
Machine Learning-based Environmental Monitoring
and Analysis System⋆

Bohdan Zhurakovskyi1,∗,†, Oleksandr Pliushch2,†, Volodymyr Saiko3,† and Viktor Shutenko1,†

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Peremogy ave., 03056 Kyiv, Ukraine
2 Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01601 Kyiv, Ukraine
3 Kruty Heroes Military Institute of Telecommunications and Information Technology, 45/1 Knyaz Ostrozki str., 01011 Kyiv,
Ukraine

Abstract
Growing environmental threats require modern solutions for environmental monitoring. Integration of
Internet of Things technologies with machine learning allows you to automate the process of collecting,
processing, and analyzing environmental data, ensuring accuracy and speed. The work aims to create a
system for automated environmental monitoring capable of quickly analyzing environmental data. For
this purpose, modern approaches were studied, the system architecture was developed, machine learning
algorithms were implemented and testing was conducted. The main emphasis is on the use of IoT
technologies for automated data collection, machine learning algorithms for predicting changes in the
environmental state, and local data processing using TinyML to reduce the load on cloud services. The
developed system can be used in agriculture, urban structures, and industry, optimizing the costs of
environmental monitoring and improving data quality.

Keywords
Internet of Things, analysis, monitoring, environment, database, machine learning, model, ecology

1. Introduction

The topic of research is relevant and important not only within the framework of environmental
issues. It covers a wider range of industries, including business, agriculture, socio-economic
development, smart cities, etc. [1]. Effective management and forecasting of the state of the
environment is a significant factor of influence in the conditions of constant development of
urbanization, the introduction of automation of business processes from various industries, and the
emergence of technological innovations. Enterprises, farms, and urban agglomerations need to
implement modern tools to guarantee sustainable development, preserve ecosystems, and ensure
the greatest efficiency of production. The combination of IoT technologies and machine learning
can provide an alternative approach to the development of systems for environmental risk
management and real-time environmental monitoring [2].

Thus, the relevance of the research topic lies not only in the environmental component but also
in its significance for modern business and urban agglomeration management. Investments in such
systems allow to increase the efficiency of resource management, reduce the environmental impact
on the environment, and also create new opportunities for business through process optimization,
cost reduction, and productivity increase.

The practical significance of this research lies in the creation of a universal and adaptive system
for environmental monitoring, which can be used in various fields of activity. This system can be
used in public administration to track the state of the environment and respond to environmental
threats, in industrial enterprises to monitor compliance with environmental norms and standards,

⋆CPITS 2025: Workshop on Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2025,
Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 zhurakovskybiyu@tk.kpi.ua (B. Zhurakovskyi); opliusch@yahoo.com (O. Pliushch); vgsaiko@gmail.com (V. Saiko);
victor.shutenko@gmail.com (V. Shutenko)

 0000-0003-3990-5205 (B. Zhurakovskyi); 0000-0001-5310-0660 (O. Pliushch); 0000-0002-3059-6787 (V. Saiko); 0009-
0002-3537-4101 (V. Shutenko)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

183

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0002-3537-4101
https://orcid.org/0009-0002-3537-4101
https://orcid.org/0000-0002-3059-6787
https://orcid.org/0000-0001-5310-0660
https://orcid.org/0000-0003-3990-5205
mailto:victor.shutenko@gmail.com
mailto:vgsaiko@gmail.com
mailto:opliusch@yahoo.com
mailto:zhurakovskybiyu@tk.kpi.ua

as well as in scientific research to model environmental processes and study their
interrelationships. The proposed system can also be used to assess the impact on the environment
during the construction of new infrastructure facilities, urban development planning, and
development of programs for adaptation to climate change. In addition, it can serve as a platform
for conducting environmental education programs, helping to raise public awareness of the
importance of preserving natural resources and being environmentally responsible. In the long
term, such a system can contribute to the sustainable development of society by preventing
ecosystem degradation, reducing the impact of anthropogenic factors on nature, and ensuring the
preservation of natural resources for future generations.

2. Description of the subject area

2.1. General analysis of the research object

Environmental monitoring systems are becoming increasingly important in the context of global
challenges such as climate change, depletion of natural resources, and environmental pollution.
The integration of modern technologies such as the Internet of Things (IoT) and machine learning
(ML) [3] allows for the creation of effective solutions for the analysis and prediction of
environmental changes. An environmental monitoring system based on IoT and machine learning
is just such a solution that combines modern approaches to data collection, processing, and
analysis.

The IoT system consists of:

 Sensors—devices that collect data on temperature, humidity, gas concentrations (CO2, CO,
NOₓ), water level, soil pollution, and other factors.

 Network protocols—means for wireless data transmission, such as LoRa, Zigbee, and Wi-Fi,
which provide remote transmission of information from sensors to servers.

 Management platforms—software for data collection and processing, which can be located
both in the cloud and on local servers.

Machine learning (ML) is an important component of modern data analysis systems. Its use
allows you to automatically find patterns and regularities in large amounts of information, provide
forecasts, and help make decisions [4].

An environmental analysis system based on IoT and machine learning is a promising solution
that combines modern technologies to ensure effective monitoring of environmental conditions. It
not only allows you to respond to current changes in the environment but also to predict possible
problems, ensuring sustainable development for various industries and sectors of the economy.

2.2. Analysis and comparison of existing systems

Existing environmental monitoring systems based on IoT and machine learning technologies are
diverse, and each of them has its unique characteristics. Let us conduct a comparative analysis of
the main systems that have already been implemented in different regions and sectors [5].

Table 1 shows how the analyzed existing systems and technologies differ in key indicators
(scalability, forecast accuracy, energy efficiency, infrastructure requirements, cost, flexibility of
configuration).

184

Table 1
Comparison of existing systems

System name Scalability
Accuracy of

forecasts
Energy Efficiency Flexibility of setting

Smart
Santander

High for one
city, limited
globally

Average High Limited to other cities

Google
Air Quality
Monitoring

Global High. Thanks
to access to
big data

Good optimization for
long-term work in the
city

Limited at the local level

SUEZ
Smart
Environment

Average Average Average. The
requirement of large
energy costs due to
the need to maintain
infrastructure in hard-
to-reach areas

Narrow (for water and waste
only)

Microsoft
Azure IoT
Central

High High Average High. Thanks to the ability
to integrate with different
platforms and support for
several types of
environmental data.

SmartSantander and Microsoft Azure IoT Central have the most versatile approach to data
collection, covering various environmental aspects such as air quality, water, noise, lighting, and
others. Google Air Quality Monitoring, SUEZ Smart Environment, and SmartWater are more
specialized in one type of data, namely air or water quality, which limits their flexibility for complete
environmental monitoring.

