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Abstract
Growing environmental threats require modern solutions for environmental monitoring. Integration of  
Internet of Things technologies with machine learning allows you to automate the process of collecting,  
processing, and analyzing environmental data, ensuring accuracy and speed. The work aims to create a 
system for automated environmental monitoring capable of quickly analyzing environmental data. For  
this purpose, modern approaches were studied, the system architecture was developed, machine learning 
algorithms  were  implemented  and  testing  was  conducted.  The  main  emphasis  is  on  the  use  of  IoT 
technologies for automated data collection, machine learning algorithms for predicting changes in the 
environmental state, and local data processing using TinyML to reduce the load on cloud services. The 
developed system can be used in agriculture,  urban structures,  and industry,  optimizing the costs  of 
environmental monitoring and improving data quality.
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1. Introduction

The topic of research is relevant and important not only within the framework of environmental  
issues.  It  covers  a  wider  range  of  industries,  including  business,  agriculture,  socio-economic 
development,  smart  cities,  etc.  [1].  Effective  management  and  forecasting  of  the  state  of  the 
environment  is  a  significant  factor  of  influence  in  the  conditions  of  constant  development  of 
urbanization, the introduction of automation of business processes from various industries, and the 
emergence of  technological  innovations.  Enterprises,  farms,  and urban agglomerations  need to 
implement modern tools to guarantee sustainable development, preserve ecosystems, and ensure 
the greatest efficiency of production. The combination of IoT technologies and machine learning 
can  provide  an  alternative  approach  to  the  development  of  systems  for  environmental  risk 
management and real-time environmental monitoring [2].

Thus, the relevance of the research topic lies not only in the environmental component but also  
in its significance for modern business and urban agglomeration management. Investments in such 
systems allow to increase the efficiency of resource management, reduce the environmental impact 
on the environment, and also create new opportunities for business through process optimization, 
cost reduction, and productivity increase.

The practical significance of this research lies in the creation of a universal and adaptive system 
for environmental monitoring, which can be used in various fields of activity. This system can be 
used in public administration to track the state of the environment and respond to environmental 
threats, in industrial enterprises to monitor compliance with environmental norms and standards, 
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as  well  as  in  scientific  research  to  model  environmental  processes  and  study  their 
interrelationships. The proposed system can also be used to assess the impact on the environment  
during  the  construction  of  new  infrastructure  facilities,  urban  development  planning,  and 
development of programs for adaptation to climate change. In addition, it can serve as a platform 
for  conducting  environmental  education  programs,  helping  to  raise  public  awareness  of  the 
importance of  preserving natural resources and being environmentally responsible.  In the long 
term,  such  a  system  can  contribute  to  the  sustainable  development  of  society  by  preventing 
ecosystem degradation, reducing the impact of anthropogenic factors on nature, and ensuring the 
preservation of natural resources for future generations.

2. Description of the subject area

2.1. General analysis of the research object

Environmental monitoring systems are becoming increasingly important in the context of global 
challenges such as climate change, depletion of natural resources, and environmental pollution. 
The integration of modern technologies such as the Internet of Things (IoT) and machine learning 
(ML)  [3]  allows  for  the  creation  of  effective  solutions  for  the  analysis  and  prediction  of 
environmental changes. An environmental monitoring system based on IoT and machine learning 
is  just  such  a  solution  that  combines  modern  approaches  to  data  collection,  processing,  and 
analysis.

The IoT system consists of:

 Sensors—devices that collect data on temperature, humidity, gas concentrations (CO2, CO, 
NOₓ), water level, soil pollution, and other factors.

 Network protocols—means for wireless data transmission, such as LoRa, Zigbee, and Wi-Fi, 
which provide remote transmission of information from sensors to servers.

 Management platforms—software for data collection and processing, which can be located 
both in the cloud and on local servers.

Machine learning (ML) is an important component of modern data analysis systems. Its use 
allows you to automatically find patterns and regularities in large amounts of information, provide 
forecasts, and help make decisions [4].

An environmental analysis system based on IoT and machine learning is a promising solution 
that combines modern technologies to ensure effective monitoring of environmental conditions. It  
not only allows you to respond to current changes in the environment but also to predict possible  
problems, ensuring sustainable development for various industries and sectors of the economy.

2.2. Analysis and comparison of existing systems

Existing environmental monitoring systems based on IoT and machine learning technologies are 
diverse, and each of them has its unique characteristics. Let us conduct a comparative analysis of 
the main systems that have already been implemented in different regions and sectors [5].

Table 1  shows how the analyzed existing systems and technologies differ  in key indicators 
(scalability,  forecast  accuracy,  energy efficiency,  infrastructure requirements,  cost,  flexibility  of 
configuration).
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Table 1
Comparison of existing systems

System name Scalability
Accuracy of 

forecasts
Energy Efficiency Flexibility of setting

Smart
Santander

High for one 
city, limited 
globally

Average High Limited to other cities

Google
Air Quality 
Monitoring

Global High. Thanks 
to access to 
big data

Good optimization for 
long-term work in the 
city

Limited at the local level

SUEZ
Smart 
Environment

Average Average Average. The 
requirement of large 
energy costs due to 
the need to maintain 
infrastructure in hard-
to-reach areas

Narrow (for water and waste 
only)

Microsoft
Azure IoT 
Central

High High Average High. Thanks to the ability 
to integrate with different 
platforms and support for 
several types of 
environmental data.

SmartSantander  and  Microsoft  Azure  IoT  Central  have  the  most  versatile  approach  to  data 
collection, covering various environmental aspects such as air quality, water, noise,  lighting, and 
others.  Google  Air  Quality  Monitoring,  SUEZ  Smart  Environment,  and  SmartWater  are  more 
specialized in one type of data, namely air or water quality, which limits their flexibility for complete 
environmental monitoring.

