauthorized location, the 
system  can  automatically  revoke  access  or  alert  the  security  team.  This  proactive 
enforcement strengthens security by enabling rapid responses to potential threats.

PaC  transforms  RBAC  and  ABAC  from  static,  manually  managed  models  into  flexible, 
automated  systems  capable  of  adapting  to  dynamic,  cloud-native  environments.  By  enabling 
versioning,  testing,  and  real-time  enforcement,  PaC  addresses  many  of  the  scalability  and 
compliance challenges inherent in traditional access control implementations. The integration of 
tools like Open Policy Agent, HashiCorp Sentinel, and AWS IAM further enhances the ability to 
manage  and  enforce  access  control  policies  as  code,  bringing  consistency,  auditability,  and 
scalability to access control in distributed environments [22].

5. Case studies and tools

This section presents real-world examples of implementing PaC for RBAC and ABAC using leading 
tools.  Each  case  study provides  technical  insights  into  how PaC helps  automate,  enforce,  and 
manage access control policies within dynamic environments. Additionally, we explore specific 
tools such as Open Policy Agent (OPA), HashiCorp Sentinel, and AWS IAM, detailing their setup 
and configurations for RBAC and ABAC.

5.1. Case study 1: RBAC implementation in Kubernetes with open policy agent

 Context:  A  financial  services  organization  deployed  a  multi-tenant  Kubernetes 
environment to support microservices. They needed a secure and scalable way to enforce 
RBAC policies, ensuring that each service could only access resources within its designated 
namespace.

 Challenge: Kubernetes’s native RBAC lacked the granularity required for fine-tuned role 
management across tenants. Additionally, managing roles at scale for hundreds of services 
presented a risk of misconfiguration and permission sprawl.

 Solution:  The  organization  integrated  Open  Policy  Agent  (OPA) with  Kubernetes, 
defining policies using the Rego language to enforce role-based permissions on resources 
within each namespace.

Technical Details:

 Policy Definition: RBAC policies were written in OPA’s Rego language. Each policy was 
stored as code in a Git repository and managed through CI/CD pipelines.
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 Sample Rego Policy:

package kubernetes.authz

allow {
    input.user.roles[_] == "dev-role"
    input.resource.namespace == "development"
    input.verb == "get"
    input.resource.kind == "pod"
}

This policy allows users with the dev-role to perform get operations on pod resources within 
the development namespace.

 OPA  Integration  with  Kubernetes:  OPA  was  deployed  as  an  admission  controller, 
intercepting  requests  to  the  Kubernetes  API  server.  When  a  request  was  made,  OPA 
evaluated the Rego policies and allowed or denied access based on the defined RBAC rules  
[23, 24].

 Automated  Testing  and  Validation:  Policy  changes  were  version-controlled,  with 
automated tests in CI/CD to validate access rules before deployment. This setup allowed the 
organization to detect and fix policy misconfigurations before applying them to the live 
environment.

5.2. Case study 2: ABAC implementation for data access control with HashiCorp 
Sentinel

 Context:  A  healthcare  provider  requires  ABAC  to  secure  patient  data  based  on  user 
attributes,  such as  job  role,  department,  and access  time.  This  setup ensured that  only 
authorized healthcare personnel could view sensitive information under specific conditions.

 Challenge: Ensuring fine-grained control over data access in a multi-cloud environment, 
while enabling real-time access adjustments based on changing attributes (e.g., location).

 Solution: The organization used  HashiCorp Sentinel within their IaC setup, managing 
access control for data stored in AWS S3 and GCP buckets.

Technical Details:

 Policy  Definition:  Sentinel  policies  were  written  to  define  conditions  for  accessing 
sensitive resources based on user attributes.  For example,  access to patient records was 
restricted to healthcare professionals during their shift hours and only within designated 
facilities.

 Sample Sentinel Policy:

import "strings"

main = rule {
    // Allow access if the requestor's job role includes "nurse" or "doctor"
    strings.contains(requestor.job_role, "nurse") or
    strings.contains(requestor.job_role, "doctor")
    // Restrict access to specific IP ranges for hospital facilities
    and requestor.ip_address in ["10.0.0.0/24", "10.1.0.0/24"]
    // Ensure access during working hours (8am - 8pm)
    and time.now.hour >= 8 and time.now.hour <= 20
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}

This policy restricts access based on role, IP address, and time, allowing healthcare personnel to  
access records within working hours and specific network locations [25].