Google Air Quality Monitoring and Microsoft Azure IoT Central have global coverage thanks to
satellite monitoring capabilities and cloud infrastructure. SmartSantander and SUEZ Smart
Environment are more localized and effective for specific regions or cities but require large
investments to expand to other regions.

Google Air Quality Monitoring and Microsoft Azure IoT Central demonstrate the highest
accuracy of predictions thanks to powerful machine learning algorithms and access to large
amounts of data [6].

Common disadvantages of existing systems include the high cost of their installation and
integration. All systems, except Google Air Quality Monitoring, require significant financial
investments in sensor installation, infrastructure support, and maintenance. Most systems, such as
SmartSantander, and SUEZ Smart Environment, have limited ability to quickly adapt to small
geographical regions or scale to large areas without significant investments [7].

Therefore, existing systems for environmental monitoring based on IoT and machine learning
have their unique advantages and disadvantages. The main advantages of such systems are the
ability to collect large amounts of environmental data in real-time, the ability to use machine
learning to analyze and predict the state of the environment, as well as reducing the cost of
resource management [8]. At the same time, there are some challenges, such as high
implementation and maintenance costs, limited scalability in different geographical conditions, the
need for energy-efficient solutions, and the need to improve machine learning models to increase
the accuracy of forecasts.

185

2.3. Problem statement

The main objective of the work is to develop a system architecture for environmental analysis
based on IoT and machine learning with improved efficiency of data collection, transmission, and
analysis. This includes optimizing the processes of data collection from IoT devices [9], their
transmission and storage, as well as improving the accuracy of predictions based on machine
learning algorithms.

The system should meet the following functional requirements:

 Real-time data collection: The system should provide continuous data collection from
various IoT devices, such as temperature, humidity, air pollution, noise level sensors, etc.

 Data transmission: Data collected by IoT devices should be transmitted to a central server
or cloud platform for further processing. The transmission should occur with minimal
delays [10].

 Data storage: The system should ensure the storage of large volumes of environmental data
in the storage for further analysis [11].

 Analysis and forecasting: A built-in machine learning model should analyze the collected
data and provide predictions about the state of the environment [12].

 User interface: The system should have a user-friendly interface for data visualization and
displaying analysis results in the form of graphs and analytical reports [13].

 Anomaly analysis: The system should detect anomalies in the data and warn of possible
environmental disasters [14].

Non-functional requirements of the system include:

 Reliability: The system must operate uninterruptedly and provide high reliability of data
transmission even in cases of partial loss of connection between IoT devices.

 Scalability: The architecture of the IoT system must be scalable to ensure the ability to
connect a large number of sensors without loss of performance [15].

 Energy efficiency: IoT devices must operate for a long time with minimal energy
consumption to ensure their use in remote areas.

 Security: The data collected by the system must be protected from unauthorized access.
Encryption and authentication tools must be implemented [16].

 Accuracy: Machine learning models must provide high accuracy of predictions based on the
collected data [17].

 Speed: The time for data processing and forecast generation must not exceed specified
limits (usually no more than a few minutes after data receipt) [18].

Requirements for system integration, scaling, and support:

 Integration with cloud services: The system should be able to integrate with popular cloud
platforms (e.g. AWS, Azure) for processing and storing large amounts of data [19].

 Support for different types of sensors: The system should be flexible and support the
connection of different types of sensors, including those that measure different
environmental parameters [20, 21].

 Cross-platform: The software should be available for use on different platforms (mobile
devices, PCs) to provide access to data at any time and from any place.

186

The result of the work will be a developed and tested system for analyzing the state of the
environment based on IoT and machine learning, which will have an improved data collection and
analysis architecture. The system will provide more efficient and accurate monitoring of
environmental indicators in real-time, increase the accuracy of forecasts, and optimize the cost of
resource use.

3. System design

3.1. System components and their interaction

The entire system is divided into three main groups according to its functionality. Each group has
its purpose and characteristics and requires separate design and development. These functional
groups include:

 IoT devices—the hardware of the system, consisting of physical devices that can read data
from the environment and interact with it. Actuators—devices that, after receiving
commands, perform certain actions, which may include influencing the environment, for
example, notifications, sound, or light. Sensors—devices that read data from the
environment (for example, temperature, humidity, air quality, light level, etc.) and transmit
them to IoT gateway devices. The IoT gateway is the point of the IoT system that connects
all other devices. It serves to manage all devices, collect data, initially process them, and
then send them in the selected way.

 Machine learning—a module responsible for advanced analysis, classification, and
evaluation of data received from IoT devices. TinyML is a technology that allows for simple
data analysis using machine learning algorithms on low-power devices with limited
memory [22]. Within the framework of the system under development, TinyML can be used
for initial data processing directly at the IoT gateway level, which will help to use system
resources more efficiently. The data analysis module is responsible for the main data
processing and preparation of the final analysis results [23].

 Software is the part of the system that is responsible for working with data, processing it,
and storing it. An important task of this part of the system is to provide a convenient
interface for interacting with the obtained system results [24]. The software should be
scalable and independent of IoT devices and the machine learning module.

Fig. 1 shows the structural diagram of the system.

Figure 1: Structural diagram of the system

187

The central component of the system is the Internet of Things (IoT) devices, which are divided into
two groups: sensors and actuators. The physical gateway acts as an intermediate link between the
sensors/actuators and the cloud gateway.

The cloud gateway receives data from the physical gateway and performs the following tasks:

 Storage of large amounts of data and their initial processing.
 Data transmission for further processing and analysis.
 Providing access to the system through available networks.

The machine learning module performs the following tasks [25]:

 Analysis of the received data.
 Building forecasting models.
 Detection of anomalies, optimization, and decision-making.

Data processed by machine learning algorithms is returned to the system for application (for
example, optimizing the operation of devices or providing results for users).

The control application is the main interface for user interaction with the system. It consists of
the following components:

 Interface—a graphical or text interface for convenient data display and interaction with the
system.

 Business analysis—tools for analyzing data to obtain valuable conclusions and
recommendations.

The application is available as a mobile application for convenient use using phones and tablets.
This will provide the opportunity to use the system more flexibly in various conditions. A web
version of the application is also available for use via a browser. This allows you to conveniently
use the system in stationary conditions.

The key connections of the system are as follows:

 Sensors and actuators transmit data to the physical gateway.
 The physical gateway interacts with the cloud gateway in two directions: transmits

collected data and receives commands for sensors/actuators.
 The cloud gateway provides data transmission to the machine learning module. This

component of the system is a module that is responsible only for receiving and processing
input data. It should be as flexible as possible to be able to expand the list of data-sending
protocols that it can process if necessary.

 Machine learning analyzes the data and transmits the results to the application for control.
This module is closely related to the server part of the control application, as it stores and
aggregates data in a convenient form for client applications [26].