Google Air Quality Monitoring and Microsoft Azure IoT Central have global coverage thanks to 
satellite  monitoring  capabilities  and  cloud  infrastructure.  SmartSantander  and  SUEZ  Smart 
Environment  are  more  localized  and  effective  for  specific  regions  or  cities  but  require  large 
investments to expand to other regions.

Google  Air  Quality  Monitoring  and  Microsoft  Azure  IoT  Central  demonstrate  the  highest 
accuracy  of  predictions  thanks  to  powerful  machine  learning  algorithms  and  access  to  large 
amounts of data [6].

Common  disadvantages  of  existing  systems  include  the  high  cost  of  their  installation  and 
integration.  All  systems,  except  Google  Air  Quality  Monitoring,  require  significant  financial  
investments in sensor installation, infrastructure support, and maintenance. Most systems, such as 
SmartSantander,  and  SUEZ Smart  Environment,  have  limited  ability  to  quickly  adapt  to  small 
geographical regions or scale to large areas without significant investments [7].

Therefore, existing systems for environmental monitoring based on IoT and machine learning 
have their unique advantages and disadvantages. The main advantages of such systems are the 
ability to  collect  large amounts of  environmental  data in real-time,  the ability to  use machine 
learning to  analyze  and predict  the  state  of  the  environment,  as  well  as  reducing the  cost  of 
resource  management  [8].  At  the  same  time,  there  are  some  challenges,  such  as  high 
implementation and maintenance costs, limited scalability in different geographical conditions, the 
need for energy-efficient solutions, and the need to improve machine learning models to increase  
the accuracy of forecasts.
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2.3. Problem statement

The main objective of the work is to develop a system architecture for environmental analysis 
based on IoT and machine learning with improved efficiency of data collection, transmission, and 
analysis.  This  includes  optimizing  the  processes  of  data  collection  from IoT  devices  [9],  their 
transmission and storage,  as  well  as  improving the accuracy of  predictions  based on machine 
learning algorithms.

The system should meet the following functional requirements:

 Real-time  data  collection:  The  system  should  provide  continuous  data  collection  from 
various IoT devices, such as temperature, humidity, air pollution, noise level sensors, etc.

 Data transmission: Data collected by IoT devices should be transmitted to a central server 
or  cloud  platform for  further  processing.  The  transmission  should  occur  with  minimal 
delays [10].

 Data storage: The system should ensure the storage of large volumes of environmental data  
in the storage for further analysis [11].

 Analysis and forecasting: A built-in machine learning model should analyze the collected 
data and provide predictions about the state of the environment [12].

 User interface: The system should have a user-friendly interface for data visualization and 
displaying analysis results in the form of graphs and analytical reports [13].

 Anomaly analysis: The system should detect anomalies in the data and warn of possible 
environmental disasters [14].

Non-functional requirements of the system include:

 Reliability: The system must operate uninterruptedly and provide high reliability of data 
transmission even in cases of partial loss of connection between IoT devices.

 Scalability:  The architecture of the IoT system must be scalable to ensure the ability to 
connect a large number of sensors without loss of performance [15].

 Energy  efficiency:  IoT  devices  must  operate  for  a  long  time  with  minimal  energy 
consumption to ensure their use in remote areas.

 Security: The data collected by the system must be protected from unauthorized access.  
Encryption and authentication tools must be implemented [16].

 Accuracy: Machine learning models must provide high accuracy of predictions based on the 
collected data [17].

 Speed:  The time for  data processing and forecast  generation must  not  exceed specified 
limits (usually no more than a few minutes after data receipt) [18].

Requirements for system integration, scaling, and support:

 Integration with cloud services: The system should be able to integrate with popular cloud 
platforms (e.g. AWS, Azure) for processing and storing large amounts of data [19].

 Support  for  different  types  of  sensors:  The  system should  be  flexible  and  support  the 
connection  of  different  types  of  sensors,  including  those  that  measure  different 
environmental parameters [20, 21].

 Cross-platform: The software should be available for use on different platforms (mobile 
devices, PCs) to provide access to data at any time and from any place.
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The  result  of  the  work  will  be  a  developed  and  tested  system for  analyzing  the  state  of  the 
environment based on IoT and machine learning, which will have an improved data collection and 
analysis  architecture.  The  system  will  provide  more  efficient  and  accurate  monitoring  of 
environmental indicators in real-time, increase the accuracy of forecasts, and optimize the cost of 
resource use.

3. System design

3.1. System components and their interaction

The entire system is divided into three main groups according to its functionality. Each group has 
its purpose and characteristics and requires separate design and development. These functional  
groups include:

 IoT devices—the hardware of the system, consisting of physical devices that can read data 
from  the  environment  and  interact  with  it.  Actuators—devices  that,  after  receiving 
commands, perform certain actions, which may include influencing the environment, for 
example,  notifications,  sound,  or  light.  Sensors—devices  that  read  data  from  the 
environment (for example, temperature, humidity, air quality, light level, etc.) and transmit 
them to IoT gateway devices. The IoT gateway is the point of the IoT system that connects  
all other devices. It serves to manage all devices, collect data, initially process them, and 
then send them in the selected way.

 Machine  learning—a  module  responsible  for  advanced  analysis,  classification,  and 
evaluation of data received from IoT devices. TinyML is a technology that allows for simple 
data  analysis  using  machine  learning  algorithms  on  low-power  devices  with  limited 
memory [22]. Within the framework of the system under development, TinyML can be used 
for initial data processing directly at the IoT gateway level, which will help to use system 
resources  more  efficiently.  The  data  analysis  module  is  responsible  for  the  main  data 
processing and preparation of the final analysis results [23].

 Software is the part of the system that is responsible for working with data, processing it, 
and storing it.  An important task of this part of the system is to provide a convenient  
interface for  interacting with the obtained system results  [24].  The software should be 
scalable and independent of IoT devices and the machine learning module. 

Fig. 1 shows the structural diagram of the system.