 Real-Time Enforcement: The Sentinel policy engine was integrated into the provider’s 
cloud  environment  using  HashiCorp’s  Terraform  for  IaC,  enforcing  policies  each  time 
infrastructure or IAM roles were provisioned or updated. Changes to user attributes (e.g., IP 
address) triggered an automatic re-evaluation of access permissions.

 Logging  and  Auditing:  Sentinel  logs  were  stored  centrally  and  integrated  with  the 
healthcare provider’s logging infrastructure, providing a complete audit trail for all access 
decisions based on ABAC policies.

5.3. Case study 3: Multi-cloud ABAC for dynamic data access using AWS IAM and 
OPA

 Context: A global e-commerce company needed to secure customer data across AWS and 
Azure.  The  organization  required  ABAC to  restrict  access  based  on  attributes  such  as  
department, project, and user location, with automated enforcement across both clouds.

 Challenge:  Coordinating  access  policies  across  multiple  cloud  environments  while 
ensuring consistency and security in data access.

 Solution: The company used AWS IAM for defining JSON-based policies for ABAC within 
the  AWS environment,  while  Open Policy  Agent  (OPA) managed  cross-cloud  access 
policies. OPA acted as a centralized policy decision point for all data access requests [26].

Technical Details:

 AWS IAM Policy for ABAC:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "s3:GetObject",
      "Resource": "arn:aws:s3:::customer-data/*",
      "Condition": {
        "StringEquals": {
          "aws:PrincipalTag/department": "customer-support",
          "aws:PrincipalTag/location": "us-west-2"
        }
      }
  ]
}

This IAM policy restricts S3 access based on department and location attributes, allowing only 
customer support staff in the US West region to access customer data.

 Cross-Cloud Enforcement with OPA: OPA was deployed as a centralized policy engine 
that processed ABAC policies for resources across AWS and Azure. OPA’s Rego policies 
were stored in a Git repository and versioned, allowing the organization to enforce the 
same access controls on both platforms.
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 Automated  Attribute  Synchronization:  Attributes  were  synchronized  across  clouds 
using AWS Lambda functions and Azure Logic Apps, which updated user attributes in real 
time to ensure consistency. This enabled OPA to evaluate access decisions based on up-to-
date attribute information from both clouds.

 Policy  Evaluation  and  Monitoring:  OPA’s  decision  logs  were  integrated  with  the 
company’s  monitoring  tools  (e.g.,  Datadog),  allowing  the  security  team to  track  policy 
enforcement and respond to any anomalies in access patterns.

5.4. Tools Overview and Setup

The following tools are widely used for implementing PaC in RBAC and ABAC across dynamic 
environments:

Table 1
Comparison of policy-as-code systems parameters

Open Policy Agent Hashicorp Sentinel AWS IaM Policies

Integration OPA integrates with 
Kubernetes as an 
admission controller, as 
well as with CI/CD 
pipelines and APIs in 
multi-cloud environments

Sentinel works 
seamlessly with 
HashiCorp products like 
Terraform and Vault, 
making it ideal for 
organizations using 
HashiCorp’s ecosystem.

AWS IAM enables 
JSON-based policy 
documents for fine-
grained control over 
resources in AWS.

Policy 
language

Rego, a declarative 
language allowing detailed 
rule definitions for RBAC 
and ABAC.

Sentinel’s language 
supports logical 
operators and imports, 
making it highly 
configurable for ABAC.

JSON format with 
built-in support for 
both RBAC and ABAC 
policies.

Setup OPA can be deployed in 
Kubernetes using Helm 
charts or manually 
configured with YAML 
files for fine-tuning 
admission control policies. 
Rego policies are stored in 
Git for version control and 
integrated with CI/CD for 
automated validation.

Sentinel policies are 
defined as .hcl files 
within Terraform 
modules. By integrating 
Sentinel with 
Terraform’s workflows, 
organizations can 
enforce policies 
whenever infrastructure 
changes are provisioned.