 The control application provides user interaction with the entire system. The mobile
application and the web version of the application are implemented in such a way that they
contain only specific logic to correctly and conveniently display data on the platform they
implement. At the same time, all specific business logic that is common to all client
applications is implemented on the server part of the application. The system is designed in
such a way that it is easy and fast to add new client platforms, regardless of the others.
Each client platform receives all data from the server part, where it is stored and
aggregated. The single point of truth of the system is the server, which in turn is connected
to the database, machine learning module, and cloud gateway.

188

This architecture provides convenient data collection, processing, and analysis with subsequent
decision-making to optimize processes in real-time.

System features:

 Iterative approach: A closed-loop provides a continuous optimization process.
 Automatic adjustment: The system can adapt its actions based on feedback.
 Modularity: Each stage can be scaled or changed without interfering with the others.

The system is suitable for automated monitoring of complex processes, such as resource
management in agriculture, smart cities, industry, etc.

Table 2
Characteristics of system states

State Description Examples/
Technologies

Start the process Starting a data collection and
processing cycle.

Schedulers (cron jobs),
IoT triggers

Data collection Reading raw data from IoT sensors Sensors DHT22, MQ135;
Protocols MQTT, CoAP

Data transfer Data is transmitted from sensors to
the edge device for pre-processing

Wireless protocols: Wi-Fi,
Bluetooth, Zigbee

Preliminary processing The edge device performs noise
filtering, data aggregation, and basic
analysis using TinyML

TinyML
(TensorFlowLite); Kalman
signal filtering

Centralized analysis Deep data analysis on the server
using machine learning models and
comparison with historical data

Servers AWS, Google
Cloud; Python, Pandas,
Scikit-learn

Prognostication Based on the analysis, predictions of
future events or system states are
formed

Models LSTM;
TensorFlow, PyTorch

Evaluation of results Analysis of forecast accuracy and its
compliance with benchmarks

Metrics: Accuracy, MSE
Tools Jupyter Notebook,
Dash

Recommendation generation Making recommendations to optimize
system performance or warn of
potential risks

Tableau, Power BI;
Integration through API

Sending results Send analysis results and
recommendations to responsible
individuals or systems

Mobile notifications
(Firebase); integration
with Telegram, Slack

Feedback Obtaining feedback from users or
systems used to improve models and
data collection parameters

Feedback Modules; API
for collecting automated
feedback

Completion of the cycle End of the current cycle after all
actions have been performed.

A Cyclic Approach to
Continuous Optimization

189

3.2. Selection of system hardware components

Designing an IoT system requires consideration of many factors: system purpose, component
types, energy efficiency, security, scalability, and cost requirements. Hardware selection should be
comprehensive and based on an analysis of the needs and constraints of a specific application to
ensure the effectiveness and durability of the IoT system.

3.2.1. Purpose and system requirements

When choosing hardware, it is important to understand what the IoT system will be used for.
Requirements may vary depending on the purpose:

 Environmental monitoring systems: These applications require sensors that can operate in
extreme conditions, such as changes in temperature, humidity, or pollution levels. The
selection of components should take into account the appropriate weather protection
standards (IP rating for sensors).

 Smart home control systems: These systems require sensors that work with different types of
interfaces (e.g. Zigbee, Z-Wave, Wi-Fi), as well as actuators to control various devices (light,
temperature).

 Industrial IoT systems: Components are required that can withstand difficult conditions
(high loads, explosive areas), as well as the ability to process large amounts of data in real-
time.

3.2.2. Types of hardware components

The choice of components has a huge impact on the performance of an IoT system.
Microcontrollers are the heart of IoT devices, and their choice depends on the number of connected
sensors, the required computing power, and energy efficiency requirements. The most popular
ones are:

 ESP32: has built-in Wi-Fi and Bluetooth, making it a great choice for wireless IoT devices.
 Raspberry Pi Pico W: a compact microcontroller based on the ARM Cortex M0+, suitable

for projects with limited resources.
 STM32: a family of microcontrollers based on the ARM Cortex, well suited for complex

applications.
 Arduino: a popular choice for initial projects due to its ease of use and a wide selection of

boards and accessories.

Sensors are an integral part of an IoT system, and choosing the right sensor depends on the
requirements for accuracy, measurement range, and external operating conditions. By purpose,
sensors are as follows:

 Temperature and humidity: DHT22, BME280.
 Gas sensors: MQ series for detecting gases such as CO2, CO, methane, etc.
 Motion and acceleration: motion sensors, and accelerometers for tracking movement and

orientation.
 Pressure: pressure sensors (e.g. BMP280). Actuators (mechanical devices that perform

actions such as turning lights or valves on/off) should also be selected according to the
tasks set by the system.

Communication modules: For IoT devices, it is important to have an efficient connection for
data transmission.
Communication modules are as follows:

190

 Wi-Fi: Suitable for short distances where there is access to the Internet or a local network.
 Bluetooth: Good for low-power devices such as BLE.
 Zigbee/Z-Wave: Protocols for multi-device networks (mesh networks), well suited for smart

homes.
 LoRa: Low-power, long-range communication, ideal for agricultural and other long-

distance applications.
 NB-IoT: High-speed mobile networks for IoT with low power consumption.

Power supply: Battery-based or accumulator-based systems must have optimized power
consumption. You can use:

 Li-ion or Li-Po batteries for autonomous systems.
 Solar panels provide constant power in ecological systems.

Energy saving is a critical aspect, as many IoT devices operate autonomously and must have
minimal power consumption.

 Power saving modes: Most modern microcontrollers have special sleep modes where they
can be in an inactive state (deep sleep, standby) to reduce power consumption.

 Low-power wireless communication technologies: The use of protocols such as LoRa,
Zigbee or NB-IoT helps reduce power consumption during data transmission.

IoT systems must be scalable, both in terms of the number of devices and the amount of data
processed. Scalability can be defined by the following parameters:

 Modularity: Adding new components should be easy. For example, the ability to add new
sensors or connect new types of network communication (LoRa or 5G).

 Compatibility with other protocols: Choosing hardware that supports multiple wireless
communication standards allows for integration into a variety of networks.

Since IoT systems work with sensitive data, security is extremely important.

 Encryption and authentication: Choosing components that support reliable protection
mechanisms, such as hardware data encryption or secure protocols for information
exchange (TLS, SSL) [27].

 Access control: Implementing multi-level authentication to ensure the security of devices
and data.

For use in extreme conditions (for example, outdoors or in industrial areas), components must
have an appropriate level of protection, in particular, according to IP (Ingress Protection) standards
[28].