Figure 1: Structural diagram of the system
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The central component of the system is the Internet of Things (IoT) devices, which are divided into 
two groups: sensors and actuators. The physical gateway acts as an intermediate link between the 
sensors/actuators and the cloud gateway.

The cloud gateway receives data from the physical gateway and performs the following tasks:

 Storage of large amounts of data and their initial processing.
 Data transmission for further processing and analysis.
 Providing access to the system through available networks.

The machine learning module performs the following tasks [25]:

 Analysis of the received data.
 Building forecasting models.
 Detection of anomalies, optimization, and decision-making.

Data processed by machine learning algorithms is returned to the system for application (for  
example, optimizing the operation of devices or providing results for users).

The control application is the main interface for user interaction with the system. It consists of  
the following components:

 Interface—a graphical or text interface for convenient data display and interaction with the 
system.

 Business  analysis—tools  for  analyzing  data  to  obtain  valuable  conclusions  and 
recommendations.

The application is available as a mobile application for convenient use using phones and tablets.  
This will provide the opportunity to use the system more flexibly in various conditions. A web 
version of the application is also available for use via a browser. This allows you to conveniently 
use the system in stationary conditions.

The key connections of the system are as follows:

 Sensors and actuators transmit data to the physical gateway.
 The  physical  gateway  interacts  with  the  cloud  gateway  in  two  directions:  transmits 

collected data and receives commands for sensors/actuators.
 The  cloud  gateway  provides  data  transmission  to  the  machine  learning  module.  This 

component of the system is a module that is responsible only for receiving and processing 
input data. It should be as flexible as possible to be able to expand the list of data-sending 
protocols that it can process if necessary.

 Machine learning analyzes the data and transmits the results to the application for control.  
This module is closely related to the server part of the control application, as it stores and 
aggregates data in a convenient form for client applications [26].

 The  control  application  provides  user  interaction  with  the  entire  system.  The  mobile 
application and the web version of the application are implemented in such a way that they 
contain only specific logic to correctly and conveniently display data on the platform they 
implement.  At  the  same  time,  all  specific  business  logic  that  is  common  to  all  client 
applications is implemented on the server part of the application. The system is designed in 
such a way that it is easy and fast to add new client platforms, regardless of the others. 
Each  client  platform  receives  all  data  from  the  server  part,  where  it  is  stored  and 
aggregated. The single point of truth of the system is the server, which in turn is connected 
to the database, machine learning module, and cloud gateway.
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This architecture provides convenient data collection, processing, and analysis with subsequent 
decision-making to optimize processes in real-time.

System features:

 Iterative approach: A closed-loop provides a continuous optimization process.
 Automatic adjustment: The system can adapt its actions based on feedback.
 Modularity: Each stage can be scaled or changed without interfering with the others.

The  system  is  suitable  for  automated  monitoring  of  complex  processes,  such  as  resource 
management in agriculture, smart cities, industry, etc.

Table 2
Characteristics of system states

State Description Examples/
Technologies

Start the process Starting a data collection and 
processing cycle. 

Schedulers (cron jobs), 
IoT triggers

Data collection Reading raw data from IoT sensors Sensors DHT22, MQ135; 
Protocols MQTT, CoAP

Data transfer Data is transmitted from sensors to 
the edge device for pre-processing

Wireless protocols: Wi-Fi, 
Bluetooth, Zigbee

Preliminary processing The edge device performs noise 
filtering, data aggregation, and basic 
analysis using TinyML

TinyML 
(TensorFlowLite); Kalman 
signal filtering

Centralized analysis Deep data analysis on the server 
using machine learning models and 
comparison with historical data

Servers AWS, Google 
Cloud; Python, Pandas, 
Scikit-learn

Prognostication Based on the analysis, predictions of 
future events or system states are 
formed

Models LSTM; 
TensorFlow, PyTorch

Evaluation of results Analysis of forecast accuracy and its 
compliance with benchmarks

Metrics: Accuracy, MSE
Tools Jupyter Notebook, 
Dash

Recommendation generation Making recommendations to optimize 
system performance or warn of 
potential risks

Tableau, Power BI; 
Integration through API

Sending results Send analysis results and 
recommendations to responsible 
individuals or systems

Mobile notifications 
(Firebase); integration 
with Telegram, Slack

Feedback Obtaining feedback from users or 
systems used to improve models and 
data collection parameters

Feedback Modules; API 
for collecting automated 
feedback

Completion of the cycle End of the current cycle after all 
actions have been performed. 

A Cyclic Approach to 
Continuous Optimization
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3.2. Selection of system hardware components

Designing  an  IoT  system requires  consideration  of  many  factors:  system purpose,  component 
types, energy efficiency, security, scalability, and cost requirements. Hardware selection should be 
comprehensive and based on an analysis of the needs and constraints of a specific application to  
ensure the effectiveness and durability of the IoT system.

3.2.1. Purpose and system requirements

When choosing hardware, it  is important to understand what the IoT system will  be used for.  
Requirements may vary depending on the purpose:

 Environmental monitoring systems: These applications require sensors that can operate in 
extreme conditions,  such as  changes  in  temperature,  humidity,  or  pollution levels.  The 
selection  of  components  should  take  into  account  the  appropriate  weather  protection 
standards (IP rating for sensors).

 Smart home control systems: These systems require sensors that work with different types of 
interfaces (e.g. Zigbee, Z-Wave, Wi-Fi), as well as actuators to control various devices (light, 
temperature).

 Industrial IoT systems: Components are required that can withstand difficult  conditions 
(high loads, explosive areas), as well as the ability to process large amounts of data in real-
time.

