
Enhancing Pseudorandom Number Generation using
Environmental Sensor-based Entropy Sources⋆

Svitlana Poperehnyak1,∗,†, Ihor Syvachenko2,† and Yurii Shevchuk3,†

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Beresteiskyi ave., 03056 Kyiv,
Ukraine
2 Institute of Software Systems of NAS of Ukraine, 40 Academician Glushkov ave., 03187 Kyiv, Ukraine
3 DataArt, 3530 Carol Ln, Northbrook, 60062 Illinois, USA

Abstract
The article considers one of the methods of building a pseudorandom number generator (PSN) based on
physical sensors that use natural fluctuations in the environment to obtain a source of entropy. The focus
is on the analysis of different types of sensors, such as temperature, acoustic, light, gyroscopes, and
magnetometers, which can provide a sufficient level of randomness to reliably generate pseudorandom
numbers. Methods of digital processing of sensor signals are described, including noise filtering,
quantization, and data binarization to obtain a sequence of random bits. In addition, the quality of the
obtained pseudorandom numbers is assessed using statistical and cryptographic tests. Hardware
requirements and possible scenarios for the use of such generators in cryptography, the Internet of
Things (IoT), the gaming industry, and other cyber-physical systems are highlighted. The article aims to
develop a reliable method for generating high-quality random numbers, which is based on the
unpredictability of physical processes. The article discusses an approach to generating a pseudorandom
sequence using sensors. It highlights the factors contributing to the randomness of devices based on
environmental sensors, which can be utilized in the basic configuration of a slow monostable timer. The
method described enables the sensor to generate a random factor without requiring any user input. A
study was conducted using a robot, and suggestions for improving the operation of a linear feedback shift
register (LFSR) are provided. The concept of an LFSR can also be applied in programming languages to
produce sequences of pseudorandom numbers.

Keywords
random, sensors, pseudorandom sequence, shift register, source of entropy, digital signal processing,
cryptography, Internet of Things, randomness, hardware generators, information protection

1. Introduction

In today’s world, pseudorandom numbers play a key role in many fields, including cryptography,
computer modeling, statistical methods, and the gaming industry. However, traditional algorithmic
pseudorandom number generators have certain limitations, including repeatability and
predictability, which can be a serious problem for applications that require high levels of security
and entropy [1, 2].

Because of this, there is an urgent need to create more reliable sources of entropy. One
promising approach is to use sensors to generate pseudo-random numbers that can exploit the
natural random fluctuations of physical processes [3, 4]. Sensors that measure temperature, noise,
motion, lighting, and other environmental parameters provide a high level of entropy, which
makes them attractive for building hardware pseudorandom number generators.

⋆CPITS 2025: Workshop on Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2025,
Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 spopereshnyak@gmail.com (S. Popereshnyak); igor.syvachenko@gmail.com (I. Syvachenko); shev4ukyuri@gmail.com
(Y. Shevchuk)

 0000-0002-0531-9809 (S. Popereshnyak); 0009-0005-3248-3371 (I. Syvachenko); 0009-0008-3331-3886 (Y. Shevchuk)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

363

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0008-3331-3886
https://orcid.org/0000-0002-5385-5761
mailto:shev4ukyuri@gmail.com
mailto:igor.syvachenko@gmail.com

The article, devoted to one of the methods of constructing a generator of pseudo-random numbers
based on sensors, is relevant for several reasons:

1. Growing need for security. The requirements for cryptographic security in networks and
information systems are growing every year.

2. Problems of predictability of traditional algorithms. Algorithmic generators have limited
entropy, which makes them vulnerable to attacks. The physical processes used by sensors
have a much greater potential for unpredictability.

3. Development of hardware solutions. As hardware advances, particularly embedded systems
and the IoT, there is a growing need for compact and reliable pseudorandom number
generators that can be integrated into resource-constrained devices.

4. Innovations in scientific and technical progress. The use of sensors to generate
pseudorandom numbers opens up new opportunities for scientific research and the
development of new technological solutions in various fields, such as telecommunications,
automation, computer science, and others.

Therefore, this article contributes to the development of methods for generating reliable
pseudo-random numbers based on hardware, offering an innovative approach to solving the
problem of predictability and repeatability of numbers generated by traditional algorithms [5, 6].

Setting the problem. The generation of pseudo-random numbers is an important component
of many modern systems, including cryptography, computer modeling, the gaming industry, and
scientific research. Traditional algorithmic pseudo-random number generators have certain
limitations related to their predictability and low entropy level, which can be critical in cases where
high cryptographic security is required [7–9]. The question arises of finding alternative approaches
that would increase the unpredictability and randomness of numbers. One such promising method
is the use of sensors to generate pseudo-random numbers based on physical processes. However,
the problem of developing a mathematical model and technical solutions for the effective
implementation of this approach remains open.