4. Software development

4.1. The general structure of the machine learning module

The IoT and machine learning-based environmental condition analysis system is an innovative
approach to environmental condition monitoring, analysis, and forecasting. The use of modern
technologies such as TinyML for preliminary data analysis and traditional machine learning
algorithms for in-depth analysis and forecasting ensures the efficiency and accuracy of the system.
The main advantage of this approach is the optimization of computing resources and minimizing
data transmission costs, which is important for IoT systems.

191

At the data collection stage, the system uses IoT devices such as the Raspberry Pi Pico W
microcontroller, which are connected to DS18B20 temperature sensors, which provide accurate
temperature data in a wide range of conditions. These sensors transmit the collected data to local
computing devices for pre-processing using TinyML.

TinyML is a technology that allows you to run optimized machine learning models on devices
with limited resources. In the system under development, TinyML is used for data preprocessing,
which includes noise filtering, anomaly detection, and temperature condition classification. For
example, if a sensor transmits a series of temperature values, TinyML can detect in real-time
whether these values correspond to normal conditions or are signs of anomalous changes, such as
sudden temperature changes [29].

Preprocessing data at the IoT device level has several important advantages. First, it reduces the
amount of data that is transmitted over the network to a server or cloud, which reduces bandwidth
requirements and saves energy. For example, instead of transmitting all measured temperature
values, an IoT device can transmit only aggregated data, such as the average, maximum, or
minimum, or signals about detected anomalies. Second, it increases the autonomy of the system:
even if the connection to the server is temporarily unavailable, the devices can perform basic
analysis locally [30].

After preliminary analysis, the data is transferred to a central server or the cloud, where deeper
analysis is performed using more sophisticated machine learning models. These models can take
into account more parameters than are available at the IoT device level, including historical data,
climate trends, and external factors such as weather conditions or seasonal changes. This allows
the system to provide not only an analysis of the current temperature state but also to make
predictions about future changes. For example, the server model can use time series algorithms or
recurrent neural networks (RNNs) to predict the temperature several days ahead, based on
collected data and trends [31].

The integration of TinyML and traditional machine learning also allows for the creation of a
multi-level analysis system. The first layer, based on TinyML, provides a quick response to local
events, such as real-time warnings of a sharp drop in temperature. The second layer, running on
the server, provides more complex insights and long-term forecasts [32]. This combination allows
for a balance between data processing speed and analysis accuracy.
To predict temperature based on machine learning, the system uses historical data stored on the
server, as well as data from other sources, such as weather stations or satellites. Combining these
data sources allows you to increase the accuracy of forecasts. For example, a machine learning
model can detect patterns in seasonal temperature changes or predict the consequences of extreme
weather events. Overall, the combination of TinyML and traditional ML in a system for analyzing
the state of the environment ensures its efficiency, accuracy, and scalability. This approach allows
you to combine the advantages of local data processing provided by IoT devices and complex
analysis and forecasting performed at the server level. This makes the system not only high-tech
but also cost-effective, suitable for use in a wide range of tasks, from environmental monitoring to
climate management in smart cities or agricultural lands.

4.2. TinyML

The development of the TinyML module for the environmental analysis system is a critical element
that provides pre-analysis of data directly on IoT devices. The system will use the One-Class SVM
algorithm, optimized for operation on devices with limited computing resources, such as the
Raspberry Pi Pico W. This algorithm can train on normal data and detect anomalies in real-time,
which makes it ideal for monitoring temperature in a changing environment. Compared to other
algorithms, such as K-Nearest Neighbors or Random Forest, One-Class SVM has significantly lower
memory consumption and higher speed. For example, K-Nearest Neighbors requires storage of all
training data, which is not optimal for microcontrollers, and Random Forest is too complex for
limited resources [33].

192

At the same time, One-Class SVM provides a high level of accuracy with minimal hardware
requirements, which makes it particularly effective for detecting abnormal temperature changes. A
more detailed comparative characteristic of the algorithms is given in Table 2.

Table 3
Comparison of machine learning algorithms

Algorithm Complexity Resource Precision Suitability
For TinyML

K-Nearest
Neighbors (KNN)

Low Average High Suboptimal due to large memory

Decision Trees Low Low Average A good option for basic tasks

Random Forest Average High High Too complex for limited resources

Logistic
Regression

Low Low Average Suitable, but limited in complex tasks

One-Class SVM Average Average High Optimal for detection of anomaly

The model was run using normalized temperature data collected under normal conditions. This
allows the algorithm to create a hyperplane that separates normal values from potential anomalies.
For example, if the system records temperature values that fall outside the trained hyperplane, this
signals a possible problem, such as a technical failure or environmental risk. The model was built
using the sci-kit-learn library in Python and then optimized for use on a microcontroller. The data
was normalized using MinMaxScaler to ensure consistency with the limited resources of the device.
The algorithm uses a radial basis function as the kernel for building the model, which provides
better adaptation to nonlinear data characteristic of temperature changes. The finished model was
saved in a format compatible with TinyML and loaded onto a Raspberry Pi Pico W. This allows for
real-time analysis, even if the device is offline. In practice, this works as follows: a sensor, such as a
DS18B20, transmits temperature data to a microcontroller, where it is normalized and fed into the
model input. The model classifies the values as normal or abnormal in real-time. If an anomaly is
detected, the system can instantly signal a problem, which is especially important for
environmental monitoring.

The chosen approach is optimal for several reasons. First, the One-Class SVM has a high level of
generalization, which allows it to detect new, previously unknown anomalies. This is important for
systems operating in a changing environment and where unpredictable situations may arise [34].
Second, the model is quite compact and does not require large computational resources, which
allows it to be integrated even on devices with very limited memory. Third, local data processing
significantly reduces the load on the network, since only critical events or aggregated results are
transmitted, and not all raw data. This also reduces the system’s power consumption, which is a
key factor for autonomous IoT devices [35].

Compared to alternatives such as neural networks, One-Class SVM takes up less memory and
has a faster execution time, making it suitable for fast real-time responses. Although neural
networks can provide more complex analysis, their implementation at the microcontroller level
requires significantly more resources, which is not efficient for our task [36]. That is why One-
Class SVM is chosen as the base algorithm for the TinyML module.

Overall, the developed module allows you to integrate preliminary data analysis into the
system, making it more flexible and efficient. The ability to detect anomalies in real-time, reduce
the amount of transmitted data, and reduce power consumption allows you to build an
environmentally and economically efficient system that can be used for a wide range of
environmental monitoring tasks. This solution combines accuracy, speed, and resource optimization,
which is critical for new-generation IoT systems.

193

The implementation of the TinyML module looks like this. First, data collection occurs, which
involves obtaining values from sensors. At this stage, it is important to make sure that the data is
read correctly, without errors or equipment malfunctions. Next, data cleaning occurs, which is
necessary to remove noise, erroneous measurements, or missing values. Next, data normalization
(scaling) occurs, which is necessary to ensure that all values are in the same range (for example,
from 0 to 1). The script responsible for normalization is shown in Fig. 2.