Policies are defined in 
AWS IAM with 
conditions that 
reference user 
attributes and are 
automatically 
enforced across AWS 
resources. Policies can 
also be combined with 
Lambda functions for 
real-time policy 
adaptation based on 
attribute changes.

These case studies demonstrate the versatility and effectiveness of PaC for implementing RBAC 
and ABAC in cloud-native environments. By leveraging tools like OPA, Sentinel, and AWS IAM, 
organizations can achieve consistent,  scalable,  and real-time access control  enforcement across 
distributed  systems.  In  the  following  section,  we  present  a  practical  implementation  guide,  
detailing step-by-step instructions for applying PaC in RBAC and ABAC models [27, 28].
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6. Practical implementation guide

Implementing  PaC for  RBAC  and  ABAC involves  defining,  testing,  deploying,  and  managing 
policies within an automated workflow. This section provides a step-by-step guide for setting up  
PaC,  including  policy  definition,  CI/CD integration,  testing,  and  real-time  enforcement  across 
dynamic environments.  The guide focuses  on using Open Policy Agent  (OPA)  and HashiCorp 
Sentinel as examples but can be adapted for other tools.

Fig. 1 illustrates a general overview of the implementation process for PaC in validating RBAC 
and ABAC policies.

Figure 1:  Policy as  Code in  validating Attribute-Based Access  Control  and Role-Based Access 
Control policies

6.1. Defining and managing policies-as-code

Step 1: Define Policies using Rego or Sentinel Language

 For RBAC, start by defining roles and associated permissions in a policy file. For ABAC, 
define attribute-based rules to allow or deny access based on user and resource attributes.

Example RBAC Policy in Rego (Open Policy Agent):

package kubernetes.authz

allow {
    input.user.roles[_] == "admin"
    input.verb == "create"
    input.resource.kind == "pod"
}

This policy grants the admin role permission to create pod resources.
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 Example ABAC Policy in Sentinel:

import "strings"

main = rule {
    // Permit only if the requestor’s department is "HR" and the access time is within working 

hours.
    strings.contains(requestor.department, "HR") and
    time.now.hour >= 9 and time.now.hour <= 17
}

Step 2: Version Control Policies with Git

 Store policy files in a Git repository, allowing version control for tracking changes and 
enforcing review processes.  Set  up branching for  development,  testing,  and  production 
stages to prevent accidental deployment of untested policies [29].

6.2. Integrating PaC with CI/CD pipelines

Step 1: Set Up Policy Validation in CI/CD

 Configure automated checks in your CI/CD pipeline to validate policies before deployment. 
For example, add a policy validation step in GitHub Actions, GitLab CI/CD, or Jenkins.

 OPA Example (using opa test command):

opa test ./policies/

This command runs tests on all policies within the ./policies directory. Failures will prevent the 
policy from moving to the next stage.

Step 2: Policy Testing and Simulation

 Define unit  tests  for  policies  to  verify  expected behavior  under  various  scenarios.  This 
includes tests for both allowed and denied actions based on specified roles or attributes.

Example Test for OPA (using Rego test files):

package kubernetes.authz

test_admin_can_create_pod {
    allow with input as {
        "user": {"roles": ["admin"]},
        "verb": "create",
        "resource": {"kind": "pod"}
    }
}

 Sentinel Test File:

test "HR access during work hours" {
    input = {
        requestor = {
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            "department": "HR",
            "access_time": "10:00"
        }
    }
    assert main
}

Step 3: Automate Deployment of Policies

 Use CI/CD to automatically deploy validated policies to the environment. Policies can be 
loaded to OPA as bundles or pushed directly to Sentinel’s policy repository.

6.3. Configuring real-time enforcement with OPA

Step 1: Deploy OPA as an Admission Controller (Kubernetes)

 In Kubernetes, OPA can be deployed as an admission controller to enforce policies in real  
time. Use Helm to install OPA:

helm install opa stable/open-policy-agent

Step 2: Define Admission Controller Configuration

 Configure OPA to intercept specific Kubernetes API calls by defining admission controller 
configurations. Specify which operations to monitor, such as creating or deleting resources,  
and which roles or attributes are required.