3.2.2. Types of hardware components

The  choice  of  components  has  a  huge  impact  on  the  performance  of  an  IoT  system. 
Microcontrollers are the heart of IoT devices, and their choice depends on the number of connected 
sensors,  the required computing power,  and energy efficiency requirements.  The most popular 
ones are:

 ESP32: has built-in Wi-Fi and Bluetooth, making it a great choice for wireless IoT devices.
 Raspberry Pi Pico W: a compact microcontroller based on the ARM Cortex M0+, suitable 

for projects with limited resources.
 STM32: a family of microcontrollers based on the ARM Cortex, well suited for complex 

applications.
 Arduino: a popular choice for initial projects due to its ease of use and a wide selection of 

boards and accessories.

Sensors are an integral part of an IoT system, and choosing the right sensor depends on the 
requirements for accuracy, measurement range, and external operating conditions.  By purpose, 
sensors are as follows:

 Temperature and humidity: DHT22, BME280.
 Gas sensors: MQ series for detecting gases such as CO2, CO, methane, etc.
 Motion and acceleration: motion sensors, and accelerometers for tracking movement and 

orientation.
 Pressure:  pressure  sensors  (e.g.  BMP280).  Actuators  (mechanical  devices  that  perform 

actions such as turning lights or valves on/off) should also be selected according to the 
tasks set by the system.

Communication modules: For IoT devices, it is important to have an efficient connection for 
data transmission.
Communication modules are as follows:
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 Wi-Fi: Suitable for short distances where there is access to the Internet or a local network.
 Bluetooth: Good for low-power devices such as BLE.
 Zigbee/Z-Wave: Protocols for multi-device networks (mesh networks), well suited for smart 

homes.
 LoRa:  Low-power,  long-range  communication,  ideal  for  agricultural  and  other  long-

distance applications.
 NB-IoT: High-speed mobile networks for IoT with low power consumption.

Power  supply:  Battery-based  or  accumulator-based  systems  must  have  optimized  power 
consumption. You can use:

 Li-ion or Li-Po batteries for autonomous systems.
 Solar panels provide constant power in ecological systems.

Energy saving is a critical aspect, as many IoT devices operate autonomously and must have 
minimal power consumption.

 Power saving modes: Most modern microcontrollers have special sleep modes where they 
can be in an inactive state (deep sleep, standby) to reduce power consumption.

 Low-power  wireless  communication  technologies:  The  use  of  protocols  such  as  LoRa, 
Zigbee or NB-IoT helps reduce power consumption during data transmission.

IoT systems must be scalable, both in terms of the number of devices and the amount of data  
processed. Scalability can be defined by the following parameters:

 Modularity: Adding new components should be easy. For example, the ability to add new 
sensors or connect new types of network communication (LoRa or 5G).

 Compatibility  with  other  protocols:  Choosing hardware  that  supports  multiple  wireless 
communication standards allows for integration into a variety of networks.

Since IoT systems work with sensitive data, security is extremely important.

 Encryption  and  authentication:  Choosing  components  that  support  reliable  protection 
mechanisms,  such  as  hardware  data  encryption  or  secure  protocols  for  information 
exchange (TLS, SSL) [27].

 Access control: Implementing multi-level authentication to ensure the security of devices 
and data.

For use in extreme conditions (for example, outdoors or in industrial areas), components must  
have an appropriate level of protection, in particular, according to IP (Ingress Protection) standards 
[28].

4. Software development

4.1. The general structure of the machine learning module

The IoT and machine learning-based environmental condition analysis system is an innovative 
approach to environmental condition monitoring, analysis,  and forecasting. The use of modern 
technologies  such  as  TinyML  for  preliminary  data  analysis  and  traditional  machine  learning 
algorithms for in-depth analysis and forecasting ensures the efficiency and accuracy of the system. 
The main advantage of this approach is the optimization of computing resources and minimizing 
data transmission costs, which is important for IoT systems.
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At the data collection stage,  the system uses IoT devices such as the Raspberry Pi  Pico W 
microcontroller,  which are connected to DS18B20 temperature sensors,  which provide accurate 
temperature data in a wide range of conditions. These sensors transmit the collected data to local  
computing devices for pre-processing using TinyML.

TinyML is a technology that allows you to run optimized machine learning models on devices 
with limited resources. In the system under development, TinyML is used for data preprocessing, 
which includes  noise  filtering,  anomaly  detection,  and temperature  condition classification.  For 
example,  if  a  sensor  transmits  a  series  of  temperature  values,  TinyML can  detect  in  real-time 
whether these values correspond to normal conditions or are signs of anomalous changes, such as 
sudden temperature changes [29].

Preprocessing data at the IoT device level has several important advantages. First, it reduces the 
amount of data that is transmitted over the network to a server or cloud, which reduces bandwidth 
requirements and saves energy.  For example,  instead of  transmitting all  measured temperature 
values,  an  IoT  device  can  transmit  only  aggregated  data,  such  as  the  average,  maximum,  or  
minimum, or signals about detected anomalies. Second, it increases the autonomy of the system: 
even if  the connection to the server  is  temporarily unavailable,  the devices can perform basic  
analysis locally [30].

After preliminary analysis, the data is transferred to a central server or the cloud, where deeper 
analysis is performed using more sophisticated machine learning models. These models can take 
into account more parameters than are available at the IoT device level, including historical data,  
climate trends, and external factors such as weather conditions or seasonal changes. This allows 
the system to provide not  only an analysis  of  the current temperature state but  also to make  
predictions about future changes. For example, the server model can use time series algorithms or 
recurrent  neural  networks  (RNNs)  to  predict  the  temperature  several  days  ahead,  based  on 
collected data and trends [31].

The integration of TinyML and traditional machine learning also allows for the creation of a 
multi-level analysis system. The first layer, based on TinyML, provides a quick response to local  
events, such as real-time warnings of a sharp drop in temperature. The second layer, running on 
the server, provides more complex insights and long-term forecasts [32]. This combination allows 
for a balance between data processing speed and analysis accuracy.
To predict temperature based on machine learning, the system uses historical data stored on the 
server, as well as data from other sources, such as weather stations or satellites. Combining these 
data sources allows you to increase the accuracy of forecasts. For example, a machine learning 
model can detect patterns in seasonal temperature changes or predict the consequences of extreme 
weather events. Overall, the combination of TinyML and traditional ML in a system for analyzing 
the state of the environment ensures its efficiency, accuracy, and scalability. This approach allows 
you to combine the advantages of  local  data processing provided by IoT devices and complex 
analysis and forecasting performed at the server level. This makes the system not only high-tech 
but also cost-effective, suitable for use in a wide range of tasks, from environmental monitoring to 
climate management in smart cities or agricultural lands.