Figure 2: Data normalization

The script responsible for initializing the model is shown in Fig. 3. The figure describes in detail the
set of parameters that adjust the model’s operation. Next, the model is trained using the method
shown in Fig. 4.

Figure 3: Model initialization

Figure 4: Model training

After training with the script, the model is saved for further use on the device.
Fig. 5 shows the results of measuring the model’s performance using the ROC curve (operating
characteristic curve) and Precision-Recall curve (Precision-Recall curve). The ROC curve is used to

194

evaluate the model’s ability to distinguish between classes by comparing the sensitivity (True
Positive Rate) and the level of false positives (False Positive Rate) at different decision thresholds.
The closer the ROC curve is to the upper left corner, the better the model’s performance, and the
area under the curve (AUC) is an integral indicator that reflects the overall quality of classification.
The Precision-Recall curve focuses on assessing the relationship between precision (Precision) and
sensitivity (Recall), which is especially useful for analyzing models in problems with class
imbalance. It shows how well the model retains precision as the number of true positives found
increases, allowing you to assess the trade-off between missing positive cases and avoiding false
positives.

Analyzing the data in Fig. 5, we can conclude that:

 The AUC is 0.91, which indicates good performance, but not perfect.
 The curve has several deviations from the ideal slope to the upper left corner, indicating the

presence of false predictions (false positive and false negative classifications).
 Precision gradually decreases with increasing Recall, which is typical for models with good

performance.
 The curve shows a trade-off between Precision and Sensitivity (Recall).

Figure 5: ROC and Precision-Recall curves

4.3. Development of a temperature forecasting model

LSTM (Long Short-Term Memory) is one of the modifications of recurrent neural networks (RNN),
developed to solve the problem of long-term dependencies in time series [37]. The main idea of
LSTM is to implement special mechanisms (memory cells) that allow the network to store
important information for long periods and ignore unimportant ones. This feature makes LSTM an
ideal choice for working with sequential data, such as temperature series, text data, audio, and
video.

In standard RNNs, each layer passes all the information to the next stage, which leads to the
problem of exploding or vanishing gradients, where important information is lost due to many
steps in the sequence. LSTM solves this problem by introducing forget, input, and output gates
[38].

 The forget gate decides what information from the previous state should be removed. It
uses a sigmoid activation function to determine how important each element is.

 The input gate adds new information to the memory cell, also through sigmoid activation.
 The output gate controls how much of the information from the memory cell will be passed

as the current-time output.

These three gateways work together to ensure that important information is preserved and
irrelevant information is ignored, allowing the model to maintain context and understand
sequences even over large time intervals [39].

195

The created model for temperature forecasting is based on the architecture of a recurrent neural
network (RNN) using a modification of LSTM (Long Short-Term Memory). This architecture allows
for both short-term and long-term dependencies in time series data to be taken into account,
making it ideal for forecasting tasks.

The model consists of three consecutive LSTM layers. The first two LSTM layers are configured
to return sequences, which allows all information about the dependencies between time elements
to be passed to the following layers. The third LSTM layer completes the data processing,
condensing them into a highly informative vector [40]. Each LSTM layer uses 50–100 neurons to
provide sufficient capacity to process complex dependencies in the data. To reduce overfitting,
Dropout regularization with levels of 0.2–0.3 was used, which randomly “turns off” some of the
neurons during training, thereby increasing the model’s resistance to noise and irregularities in the
data [41].

After processing by the recurrent layers, the data is passed to the Dense layers. The first Dense
layer with 64 neurons uses the ReLU (Rectified Linear Unit) activation function, which adds
nonlinearity and allows the model to detect complex dependencies. The second Dense layer with 32
neurons performs a similar function, but with fewer parameters, preparing the data for the output
layer. The output layer has one neuron with linear activation, which allows the model to predict a
specific temperature value.

The model architecture includes optimization using the Adam algorithm, which works well
with complex optimization problems and quickly converges to the optimal solution. The training
uses the mean square error loss function (MeanSquaredError), which is suitable for regression
problems, in particular, for predicting numerical values [42]. The input data is formed in the form
of sequences with a fixed length, which allows the models to calculate the temperature dynamics
over time.

The main advantages of this model are its ability to process time series data and take into
account both short-term and long-term dependencies. The use of multiple LSTM layers provides a
deep understanding of the patterns in the data, and Dense layers allow the model to adapt to
complex dependencies. Dropout regularization prevents overtraining, which is important for
ensuring the stability of the model in conditions of a limited amount of data.

Among the disadvantages of such an architecture, it is worth noting the high computational
complexity. Three LSTM layers with a large number of neurons require significant resources for
training, which can be a problem for less powerful hardware. In addition, the model depends on
high-quality data preparation, in particular, scaling and formatting sequences. Improper data
preparation can significantly reduce the accuracy of predictions. Another limitation is the potential
difficulty of integrating the model into real-time systems due to its long inference time, especially
on less powerful devices [43].

Overall, the model is a powerful tool for temperature forecasting. It can accurately predict
future values based on historical data and works well with time series due to its deep architecture.
However, its computational requirements need to be optimized or adapted to work under resource-
constrained conditions.

Fig. 6 shows the script used to create this model. First, the model is created using the Sequential
class, which allows layers to be added sequentially. The first layer is an LSTM with 100 neurons,
configured to return the entire array of output sequences (return_sequences=True). This allows all
information about temporal dependencies to be passed to the next layer. The layer accepts input
data of the form (X_train.shape, X_train.shape [2]), where the first parameter is the length of the
sequence, and the second is the number of features at each time step. After the first LSTM layer, a
Dropout with a probability of 0.3 is added to avoid overtraining by randomly turning off some
neurons during training. The second layer is another LSTM with 100 neurons, which also returns
sequences, deepening the model’s understanding of the dependencies in the data. This is followed
by another Dropout with the same probability of 0.3. The third LSTM layer has 50 neurons and
does not return sequences (return_sequences = False), which means that the output will be
condensed into a vector that represents the entire context of the sequence. This output is fed to the

196

Dropout layer with a probability of 0.2. Two Dense layers are then used. The first has 64 neurons
with ReLU (Rectified Linear Unit) activation, which provides nonlinear data transformation and
helps the model find complex dependencies. The second Dense layer with 32 neurons further
reduces the vector size, providing a generalization of information before the final layer. The output
layer has one neuron with linear activation (linear), which allows for predicting one numerical
value—the temperature forecast. After determining the architecture, the model is compiled using
the adam optimizer, which effectively updates the weights of the neural network during training,
and the mean_squared_error loss function, which is suitable for regression problems. The code is
completed by calling the model summary(), which outputs a brief description of the model
architecture, including the number of parameters to be optimized and the total number of layers.
Such an architecture is well suited for working with time series, as it takes into account both short-
term and long-term dependencies thanks to the combination of LSTM and Dense layers. Dropout
regularization helps avoid overfitting, ensuring model stability even in cases where the amount of
training data is limited.