Example Kubernetes Admission Controller Config:

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
  name: opa-validation
webhooks:
- name: validation.openpolicyagent.org
  clientConfig:
    service:
      name: opa
      namespace: opa
      path: "/v1/data/kubernetes/authz/allow"
  rules:
  - operations: ["CREATE", "UPDATE"]
    apiGroups: ["*"]
    apiVersions: ["*"]
    resources: ["pods"]

Step 3: Test Real-Time Policy Enforcement

 Use kubectl or other clients to create resources and test the real-time application of policies.  
Policies should automatically permit or deny requests based on defined rules, such as user 
roles or attributes [30].
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6.4. Implementing sentinel for ABAC in multi-cloud

Step 1: Define Sentinel Policies for ABAC

 In multi-cloud environments, Sentinel policies can enforce ABAC based on conditions like 
department, job role, or environment type. Use logical expressions to define complex ABAC 
rules that account for multiple attributes.

Step 2: Integrate Sentinel with Terraform for Infrastructure Provisioning

 Configure  Sentinel  policies  to  run  whenever  Terraform  resources  are  provisioned  or 
modified, ensuring that access controls are applied consistently across resources.

Example Sentinel Policy to Enforce Departmental Access:

main = rule {
    requestor.department == "Engineering"
}

Step 3: Use Sentinel to Enforce Attribute-Based Controls Across Clouds

 Apply Sentinel policies across AWS and Azure environments by integrating Sentinel with 
Terraform providers for each cloud. This allows organizations to enforce uniform ABAC 
policies across platforms.

6.5. Logging and auditing for compliance

Step 1: Enable Centralized Logging of Policy Decisions

 Integrate OPA and Sentinel with a centralized logging solution, such as Elasticsearch or 
AWS CloudWatch, to track all access requests and policy decisions. This setup provides an 
auditable trail of access control decisions.

Step 2: Configure Alerting for Policy Violations

 Set  up  alerts  to  notify  security  teams  of  any  unauthorized  access  attempts  or  policy 
violations. For example, integrate OPA logs with Datadog or Prometheus to monitor access 
control patterns in real-time and alert on suspicious activity.

Step 3: Maintain a Versioned History of Policies

 Version control all policy changes and keep records of updates. This history is essential for 
auditability,  allowing  organizations  to  demonstrate  how access  policies  evolved  and to 
investigate potential security incidents related to policy changes.

6.6. Best practices for PaC in RBAC and ABAC

 Separate Policy Definitions for Different Environments:  Keep separate policies for 
development,  staging,  and  production  to  prevent  test  policies  from  affecting  live 
environments.

 Use Least Privilege:  Design RBAC and ABAC policies  based on the principle of  least 
privilege, granting the minimum necessary access required by roles or attributes.
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 Automate Policy Updates: Establish a CI/CD pipeline to automate policy validation and 
deployment.  This  automation minimizes manual  errors  and enforces consistent  security 
controls across environments.

 Regularly  Test  Policies:  Schedule  regular  policy  tests  and simulations  to  ensure  that 
RBAC  and  ABAC  controls  remain  effective  as  environments  and  access  requirements 
change over time.

Implementing  PaC for RBAC and ABAC allows organizations to manage access control in a 
scalable, automated, and auditable way. By defining  PaC, integrating them into CI/CD pipelines, 
enforcing  them  in  real-time,  and  maintaining  logs  for  compliance,  PaC  provides  a  robust 
framework for secure access management in dynamic environments. The next section will explore 
the outcomes,  benefits,  and limitations of  implementing PaC for  access  control,  based on case 
studies and recent research findings [26].

7. Results and discussion

Implementing PaC for RBAC and ABAC offers measurable improvements in security, operational 
efficiency, and compliance. By automating access control management, PaC enables organizations 
to enforce policies consistently across dynamic environments, such as multi-cloud and Kubernetes 
infrastructures. This section examines the outcomes of PaC implementations in terms of security,  
scalability, compliance, and adaptability, as well as challenges and limitations identified during the 
research [31].

7.1. Enhanced security and consistency

Results:  With PaC, organizations achieved more consistent and reliable enforcement of  access 
control policies. The automation provided by PaC reduced manual interventions, minimizing the 
risk of misconfiguration and unauthorized access.