4.2. TinyML

The development of the TinyML module for the environmental analysis system is a critical element 
that provides pre-analysis of data directly on IoT devices. The system will use the One-Class SVM 
algorithm,  optimized  for  operation  on  devices  with  limited  computing  resources,  such  as  the 
Raspberry Pi Pico W. This algorithm can train on normal data and detect anomalies in real-time, 
which makes it ideal for monitoring temperature in a changing environment. Compared to other  
algorithms, such as K-Nearest Neighbors or Random Forest, One-Class SVM has significantly lower 
memory consumption and higher speed. For example, K-Nearest Neighbors requires storage of all 
training data, which is not optimal for microcontrollers, and Random Forest is too complex for 
limited resources [33].
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At the same time, One-Class SVM provides a high level of accuracy with minimal hardware 
requirements, which makes it particularly effective for detecting abnormal temperature changes. A 
more detailed comparative characteristic of the algorithms is given in Table 2.

Table 3
Comparison of machine learning algorithms

Algorithm Complexity Resource Precision Suitability
For TinyML

K-Nearest 
Neighbors (KNN)

Low Average High Suboptimal due to large memory

Decision Trees Low Low Average A good option for basic tasks

Random Forest Average High High Too complex for limited resources

Logistic 
Regression

Low Low Average Suitable, but limited in complex tasks

One-Class SVM Average Average High Optimal for detection of anomaly

The model was run using normalized temperature data collected under normal conditions. This 
allows the algorithm to create a hyperplane that separates normal values from potential anomalies.  
For example, if the system records temperature values that fall outside the trained hyperplane, this  
signals a possible problem, such as a technical failure or environmental risk. The model was built 
using the sci-kit-learn library in Python and then optimized for use on a microcontroller. The data 
was normalized using MinMaxScaler to ensure consistency with the limited resources of the device. 
The algorithm uses a radial basis function as the kernel for building the model, which provides  
better adaptation to nonlinear data characteristic of temperature changes. The finished model was 
saved in a format compatible with TinyML and loaded onto a Raspberry Pi Pico W. This allows for 
real-time analysis, even if the device is offline. In practice, this works as follows: a sensor, such as a  
DS18B20, transmits temperature data to a microcontroller, where it is normalized and fed into the  
model input. The model classifies the values as normal or abnormal in real-time. If an anomaly is  
detected,  the  system  can  instantly  signal  a  problem,  which  is  especially  important  for 
environmental monitoring.

The chosen approach is optimal for several reasons. First, the One-Class SVM has a high level of  
generalization, which allows it to detect new, previously unknown anomalies. This is important for  
systems operating in a changing environment and where unpredictable situations may arise [34]. 
Second, the model is quite compact and does not require large computational resources, which 
allows it to be integrated even on devices with very limited memory. Third, local data processing 
significantly reduces the load on the network, since only critical events or aggregated results are 
transmitted, and not all raw data. This also reduces the system’s power consumption, which is a 
key factor for autonomous IoT devices [35].

Compared to alternatives such as neural networks, One-Class SVM takes up less memory and 
has  a  faster  execution  time,  making  it  suitable  for  fast  real-time  responses.  Although  neural  
networks can provide more complex analysis, their implementation at the microcontroller level 
requires significantly more resources, which is not efficient for our task [36]. That is why One-
Class SVM is chosen as the base algorithm for the TinyML module.

Overall,  the  developed  module  allows  you  to  integrate  preliminary  data  analysis  into  the 
system, making it more flexible and efficient. The ability to detect anomalies in real-time, reduce 
the  amount  of  transmitted  data,  and  reduce  power  consumption  allows  you  to  build  an 
environmentally  and  economically  efficient  system  that  can  be  used  for  a  wide  range  of 
environmental monitoring tasks. This solution combines accuracy, speed, and resource optimization, 
which is critical for new-generation IoT systems.
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The implementation of the TinyML module looks like this.  First,  data collection occurs,  which 
involves obtaining values from sensors. At this stage, it is important to make sure that the data is  
read correctly,  without errors or equipment malfunctions.  Next,  data cleaning occurs,  which is  
necessary to remove noise, erroneous measurements, or missing values. Next, data normalization 
(scaling) occurs, which is necessary to ensure that all values are in the same range (for example,  
from 0 to 1). The script responsible for normalization is shown in Fig. 2.

Figure 2: Data normalization

The script responsible for initializing the model is shown in Fig. 3. The figure describes in detail the  
set of parameters that adjust the model’s operation. Next, the model is trained using the method 
shown in Fig. 4.

Figure 3: Model initialization

Figure 4: Model training

After training with the script, the model is saved for further use on the device.
Fig. 5 shows the results of measuring the model’s performance using the ROC curve (operating 
characteristic curve) and Precision-Recall curve (Precision-Recall curve). The ROC curve is used to  
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evaluate  the model’s  ability  to  distinguish between classes  by  comparing the sensitivity  (True 
Positive Rate) and the level of false positives (False Positive Rate) at different decision thresholds.  
The closer the ROC curve is to the upper left corner, the better the model’s performance, and the  
area under the curve (AUC) is an integral indicator that reflects the overall quality of classification. 
The Precision-Recall curve focuses on assessing the relationship between precision (Precision) and 
sensitivity  (Recall),  which  is  especially  useful  for  analyzing  models  in  problems  with  class 
imbalance. It shows how well the model retains precision as the number of true positives found  
increases, allowing you to assess the trade-off between missing positive cases and avoiding false 
positives.