Figure 6: Creating a model

Fig. 7 shows how data formatting and model training takes place.

Figure 7: Model training

The evaluation of the model performance is shown in the graph (Fig. 8).
The graph shows a comparison of actual and predicted temperatures over some time. The blue

line represents the actual temperature, and the orange line represents the model’s predicted values.
The predicted values show a good fit to the actual data, indicating the overall accuracy of the
model. At most points, the deviation between the actual and predicted values is minimal and within
the acceptable level of noise or uncertainty that may be inherent in the model.

197

Figure 8: Evaluation of the model

The predicted line follows the general trend of the actual data, in particular, when the temperature
increases from 23.8°C to 24.1°C, the model correctly predicts this increase. This indicates its ability
to account for local variations in the time series. At some points, there are minor discrepancies
between the actual and predicted values, for example, when the actual temperature is 23.7°C, the
model predicts slightly lower values. Such errors can be caused by noise in the data or by
insufficient training examples for specific temperature ranges. The differences between the
predictions and the actual values remain stable within ±0.1°C, which is acceptable for such a task
and indicates the stability of the model even when random factors affect the actual values. The
model also predicts peak temperature values well, for example, maxima at 24.2°C, which indicates
its ability to take into account both long-term and short-term dependencies that could lead to local
maxima. Overall, the model demonstrates a high ability to predict temperature with small
deviations, correctly modeling the general trend and local changes, which makes it a reliable tool
for predicting temperature in real conditions. Minor discrepancies can be reduced by further
optimizing the model or increasing the amount of training data. The conclusion shows that the
model is suitable for temperature analysis and prediction tasks in IoT systems or environmental
monitoring.

4.4. Hardware script development

The code implements a complex system that reads temperature data from a DS18B20 sensor,
analyzes it using a pre-trained machine-learning model, and sends the results via the MQTT
protocol. First, the MQTT connection is configured. To do this, an MQTT client with a unique
identifier Pico W_Temperature is created, which connects to the public broker test.mosquitto.org
via port 1883. If the connection is interrupted, the connect_mqtt function automatically tries to
restore the connection, which ensures the system’s resilience to network failures.

Next, the DS18B20 sensor is configured. The OneWire bus connected to the microcontroller’s
GPIO15 is used. All available sensors on this bus are scanned, and their unique addresses are
identified. If the sensors are not found, the program displays a corresponding message and enters
an infinite wait loop. This ensures that without access to the sensor, the system will not perform
unnecessary operations.

After the sensor is initialized, the machine learning model is stored in the
temperature_model.pkl file is loaded, along with a normalizer that will scale the input data to the
same ranges used during model training. If the model file is missing or corrupt, the program
reports an error and does not continue execution.

The main part of the code works in a loop. Each loop starts with the DS18B20 sensor starting a
temperature measurement, after which the data is read. If this is the first loop, the system saves the
current temperature as a base value and continues to the next loop. For each subsequent reading,
the temperature gradient is calculated, that is, the change in temperature compared to the previous

198

value. This data (temperature and gradient) forms an input vector that is passed to the machine
learning model. The model predicts whether the current state is normal or abnormal. The result of
the analysis is formed as a string: “Normal” or “Anomaly”. Next, a JSON object is formed, which
includes the current temperature, gradient, status (model result), and timestamp. This object is
encoded in JSON format and sent via MQTT to the specified temperature/data topic.

Outputting data to the console allows you to monitor the system status: current temperature,
analysis result, and confirmation of sending a message to the MQTT broker. In case of any error,
for example, loss of communication with the broker or failure in data processing, the program
reconnects to the broker or continues the cycle with the next available data.

This code provides both local temperature analysis using a machine learning model and sending
results to a remote system via a lightweight MQTT protocol. Its structure allows you to integrate
the solution into larger IoT systems for monitoring the state of the environment and notifying you
about anomalies in real-time [44–46]. Thanks to error handling and automatic connection recovery,
the system remains resilient to network or hardware failures.

4.5. Application software development

The developed server software for the environmental analysis system using IoT and machine
learning is based on Node.js and MQTT technologies for processing data from sensors in real-time.
The server system receives data from IoT devices, such as Raspberry Pi Pico W, analyzes them
using a pre-built machine learning model, and provides centralized storage and access to the results
via a RESTful API.

The main part of the system is implemented on Node.js, which provides high-performance and
asynchronous processing of messages from numerous IoT devices. The MQTT protocol is used to
exchange data between the sensors and the server, which is ideal for lightweight IoT systems. The
server is connected to an MQTT broker, which receives messages about the current temperature
and gradient published by the sensors. The server is subscribed to the corresponding topic, for
example, temperature/data, and receives all data in real-time. Incoming messages are processed
using the mqtt library for Node.js, which provides easy integration with the MQTT broker and
convenient access to data.

After receiving the data, it is passed to the machine learning module, integrated through the
Python Shell library. This module works with a machine learning model previously created using
sci-kit-learn. The model is loaded as a file and is used to analyze the received data. For each new
message, the server calls a Python script, passing the data via standard input, where the model
processes the information and returns it. This allows the server to classify the system state in real-
time and generate the appropriate status for each sensor.

The processing results are stored in a PostgreSQL relational database. Each record includes
temperature, gradient, timestamp, system status (normal or abnormal), and a unique sensor
identifier. This structure allows you to store historical data and quickly execute queries for trend
analysis. PostgreSQL’s high performance allows you to work with large amounts of data and
provides fast access to information for reporting and analytics.

A RESTful API is implemented to access the system using the Express.js framework. The API
provides endpoints for retrieving current data, accessing historical records, and obtaining
aggregated statistics, such as the average temperature per day or the number of recorded
anomalies. The API also supports authentication using JWT tokens to ensure data access security.

A web application has been developed for visualization, allowing users to monitor the system
status in real-time. The web application is built on React.js and receives data from the server API.
The interface includes temperature trend graphs, tables with historical data, and a notification
panel about anomalies. Additionally, push notification functionality via web sockets has been
implemented, allowing users to be instantly informed about critical anomalies.

The development of the client part on React for the environmental status analysis system was
aimed at creating an intuitive and functional interface that allows users to monitor temperature

199

indicators, trends, anomalies, and other data coming from the server part in real-time. The
interface provides both analytical functions and the ability to quickly respond to critical situations.