The purpose of the article is to develop one of the ways to build a pseudorandom number
generator based on sensors that use random physical phenomena to ensure a high level of entropy
and unpredictability. The article deals with methods of measuring physical processes, analysis of
their randomness, mathematical processing of data to obtain bits of a random sequence, and
evaluation of the quality of the received pseudorandom numbers.

The task of the article:

1. Analysis of entropy sources available through sensors. An overview of the possible types of
sensors (temperature, acoustic, light, etc.) that can be used to generate random signals.

2. Development of a mathematical model for the generation of pseudorandom numbers based
on sensor measurements. Study of the processes of data normalization, quantization, and
signal processing to convert physical measurements into a sequence of bits.

3. Implementation of digital data processing to ensure randomness. Definition of noise
filtering methods, reduction of influence of deterministic components, and construction of
process of obtaining bits.

4. Evaluation of the quality of the received pseudorandom numbers. Conducting randomness
tests, such as cryptographic and statistical tests, to verify the reliability and unpredictability
of the generator.

5. Development of recommendations for the practical implementation of a sensor-based
generator. Discussion of hardware requirements and potential scenarios for the use of such
generators in various industries.

364

So, the article will outline the concept of building a generator of pseudo-random numbers based on
physical phenomena measured by sensors, using methods of mathematical processing and
evaluation of the randomness of the received numbers.

2. Optimization of information protection means integrating sensory
sources of entropy

Optimization of the composition of information protection tools in wartime conditions is one of the
key elements of the research, which is focused on improving the quality of pseudo-random number
generation using entropy sources based on environmental sensors.

In wartime conditions, when traditional means of ensuring information security may be
ineffective due to resource constraints and reduced infrastructure reliability, there is a need to
develop flexible, adaptive protection systems capable of operating in conditions of unstable power
supply, limited access to Internet resources, and other logistical constraints. In this case, the
optimization of information protection tools involves a strategic approach to the selection of
methods and technologies that allow for ensuring the maximum level of security at minimal cost.

A key aspect in such optimization is the effective use of cryptography technologies, in
particular the generation of pseudo-random numbers, which underlie many encryption algorithms.
Traditional methods of generating pseudorandom numbers using standard hardware and software
can be vulnerable to attacks, especially in wartime conditions, when infrastructure can be
destroyed or sabotaged.

The use of entropy sources based on environmental sensors, such as temperature sensors,
humidity sensors, or wind speed sensors, can significantly improve the quality of random number
generation, as such sources provide high unpredictability and complexity. Given that most modern
cryptographic algorithms require stable random number generation for encryption and
authentication, the integration of such technologies requires careful optimization in terms of cost
and efficiency.

Therefore, optimization of the composition of information protection tools in wartime
conditions can be achieved through the integration of sensor technologies for random number
generation, which allows reducing the cost of traditional hardware while maintaining high
protection efficiency. Taking into account the specifics of wartime conditions, such as limited
resources and high risk of attacks, is important to achieve a balance between the cost and
effectiveness of the developed solutions, which guarantees the resistance of information systems to
malicious influences.

3. Analysis of entropy sources available through sensors

Entropy in the context of pseudorandom number generation refers to the amount of information or
randomness that can be extracted from a physical process. Sensors can measure various physical
quantities, which by their nature contain a significant level of randomness. These values can be
used as sources of entropy for generating random signals [10–12]. Below is an overview of the
most common sensor types that can be used for this task.

365

Table 1
Overview of the most common sensor types

Type Description Source of entropy Advantages Disadvantages

T
em

pe
ra

tu
re

 s
en

so
rs

Temperature sensors
measure the
temperature of the
environment or certain
components. Although
temperature changes
are often gradual, at the
micro level temperature
can fluctuate due to
external factors that are
random.

Thermal fluctuations:
Temperature changes
caused by both internal
processes (for example,
device operation) and
external conditions
(atmospheric effects) can
have a random component.
Thermal noise (Johnson
noise): It occurs due to
random movements of
charged particles in
conductors. This type of
noise can be used to
generate random bits.

Ease of use.
Durability and
stability in
various
environments.

Low frequency
of fluctuations
in macroscopic
conditions.
Additional
processing is
required to
obtain stable
random bits.

A
co

us
ti

c
se

ns
or

s
(m

ic
ro

ph
on

es
)

Acoustic sensors are
used to measure sound
vibrations in air or
liquids. Sound waves
contain a significant
level of noise that can
be used as a source of
entropy.