Analyzing the data in Fig. 5, we can conclude that:

 The AUC is 0.91, which indicates good performance, but not perfect.
 The curve has several deviations from the ideal slope to the upper left corner, indicating the 

presence of false predictions (false positive and false negative classifications).
 Precision gradually decreases with increasing Recall, which is typical for models with good 

performance.
 The curve shows a trade-off between Precision and Sensitivity (Recall). 

Figure 5: ROC and Precision-Recall curves

4.3. Development of a temperature forecasting model

LSTM (Long Short-Term Memory) is one of the modifications of recurrent neural networks (RNN), 
developed to solve the problem of long-term dependencies in time series [37]. The main idea of  
LSTM  is  to  implement  special  mechanisms  (memory  cells)  that  allow  the  network  to  store 
important information for long periods and ignore unimportant ones. This feature makes LSTM an 
ideal choice for working with sequential data, such as temperature series, text data, audio, and 
video.

In standard RNNs, each layer passes all the information to the next stage, which leads to the 
problem of exploding or vanishing gradients, where important information is lost due to many 
steps in the sequence. LSTM solves this problem by introducing forget, input, and output gates 
[38].

 The forget gate decides what information from the previous state should be removed. It 
uses a sigmoid activation function to determine how important each element is.

 The input gate adds new information to the memory cell, also through sigmoid activation.
 The output gate controls how much of the information from the memory cell will be passed 

as the current-time output.

These  three  gateways  work  together  to  ensure  that  important  information  is  preserved  and 
irrelevant  information  is  ignored,  allowing  the  model  to  maintain  context  and  understand 
sequences even over large time intervals [39].
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The created model for temperature forecasting is based on the architecture of a recurrent neural 
network (RNN) using a modification of LSTM (Long Short-Term Memory). This architecture allows 
for  both short-term and long-term dependencies  in  time series  data  to  be  taken into  account, 
making it ideal for forecasting tasks.

The model consists of three consecutive LSTM layers. The first two LSTM layers are configured 
to return sequences, which allows all information about the dependencies between time elements  
to  be  passed  to  the  following  layers.  The  third  LSTM  layer  completes  the  data  processing, 
condensing them into a highly informative vector [40]. Each LSTM layer uses 50–100 neurons to 
provide  sufficient  capacity  to  process  complex  dependencies  in  the  data.  To  reduce  overfitting, 
Dropout regularization with levels of 0.2–0.3 was used, which randomly “turns off” some of the 
neurons during training, thereby increasing the model’s resistance to noise and irregularities in the 
data [41].

After processing by the recurrent layers, the data is passed to the Dense layers. The first Dense  
layer  with  64  neurons  uses  the  ReLU  (Rectified  Linear  Unit)  activation  function,  which  adds 
nonlinearity and allows the model to detect complex dependencies. The second Dense layer with 32 
neurons performs a similar function, but with fewer parameters, preparing the data for the output  
layer. The output layer has one neuron with linear activation, which allows the model to predict a 
specific temperature value. 

The model  architecture includes optimization using the Adam algorithm, which works well 
with complex optimization problems and quickly converges to the optimal solution. The training 
uses the mean square error loss function (MeanSquaredError),  which is  suitable for regression 
problems, in particular, for predicting numerical values [42]. The input data is formed in the form 
of sequences with a fixed length, which allows the models to calculate the temperature dynamics 
over time.

The main advantages of this model are its ability to process time series data and take into 
account both short-term and long-term dependencies. The use of multiple LSTM layers provides a 
deep understanding of  the patterns in the data,  and Dense layers allow the model to adapt to 
complex  dependencies.  Dropout  regularization  prevents  overtraining,  which  is  important  for 
ensuring the stability of the model in conditions of a limited amount of data.

Among the disadvantages of such an architecture, it is worth noting the high computational  
complexity. Three LSTM layers with a large number of neurons require significant resources for 
training, which can be a problem for less powerful hardware. In addition, the model depends on 
high-quality  data  preparation,  in  particular,  scaling  and  formatting  sequences.  Improper  data 
preparation can significantly reduce the accuracy of predictions. Another limitation is the potential 
difficulty of integrating the model into real-time systems due to its long inference time, especially 
on less powerful devices [43].

Overall,  the  model  is  a  powerful  tool  for  temperature forecasting.  It  can accurately predict 
future values based on historical data and works well with time series due to its deep architecture.  
However, its computational requirements need to be optimized or adapted to work under resource-
constrained conditions.

Fig. 6 shows the script used to create this model. First, the model is created using the Sequential  
class, which allows layers to be added sequentially. The first layer is an LSTM with 100 neurons, 
configured to return the entire array of output sequences (return_sequences=True). This allows all  
information about temporal dependencies to be passed to the next layer. The layer accepts input 
data of the form (X_train.shape, X_train.shape [2]), where the first parameter is the length of the  
sequence, and the second is the number of features at each time step. After the first LSTM layer, a  
Dropout with a probability of 0.3 is added to avoid overtraining by randomly turning off some 
neurons during training. The second layer is another LSTM with 100 neurons, which also returns 
sequences, deepening the model’s understanding of the dependencies in the data. This is followed 
by another Dropout with the same probability of 0.3. The third LSTM layer has 50 neurons and 
does  not  return  sequences  (return_sequences  =  False),  which  means  that  the  output  will  be 
condensed into a vector that represents the entire context of the sequence. This output is fed to the 
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Dropout layer with a probability of 0.2. Two Dense layers are then used. The first has 64 neurons  
with ReLU (Rectified Linear Unit) activation, which provides nonlinear data transformation and 
helps  the model  find complex dependencies.  The second Dense layer  with  32 neurons further 
reduces the vector size, providing a generalization of information before the final layer. The output  
layer has one neuron with linear activation (linear), which allows for predicting one numerical  
value—the temperature forecast. After determining the architecture, the model is compiled using 
the adam optimizer, which effectively updates the weights of the neural network during training,  
and the mean_squared_error loss function, which is suitable for regression problems. The code is 
completed  by  calling  the  model  summary(),  which  outputs  a  brief  description  of  the  model 
architecture, including the number of parameters to be optimized and the total number of layers.  
Such an architecture is well suited for working with time series, as it takes into account both short-
term and long-term dependencies thanks to the combination of LSTM and Dense layers. Dropout 
regularization helps avoid overfitting, ensuring model stability even in cases where the amount of 
training data is limited.