Impact: Implementing PaC in dynamic environments like Kubernetes and multi-cloud setups 
has significantly improved access security by ensuring that RBAC and ABAC policies are enforced 
in real time. Organizations observed fewer access control incidents, such as privilege escalation and 
policy drift, due to the version-controlled and testable nature of PaC.

Discussion:  PaC’s  versioning  and automated  validation  allows  for  precise  and  transparent 
control  over  policy  changes.  By  deploying  policies  alongside  application  code,  organizations 
maintain  security  alignment  with  changing  application  requirements,  creating  a  more  agile 
security approach.

7.2. Scalability and reduced operational overhead

Results: PaC enabled scalable management of RBAC and ABAC policies, even in environments 
with a  high volume of  resources,  roles,  and users.  Teams noted a  significant  reduction in the 
operational burden associated with managing access controls manually.

Impact: By using PaC, organizations could scale their access control systems in line with their  
infrastructure growth, without a corresponding increase in administrative overhead. Automated 
policies reduced the need for constant manual updates and mitigated the risks of “role explosion”  
in RBAC and attribute sprawl in ABAC.

Discussion: PaC frameworks, like Open Policy Agent (OPA) and HashiCorp Sentinel, allowed 
teams to define and manage policies in a consistent, centralized format, making it easier to scale 
access control policies across complex architectures.  However,  some organizations noted initial 
setup challenges as they transitioned to code-based access management, particularly in aligning 
policies across multiple cloud providers.
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7.3. Continuous compliance and auditing

Results:  PaC’s  integration  with  CI/CD  pipelines  and  centralized  logging  systems  provided 
organizations  with  a  continuous  compliance  framework,  automating  audit  trails  and  policy 
validation  processes.  Real-time  logging  of  access  requests  and  policy  enforcement  decisions 
enabled comprehensive auditing and traceability.

Impact:  By  maintaining  a  versioned  history  of  all  policy  changes,  PaC  facilitated  audit 
readiness  and  regulatory  compliance.  Organizations  operating  in  regulated  industries,  such  as 
healthcare and finance, observed improved compliance outcomes, as policies were automatically 
validated against industry standards like GDPR and HIPAA.

Discussion:  The  ability  to  store  policies  in  version  control  systems  such  as  Git  provided 
transparency, traceability, and ease of auditing. PaC’s compatibility with CI/CD workflows ensured 
that  access  control  configurations  were  validated  continuously,  minimizing  the  risk  of  non-
compliance and allowing organizations to address regulatory requirements proactively.

7.4. Improved adaptability and real-time enforcement

Results:  PaC empowered organizations to adopt policies  in real-time,  applying attribute-based 
access controls that responded to contextual conditions, such as user location, device type, and 
time. This adaptability allowed organizations to meet dynamic access control needs effectively.

Impact:  Real-time  enforcement  was  especially  beneficial  in  environments  where  attributes 
change  frequently.  For  instance,  in  ABAC  implementations,  PaC  allowed  policies  to  adapt  to 
changes in user roles,  environmental factors,  and other attributes,  enabling more granular and 
responsive access control.

Discussion: PaC’s real-time adaptability is an advantage in cloud-native environments, where 
rapid  changes  in  infrastructure  demand a  flexible  approach to  access  control.  However,  some 
organizations encountered latency issues with attribute-heavy ABAC policies, indicating a need for 
optimization to maintain performance at scale.

7.5. Limitations and challenges

While  PaC  significantly  enhances  access  control  capabilities,  challenges  remain  in  its 
implementation and scalability. Key limitations encountered include:

7.5.1. Complexity in policy management

Issue:  For  organizations  implementing  attribute-based  access  control,  the  management  of 
attributes can become complex as the number of attributes grows. High attribute diversity often 
requires highly specific policies, which can lead to “policy sprawl”.

Discussion:  Although PaC offers tools for versioning and automation,  managing numerous 
detailed  policies  and  attributes  can  be  challenging  in  large-scale  environments.  Simplifying 
attribute management, possibly through consolidated or hierarchical policies, could help mitigate 
complexity and improve operational efficiency.

7.5.2. Initial setup and integration effort

Issue: Integrating PaC into existing CI/CD pipelines and infrastructure required a significant initial 
setup effort, particularly for organizations new to policy automation. Setting up and configuring 
tools like OPA and Sentinel involved custom configurations and, in some cases, additional training 
for teams.