Acoustic noise: Sound
fluctuations are always
present in the environment,
which are difficult to
predict. For example,
background noise may
include wind noise, people’s
movements, the operation
of devices.
Signal Coherence: Small
random fluctuations can be
detected even in a relatively
quiet environment.

Constant access
to unpredictable
fluctuations.
High frequency of
signal changes.

Possible
stability issues
in very quiet
environments.
Dependence on
the level of
ambient noise.

M
ag

ne
ti

c
se

ns
or

s
(m

ag
ne

to
m

et
er

s)

Magnetometers
measure changes in the
magnetic field around
the device. Even in the
absence of visible
changes in the magnetic
field, random
fluctuations caused by
microfluctuations in the
environment can occur.

Changes in the magnetic
field: Random changes in
the magnetic field can be
caused by the movement of
magnetic objects, electrical
currents, or geophysical
factors.
Quantum fluctuations:
Under certain conditions,
magnetometers can pick up
quantum fluctuations in
magnetic fields.

No need for direct
physical contact
or changing the
position of the
sensor.
Constant
presence of
fluctuations in the
magnetic field.

Sensitivity to
electromagneti
c interference.
Possible
stability of the
magnetic field
under
controlled
conditions.

366

Li
gh

t s
en

so
rs

 (p
ho

to
di

od
es

, p
ho

to
tr

an
si

st
or

s)
Light sensors are used
to measure the level of
illumination. Random
fluctuations in light
intensity, even in a
stable environment, can
be a source of entropy.

Quantum Fluctuations in
Light Intensity: The light
perceived by the sensor has
random quantum
fluctuations due to the
nature of photons,
especially in low-intensity
conditions (darkness or
very low light).
External factors: Changes
in illumination due to
natural factors, such as
cloud movement, changes
in the angle of the sun’s
rays, or other random
processes that change the
level of illumination.

High frequency of
fluctuations in
variable
environments.
Availability of
photodiodes and
other light
sensors.

In a controlled
environment
with constant
lighting,
entropy can be
low.
Need to have a
variable light
source to get
enough
random
changes.

M
ag

ne
ti

c
se

ns
or

s
(m

ag
ne

to
m

et
er

s)

Magnetometers
measure changes in the
magnetic field around
the device. Even in the
absence of visible
changes in the magnetic
field, random
fluctuations caused by
microfluctuations in the
environment can occur.

Changes in the magnetic
field: Random changes in
the magnetic field can be
caused by the movement of
magnetic objects, electrical
currents, or geophysical
factors.
Quantum fluctuations:
Under certain conditions,
magnetometers can pick up
quantum fluctuations in
magnetic fields.

No need for direct
physical contact
or changing the
position of the
sensor.
The constant
presence of
fluctuations in the
magnetic field.

Sensitivity to
electromagneti
c interference.
Possible
stability of the
magnetic field
under
controlled
conditions.

G
yr

os
co

pe
s

an
d

ac
ce

le
ro

m
et

er
s

These sensors are used
to measure the
orientation and
movement of the device.
They are very sensitive
to the slightest changes
in movement, even if
the device is in relative
rest.

Microfluctuations of
movement: Gyroscopes
and accelerometers can
register small movements
or vibrations caused by
random processes, for
example, micro-vibrations
of the environment or
vibrations of internal
components.
Unpredictable vibrations:
These sensors can detect
micro-movements that are
invisible to the eye, caused
by, for example, changes in
position or random
vibrations.

High sensitivity
to fluctuations.
Quick response to
changes.

In stationary
systems where
there is no
motion,
entropy can be
limited.
May require a
high polling
rate to
efficiently use
entropy.

367

El
ec

tr
oc

he
m

ic
al

 s
en

so
rs

These sensors measure
chemical changes in the
environment, such as
humidity levels or the
concentration of certain
chemicals.

Random chemical
reactions: In many
environments, even under
stable conditions, random
changes in chemical
composition or
concentration can occur.
Fluctuations in humidity
or gases: Random changes
in air composition or
humidity can affect the
performance of
electrochemical sensors.

High sensitivity
to changes in the
chemical
environment.
Use in special
environments (for
example, in
chemical
laboratories or
controlled
atmosphere
environments)

Slow reaction
in stable
conditions.
Dependence on
external
factors.

Various types of sensors can be used as sources of entropy to generate random numbers, but their
effectiveness depends on the nature of the measured physical processes and the environment in
which they operate. Depending on the target system, one or more sensors can be used to improve
the randomness of the generator:

 Temperature and light sensors are suitable for systems with slow environmental changes.
 Acoustic sensors and gyroscopes are suitable for environments with high dynamics or

movement.
 Magnetic sensors and electrochemical sensors can be used in specific environments or to

measure special phenomena.