Figure 6: Creating a model

Fig. 7 shows how data formatting and model training takes place.

Figure 7: Model training

The evaluation of the model performance is shown in the graph (Fig. 8).
The graph shows a comparison of actual and predicted temperatures over some time. The blue 

line represents the actual temperature, and the orange line represents the model’s predicted values. 
The predicted values show a good fit to the actual data, indicating the overall  accuracy of the 
model. At most points, the deviation between the actual and predicted values is minimal and within 
the acceptable level of noise or uncertainty that may be inherent in the model.
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Figure 8: Evaluation of the model

The predicted line follows the general trend of the actual data, in particular, when the temperature 
increases from 23.8°C to 24.1°C, the model correctly predicts this increase. This indicates its ability  
to account for local variations in the time series. At some points, there are minor discrepancies 
between the actual and predicted values, for example, when the actual temperature is 23.7°C, the 
model  predicts  slightly  lower  values.  Such  errors  can  be  caused  by  noise  in  the  data  or  by 
insufficient  training  examples  for  specific  temperature  ranges.  The  differences  between  the 
predictions and the actual values remain stable within ±0.1°C, which is acceptable for such a task  
and indicates the stability of the model even when random factors affect the actual values. The 
model also predicts peak temperature values well, for example, maxima at 24.2°C, which indicates  
its ability to take into account both long-term and short-term dependencies that could lead to local 
maxima.  Overall,  the  model  demonstrates  a  high  ability  to  predict  temperature  with  small 
deviations, correctly modeling the general trend and local changes, which makes it a reliable tool  
for  predicting  temperature  in  real  conditions.  Minor  discrepancies  can  be  reduced  by  further 
optimizing the model or increasing the amount of training data. The conclusion shows that the 
model is suitable for temperature analysis and prediction tasks in IoT systems or environmental  
monitoring.

4.4. Hardware script development

The  code  implements  a  complex  system that  reads  temperature  data  from a  DS18B20  sensor,  
analyzes  it  using  a  pre-trained  machine-learning  model,  and  sends  the  results  via  the  MQTT 
protocol. First, the MQTT connection is configured. To do this, an MQTT client with a unique  
identifier Pico W_Temperature is created, which connects to the public broker test.mosquitto.org 
via port 1883. If the connection is interrupted, the connect_mqtt function automatically tries to 
restore the connection, which ensures the system’s resilience to network failures.

Next, the DS18B20 sensor is configured. The OneWire bus connected to the microcontroller’s 
GPIO15 is  used.  All  available sensors on this  bus are scanned,  and their  unique addresses are 
identified. If the sensors are not found, the program displays a corresponding message and enters  
an infinite wait loop. This ensures that without access to the sensor, the system will not perform 
unnecessary operations.

After  the  sensor  is  initialized,  the  machine  learning  model  is  stored  in  the 
temperature_model.pkl file is loaded, along with a normalizer that will scale the input data to the 
same ranges used during model  training.  If  the model  file  is  missing or  corrupt,  the program 
reports an error and does not continue execution.

The main part of the code works in a loop. Each loop starts with the DS18B20 sensor starting a 
temperature measurement, after which the data is read. If this is the first loop, the system saves the 
current temperature as a base value and continues to the next loop. For each subsequent reading,  
the temperature gradient is calculated, that is, the change in temperature compared to the previous 
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value. This data (temperature and gradient) forms an input vector that is passed to the machine 
learning model. The model predicts whether the current state is normal or abnormal. The result of  
the analysis is formed as a string: “Normal” or “Anomaly”. Next, a JSON object is formed, which 
includes the current temperature,  gradient,  status (model result),  and timestamp. This object is 
encoded in JSON format and sent via MQTT to the specified temperature/data topic.

Outputting data to the console allows you to monitor the system status: current temperature, 
analysis result, and confirmation of sending a message to the MQTT broker. In case of any error, 
for example, loss of communication with the broker or failure in data processing, the program 
reconnects to the broker or continues the cycle with the next available data.

This code provides both local temperature analysis using a machine learning model and sending 
results to a remote system via a lightweight MQTT protocol. Its structure allows you to integrate  
the solution into larger IoT systems for monitoring the state of the environment and notifying you 
about anomalies in real-time [44–46]. Thanks to error handling and automatic connection recovery, 
the system remains resilient to network or hardware failures.

4.5. Application software development

The developed  server  software  for  the  environmental  analysis  system using IoT and machine 
learning is based on Node.js and MQTT technologies for processing data from sensors in real-time.  
The server system receives data from IoT devices, such as Raspberry Pi Pico W, analyzes them 
using a pre-built machine learning model, and provides centralized storage and access to the results 
via a RESTful API. 

The main part of the system is implemented on Node.js, which provides high-performance and 
asynchronous processing of messages from numerous IoT devices. The MQTT protocol is used to 
exchange data between the sensors and the server, which is ideal for lightweight IoT systems. The  
server is connected to an MQTT broker, which receives messages about the current temperature 
and gradient published by the sensors. The server is subscribed to the corresponding topic, for 
example, temperature/data, and receives all data in real-time. Incoming messages are processed 
using the mqtt library for Node.js, which provides easy integration with the MQTT broker and 
convenient access to data.