The client part is built using the React library, which allows the creation of a component-based
approach to building the interface. React Context API is used to manage the state, which provides
centralized data transfer between components. Modern React functionalities, such as useState, use
Effect, and use Context hooks, were actively used in the development. The Axios library was
additionally used to process HTTP requests to the server API.

In addition, the web application is adapted to work on mobile devices. For this, adaptive design
using CSS Flexbox and Grid is used. Components automatically adjust to the screen width, which
provides convenient viewing of data on both large screens and smartphones.

The interface development also included ensuring accessibility. Descriptive attributes for
buttons and interactive elements were added, and the color scheme was optimized for users with
color vision impairments. Testing of the client part was carried out using Jest and React Testing
Library to ensure the stable operation of key components.

The result of the development was a powerful and user-friendly interface that allows users to
monitor the state of the environment in real-time and receive analysis of historical data. Thanks to
React, it was possible to create a dynamic application with a modern design that provides a high
level of user interaction with the system.

The entire system is tested to work with a large number of connected devices and provides data
processing with high speed and accuracy.

The developed software is a reliable tool for collecting, analyzing, and visualizing data about the
state of the environment. It integrates IoT devices, machine learning, and modern server
technologies, providing users with deep analysis and the ability to quickly respond to detected
anomalies.

Conclusions

As a result of the analysis of the subject area, the relevance and prospects of the selected topic of
work in the context of modern technological development were studied in detail. The combination
of technologies such as IoT and machine learning is relevant and promising, allowing to ensure
maximum productivity of data collection and deep analysis. Additionally, a comparative analysis of
existing technologies and systems was conducted. Based on a comparison of their capabilities,
technical and functional characteristics, pricing, and marketing policies, a list of basic requirements
and characteristics of the system was formed.

An important stage of the work on the design of the system was the definition of the main
structural components of the system by role, structure, purpose, and characteristics. The system is
conventionally divided into two main interconnected parts: hardware and software. The hardware
part of the system includes physical devices of the Internet of Things, which are responsible for
interacting with the environment by collecting data and influencing it. The software part includes
software running on hardware, client, and server. An important part of the software is the machine
learning module, which by architecture works both on the server and hardware. The system
architecture was created in such a way that the system was as simple as possible to develop and
scale. This result was achieved by designing each element of the system, observing maximum
independence from other elements of the system. Although all components closely interact with
each other, this cooperation is carried out only under predetermined contracts. This approach also
allows for parallel development of the system by different teams to quickly achieve new results in
the form of new features and system expansion. The system was successfully created in the Wokwi
virtual environment and prepared for work with the software.

The software part of the system for analyzing the state of the environment based on machine
learning and IoT has been created. The structure of the machine learning module includes two
parts, the first of which is a TinyML model that runs on an IoT device. The second part of the
machine learning module is a more powerful model that runs on the server and deeply analyzes

200

data. Software for an IoT device has been created and tested in a virtual environment. The process
of developing application software has been created and described, which includes a server part on
NodeJs and a client part on ReactJs.

During the testing of the system, all developed components were integrated and their
performance results were collected. Based on the results of the system, the system’s weaknesses
and strengths were identified, and the main technical characteristics and features of the system’s
performance were described.

The developed system is an effective tool for analyzing a large amount of environmental data
and can solve real-world problems related to improving decision-making efficiency in various areas
and directions. The use of TinyML technology helped to increase the efficiency of anomaly
detection by up to 20 percent, compared to similar systems that do not integrate this technology.
Due to the high energy efficiency of the selected components and the combination with TinyML
technologies for local data processing, the system’s energy consumption is 10-15 percent more
efficient than existing analogs. Due to the low price of the selected devices, the full payback time of
the system and the initial costs for installing or integrating the system are 20 percent lower than
existing systems. Due to the high modularity and flexibility of the system components, the speed of
installation, integration, and adaptation of the system is twice as fast as existing systems.

Declaration on Generative AI

While preparing this work, the authors used the AI programs Grammarly Pro to correct text
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors
reviewed and edited the content as needed and took full responsibility for the publication’s content.

References

[1] B. Zhurakovskyi, et al., Smart house management system, in: Emerging Networking in the
Digital Transformation Age, TCSET 2022, Lecture Notes in Electrical Engineering, vol 965,
2023, 268–283. doi:10.1007/978-3-031-24963-1_15

[2] J. Holler, et al., From machine-to-machine to the internet of things: Introduction to a new age
of intelligence, Academic Press, 2014.

[3] K. Kolbasova, et al., Smart home network based on Cisco equipment, in: Cybersecurity
Providing in Information and Telecommunication Systems II, vol. 3550, 2023, 70–80.

[4] V. Zhebka, et al., Methodology for predicting failures in a smart home based on machine
learning methods, in: Workshop on Cybersecurity Providing in Information and
Telecommunication Systems, CPITS, vol. 3654 (2024) 322–332.

[5] K. P. Murphy, Machine learning: A probabilistic perspective, MIT Press, 2012.
[6] A. Geron, Hands-on machine learning with Scikit-learn, Keras, and TensorFlow: Concepts,

tools, and techniques to build intelligent systems, O’Reilly Media, 2019.
[7] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.
[8] S. Raschka, V. Mirjalili, Python machine learning: Machine learning and deep learning with

Python, Scikit-Learn, and TensorFlow 2, 3rd Edition, Packt Publishing, 2019.
[9] J. Gubbi, et al., Internet of things (IoT): A vision, architectural elements, and future directions,

Future Gener. Comput. Syst. 29(7), 2013, 1645–1660.
[10] B. Zhurakovskiy, N. Tsopa, Assessment technique and selection of interconnecting line of

information networks, in: 3rd International Conference on Advanced Information and
Communications Technologies (AICT), 2019, 71–75 doi:10.1109/AIACT.2019.8847726

[11] B. Zhurakovskyi, et al., Comparative Analysis of Modern formats of Lossy Audio
Compression, in: Cyber Hygiene, vol. 2654, 2020, 315–327.

[12] M. Chen, J. Wan, F. Li, Machine-to-machine communications: Architectures, standards and
applications, KSII Trans. Inter. Inf. Syst. 6(2) (2012) 480–497. doi:10.3837/tiis.2012.02.002

201

https://doi.org/10.3837/tiis.2012.02.002
https://doi.org/10.1109/AIACT.2019.8847726
https://doi.org/10.1007/978-3-031-24963-1_15

[13] V. Andrii, et al., Fault identification in linear dynamic systems by the method of locally
optimal separate estimation, in: Emerging Networking in the Digital Transformation Age, Part
of the Lecture Notes in Electrical Engineering book series, vol. 965, 2022, 634–651.
doi:10.1007/978-3-031-24963-1_37

[14] N. Fedorova, et al., Software system for processing and visualization of big data arrays, in:
Advances in Computer Science for Engineering and Education, Lecture Notes on Data
Engineering and Communications Technologies, vol. 134, 2022, 324–336. doi:10.1007/978-3-
031-04812-8_28

[15] B. Zhurakovskyi, et al., Processing and analyzing images based on a neural network, in:
Cybersecurity Providing in Information and Telecommunication Systems, vol. 3654, 2024, 125–
136.