Discussion: The initial setup and learning curve may present challenges, especially for teams 
that  are  less  experienced in  DevSecOps practices.  Providing training or  building templates  for 
common RBAC/ABAC configurations could streamline the adoption of PaC for access control.
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7.5.3. Performance overhead in real-time policy evaluation

Issue: Organizations using attribute-heavy ABAC policies noted increased latency during policy 
evaluations,  especially  in  environments  with  real-time enforcement  requirements.  This  latency 
may impact user experience or system performance, particularly in high-demand applications.

Discussion:  Optimizing  policy  evaluation  processes,  such  as  caching  frequently  accessed 
policies  or  balancing  attribute  granularity,  can  help  reduce  latency.  Additionally,  some 
organizations may need to evaluate  the trade-offs  between detailed,  attribute-rich policies  and 
simpler, role-based policies for performance-critical applications.

7.6. Future directions and improvements

To address these challenges, future research and development in PaC should focus on:
Adaptive Policy Management: Developing methods to dynamically adjust policies based on 

changing organizational and environmental contexts can improve the scalability and flexibility of 
PaC for RBAC and ABAC.

Enhanced Integration with AI for Policy Optimization: Leveraging machine learning to 
optimize  policy  decisions  and  identify  anomalies  can  further  enhance  PaC’s  ability  to  scale 
effectively in complex environments. Also we can use methods of context analysis for optimizing 
policies [32].

Unified Policy Frameworks for Multi-Cloud Environments:  Establishing unified policy 
standards  for  multi-cloud  setups  would  simplify  policy  management  and  enforcement  across 
diverse platforms, reducing integration overhead and ensuring consistent access control.
PaC provides a powerful  framework for implementing RBAC and ABAC in distributed,  cloud-
native,  and  multi-cloud  environments.  By  automating  policy  management,  ensuring  real-time 
enforcement,  and  enabling  continuous  compliance,  PaC  improves  security,  scalability,  and 
suitability  for  access  control  systems.  While  challenges  related  to  complexity,  integration,  and 
performance persist, ongoing developments in PaC tools and methods offer promising solutions for 
addressing these limitations. The final section will summarize the main findings, highlighting the 
advantages and future potential of PaC for access control in dynamic environments [33].

Conclusions

As organizations  adopt  increasingly  complex,  cloud-native  architectures,  the  need for  scalable, 
flexible,  and  automated  access  control  mechanisms  has  become  paramount.  PaC represents  a 
transformative approach to access control, enabling organizations to define, enforce, and manage 
RBAC and ABAC policies through automated, code-driven processes. This research has explored 
the  benefits  of  implementing  PaC  for  RBAC  and  ABAC,  emphasizing  its  impact  on  security, 
scalability, compliance, and adaptability in dynamic environments.

PaC’s  ability  to  integrate  with  CI/CD pipelines  has  made  continuous  compliance  a  reality, 
providing automated policy validation and real-time policy enforcement across cloud and multi-
cloud environments. By managing policies in code, organizations gain the advantages of version 
control, collaborative change management, and comprehensive audit trails, all of which contribute 
to  a  more  transparent  and  compliant  access  control  framework.  Additionally,  the  real-time 
adaptability offered by PaC allows organizations to implement context-aware policies that respond 
dynamically to changes in user roles, attributes, and environmental conditions, further enhancing 
security in high-demand applications.

Despite  its  advantages,  PaC  presents  challenges  that  organizations  must  address,  such  as 
managing the complexity of attribute-heavy policies in ABAC, optimizing policy evaluation for 
high-performance applications, and overcoming the initial integration effort required for CI/CD 
environments.  As  PaC  continues  to  evolve,  future  developments—such  as  adaptive  policy 
management and AI-enhanced policy optimization—promise to address these limitations, making 
PaC even more accessible and effective in a wider range of use cases.
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In conclusion, PaC offers a robust framework for modern access control, enabling organizations to 
enforce RBAC and ABAC policies at scale, with enhanced security, compliance, and efficiency. As 
organizations continue to navigate the demands of cloud-native infrastructures, PaC provides a 
scalable solution to automate, simplify, and strengthen access control, laying the groundwork for a 
more secure and adaptable future in access management.
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