After receiving the data, it is passed to the machine learning module, integrated through the 
Python Shell library. This module works with a machine learning model previously created using 
sci-kit-learn. The model is loaded as a file and is used to analyze the received data. For each new 
message, the server calls a Python script, passing the data via standard input, where the model 
processes the information and returns it. This allows the server to classify the system state in real-
time and generate the appropriate status for each sensor.

The processing results are stored in a PostgreSQL relational database.  Each record includes  
temperature,  gradient,  timestamp,  system  status  (normal  or  abnormal),  and  a  unique  sensor 
identifier. This structure allows you to store historical data and quickly execute queries for trend 
analysis.  PostgreSQL’s  high  performance allows you to  work  with  large  amounts  of  data  and 
provides fast access to information for reporting and analytics.

A RESTful API is implemented to access the system using the Express.js framework. The API 
provides  endpoints  for  retrieving  current  data,  accessing  historical  records,  and  obtaining 
aggregated  statistics,  such  as  the  average  temperature  per  day  or  the  number  of  recorded 
anomalies. The API also supports authentication using JWT tokens to ensure data access security.

A web application has been developed for visualization, allowing users to monitor the system 
status in real-time. The web application is built on React.js and receives data from the server API.  
The interface includes temperature trend graphs,  tables with historical  data,  and a notification 
panel  about  anomalies.  Additionally,  push  notification  functionality  via  web  sockets  has  been 
implemented, allowing users to be instantly informed about critical anomalies.

The development of the client part on React for the environmental status analysis system was  
aimed at creating an intuitive and functional interface that allows users to monitor temperature 
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indicators,  trends,  anomalies,  and  other  data  coming  from  the  server  part  in  real-time.  The  
interface provides both analytical functions and the ability to quickly respond to critical situations.

The client part is built using the React library, which allows the creation of a component-based 
approach to building the interface. React Context API is used to manage the state, which provides 
centralized data transfer between components. Modern React functionalities, such as useState, use 
Effect,  and use Context  hooks,  were actively used in  the development.  The Axios  library was 
additionally used to process HTTP requests to the server API.

In addition, the web application is adapted to work on mobile devices. For this, adaptive design 
using CSS Flexbox and Grid is used. Components automatically adjust to the screen width, which 
provides convenient viewing of data on both large screens and smartphones.

The  interface  development  also  included  ensuring  accessibility.  Descriptive  attributes  for 
buttons and interactive elements were added, and the color scheme was optimized for users with 
color vision impairments. Testing of the client part was carried out using Jest and React Testing  
Library to ensure the stable operation of key components.

The result of the development was a powerful and user-friendly interface that allows users to 
monitor the state of the environment in real-time and receive analysis of historical data. Thanks to 
React, it was possible to create a dynamic application with a modern design that provides a high 
level of user interaction with the system.

The entire system is tested to work with a large number of connected devices and provides data 
processing with high speed and accuracy.

The developed software is a reliable tool for collecting, analyzing, and visualizing data about the 
state  of  the  environment.  It  integrates  IoT  devices,  machine  learning,  and  modern  server 
technologies, providing users with deep analysis and the ability to quickly respond to detected 
anomalies.

Conclusions

As a result of the analysis of the subject area, the relevance and prospects of the selected topic of  
work in the context of modern technological development were studied in detail. The combination 
of technologies such as IoT and machine learning is relevant and promising, allowing to ensure 
maximum productivity of data collection and deep analysis. Additionally, a comparative analysis of 
existing technologies and systems was conducted.  Based on a comparison of  their  capabilities, 
technical and functional characteristics, pricing, and marketing policies, a list of basic requirements 
and characteristics of the system was formed.

An important stage of the work on the design of the system was the definition of the main 
structural components of the system by role, structure, purpose, and characteristics. The system is 
conventionally divided into two main interconnected parts: hardware and software. The hardware 
part of the system includes physical devices of the Internet of Things, which are responsible for 
interacting with the environment by collecting data and influencing it. The software part includes 
software running on hardware, client, and server. An important part of the software is the machine 
learning  module,  which  by  architecture  works  both  on  the  server  and  hardware.  The  system 
architecture was created in such a way that the system was as simple as possible to develop and 
scale.  This result  was achieved by designing each element of  the system, observing maximum 
independence from other elements of the system. Although all components closely interact with 
each other, this cooperation is carried out only under predetermined contracts. This approach also  
allows for parallel development of the system by different teams to quickly achieve new results in 
the form of new features and system expansion. The system was successfully created in the Wokwi 
virtual environment and prepared for work with the software.

The software part of the system for analyzing the state of the environment based on machine  
learning and IoT has been created. The structure of the machine learning module includes two 
parts, the first of which is a TinyML model that runs on an IoT device. The second part of the  
machine learning module is a more powerful model that runs on the server and deeply analyzes 
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data. Software for an IoT device has been created and tested in a virtual environment. The process  
of developing application software has been created and described, which includes a server part on 
NodeJs and a client part on ReactJs.

During  the  testing  of  the  system,  all  developed  components  were  integrated  and  their 
performance results were collected. Based on the results of the system, the system’s weaknesses 
and strengths were identified, and the main technical characteristics and features of the system’s 
performance were described.

The developed system is an effective tool for analyzing a large amount of environmental data 
and can solve real-world problems related to improving decision-making efficiency in various areas 
and  directions.  The  use  of  TinyML  technology  helped  to  increase  the  efficiency  of  anomaly 
detection by up to 20 percent, compared to similar systems that do not integrate this technology. 
Due to the high energy efficiency of the selected components and the combination with TinyML 
technologies for local  data processing, the system’s energy consumption is 10-15 percent more 
efficient than existing analogs. Due to the low price of the selected devices, the full payback time of 
the system and the initial costs for installing or integrating the system are 20 percent lower than 
existing systems. Due to the high modularity and flexibility of the system components, the speed of  
installation, integration, and adaptation of the system is twice as fast as existing systems.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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