[16] B. Zhurakovskyi, et al., Secured remote update protocol in IoT data exchange system, in:
Cyber Security Providing in Information and Telecommunication Systems, vol. 3421, 2023, 67–
76.

[17] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
[18] B. Zhurakovskyi, et al., Traffic control system based on neural network, in: Digital

Ecosystems: Interconnecting Advanced Networks with AI Applications, Lecture Notes in
Electrical Engineering, vol. 1198, 2024, 522–542. doi:10.1007/978-3-031-61221-3_25

[19] B. Zhurakovskyi, et al., Modifications of the correlation method of face detection in biometric
identification systems, in: Cybersecurity Providing in Information and Telecommunication
Systems, vol. 3288, 2022, 55–63.

[20] M. Moshenchenko, et al., Optimization algorithms of smart city wireless sensor network
control, in: Cybersecurity Providing in Information and Telecommunication Systems II, vol.
3188, 2021, 32–42.

[21] V. Druzhynin, et al., Features of processing signals from stationary radiation sources in multi-
position radio monitoring systems, in: Cybersecurity Providing in Information and
Telecommunication Systems, vol. 2746, 2020, 46–65.

[22] E. Alpaydin, Introduction to machine learning, MIT Press, 2020.
[23] P. Balakrishnan, S. K. Srivatsa, Programming the internet of things: An introduction to

building integrated IoT solutions, Mc Graw-Hill, 2018.
[24] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw. 54(15) (2010)

2787–2805.
[25] T. Erl, Z. Mahmood, R. Puttini, Cloud computing: concepts, technology & architecture,

Prentice Hall, 2013.
[26] B. Zhurakovskyi, et al., Calculation of quality indicators of the future multiservice network, in:

Future Intent-Based Networking. Lecture Notes in Electrical Engineering, vol. 831, 2022, 197–
209. doi:10.1007/978-3-030-92435-5_11

[27] B. Zhurakovskyi, et al., Enhancing information transmission security with stochastic codes, in:
CQPC-2024: Classic, Quantum, and Post-Quantum Cryptography, vol. 3829, 2024, 62–69.

[28] J. W. Creswell, J. D. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, SAGE Publications, 2017.

[29] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, 2009.

[30] S. Marsland, Machine Learning: An Algorithmic Perspective, Chapman and Hall/CRC, 2015.
[31] S. Shah, P. Mishra, S. Jain, IoT-Enabled Environmental Monitoring System for Smart Cities,

Springer, 2020.
[32] M. Richardson, S. Wallace, Getting started with Raspberry Pi, O’Reilly Media, 2014.
[33] P. Warden, D. Situnayake, TinyML: Machine learning with TensorFlow Lite on Arduino and

ultra-low-power microcontrollers, O’Reilly Media, 2019.
[34] C. Banbury, et al., Micronets: Neural network architectures for deploying Tiny ML

Applications, arXiv, 2021. doi:10.48550/arXiv.2010.11267
[35] W. Shi, et al., Edge computing: Vision and challenges, IEEE Inter. Things J. 3(5) (2016) 637–646.

202

https://doi.org/10.48550/arXiv.2010.11267
https://doi.org/10.1007/978-3-030-92435-5_11
https://doi.org/10.1007/978-3-031-61221-3_25
https://doi.org/10.1007/978-3-031-04812-8_28
https://doi.org/10.1007/978-3-031-04812-8_28
https://doi.org/10.1007/978-3-031-24963-1_37

[36] X. Shi, et al., Convolutional LSTM network: A machine learning approach for precipitation
nowcasting, in: 28th International Conference on Neural Information Processing Systems, 2015,
802–810.

[37] D. Gope, G. Dasika, M. Mattina, Ternary hybrid neural-tree networks for highly constrained
IoT applications, in: Proceedings of Machine Learning and Systems, 2019, 190–200.

[38] H.-P. Cheng, et al., Msnet: Structural wired neural architecture search for internet of things,
in: Proceedings of the IEEE International Conference on Computer Vision Workshops, 2019.

[39] R. David, et al., TensorFlow Lite Micro: Embedded machine learning on Tiny ML systems,
arXiv preprint arXiv, 2020. doi:10.48550/arXiv.2010.08678

[40] C. R. Banbury, et al., Benchmarking Tiny ML systems: Challenge sand direction, arXiv
preprint arXiv, 2020. doi:10.48550/arXiv.2003.04821

[41] I. Fedorov, et al., SpArSe: Sparse architectures earch for CNNs on resource constrained
microcontrollers, in: Advances in Neural Information Processing Systems, 2019, 4977–4989.

[42] A. Wan, et al., Fbnetv2: Differentiable neural architecture search for Spatia land channel
dimensions, in: The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[43] A. Agrawal, A. An, M. Papagelis, Learning emotion-enriched word representations, in: 27 th

International Conference on Computational Linguistics, 2018, 950–961.
[44] V. Dudykevych, et al., Platform for the security of cyber-physical systems and the IoT in the

intellectualization of society, in: Workshop on Cybersecurity Providing in Information and
Telecommunication Systems, CPITS, vol. 3654 (2024) 449–457.

[45] Z. Hu, et al., Bandwidth research of wireless IoT switches, in: IEEE 15 th International
Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer
Engineering (2020). doi:10.1109/tcset49122.2020.2354922

[46] V. Sokolov, et al., Method for increasing the various sources data consistency for IoT sensors,
in: IEEE 9th International Conference on Problems of Infocommunications, Science and
Technology (2023) 522–526. doi:10.1109/PICST57299.2022.10238518

203

https://doi.org/10.1109/PICST57299.2022.10238518
https://doi.org/10.1109/tcset49122.2020.2354922
https://doi.org/10.48550/arXiv.2003.04821
https://doi.org/10.48550/arXiv.2010.08678

	1. Introduction
	2. Description of the subject area
	2.1. General analysis of the research object
	2.2. Analysis and comparison of existing systems
	2.3. Problem statement

	3. System design
	3.1. System components and their interaction
	3.2. Selection of system hardware components
	3.2.1. Purpose and system requirements
	3.2.2. Types of hardware components

	4. Software development
	4.1. The general structure of the machine learning module
	4.2. TinyML
	4.3. Development of a temperature forecasting model
	4.4. Hardware script development
	4.5. Application software development

	Conclusions
	Declaration on Generative AI
	References