The variety of sensors available allows for flexible customization of pseudorandom number
generators to specific conditions or system requirements.

4. Random and еnvіronmеntal sеnsors

One approach to generating random numbers involves stopping a high-frequency timer at an
arbitrary moment. Some projects require user interaction to stop the timer. However, let’s consider
a method in which a sensor can generate a random factor without any user involvement. In our
experiment, we utilize a thermistor. To incorporate it into the circuit, simply replace the resistor in
the original timer setup with the thermistor.

Random factors influencing the operation of the timers include not only changes in the
thermistor’s resistance but also additional variables that may affect performance:

 During operation, timers can generate slight heat, which may affect their performance.
 The repeat button might behave differently with each press.
 The circuit’s power supply could experience minor fluctuations in current and/or voltage.
 The connections between the breadboard slots, jumpers, and component terminals have

some resistance, which may change when jumpers or components are tapped.
 Other external factors, which we may not be aware of, could also influence the circuit’s

operation.

Automatіon of arbіtrary sеlеctіon schеmе
The testing process can be accelerated by eliminating user input. The first step in this direction

is to change the operation mode of the first timer from monostable to self-oscillating, with a period
of one second. This adjustment allows for observing the results without needing to repeatedly
press the repeat button.

368

In the second step, the counter reset button can be removed, and the circuit modified to perform
the reset automatically. In some microcircuits, the counter is reset by a positive edge of the signal
supplied to its reset input. In our setup, the output level transitions from low to high at the start of
each cycle. This signal can be used to reset the timer through a coupling capacitor, ensuring that
the high level is only briefly present on the reset input.

With these changes, the system should now operate independently without any user
intervention.

Tіmеr frеquеncy sеtuр
If the results from the automatic generation circuit for arbitrary numbers lack sufficient

variability, the speed (i.e., frequency) of the second timer should be increased. To raise the
frequency of the second timer to 500 Hz, it is recommended to replace the 1 μF timing capacitor
with a 0.2 μF capacitor. For a frequency of 5 000 Hz, a capacitor with a capacitance of 0.01 μF
should be used.

The faster the second timer operates, the higher the likelihood that the states recorded after
stopping will differ due to small variations in the timing.

5. Implementation of digital data processing to ensure randomness

To implement digital data processing to generate pseudo-random numbers based on sensor
indicators, it is necessary to ensure (Fig. 1):

1. Noise filtering.
2. Reducing the influence of deterministic components.
3. Construction of the quantization process for obtaining bits.

Figure 1: Stages of data processing

Let’s consider the main stages of data processing.

5.1. Noise filtering

Real-world sensors measure signals consisting of both useful signals and random noise. Filtering is
used to extract the random component of the signal. One of the most common approaches to noise
filtering is the use of high-pass filters (such as low-pass filters) that filter out long-term fluctuations
(the deterministic component).

Noise filtering algorithm:

 Median filter: used to reduce peak noise in signals. It works by calculating the median of a
certain number of values in a sliding window of size n.

369

Suppose we have a signal x (t) read from a sensor:

x filtered (t)=med ian (x (t−n) , . . . , x (t+n)) . (1)

This method allows you to reduce the impact of abnormal values or outliers while
preserving the underlying fluctuations.

 Moving average: Another way to smooth a signal is to average it over a moving window
of size w:

x smooth(t)=
1
w

∑
i=t−w /2

t+w /2

x (i). (2)

Such filtering allows you to smooth the signal, reducing the impact of short-term
fluctuations.

5.2. Reducing the influence of deterministic components

To isolate the truly random part of the signal, it is necessary to reduce or eliminate the
deterministic components. This can be done in several ways:

 Average subtraction: If the deterministic component has a stable trend, it can be
eliminated by subtracting the average value of the signal:

xd etrended (t)=x (t)−x , (3)

where x is the average value of the signal over a certain period

 Fourier analysis: Fourier transform can be applied to detect regular components of a
signal that repeat with a certain frequency. After determining the main harmonics
(deterministic frequencies), they can be removed from the spectrum, leaving only high-
frequency fluctuations (random noise).

Fourier transform for signal x (t):

X (f)=∫
−∞

∞

x (t)e−2 πift dt . (4)

After the conversion, the signal can be processed by removing the low-frequency harmonics
corresponding to the regular oscillations and performing the inverse conversion to obtain a pure
random signal.

5.3. Bit acquisition process

After processing the signal, it is necessary to convert it into a sequence of bits that will be used to
generate random numbers.

Quantization algorithm:

 Signal normalization: First, the signal is normalized to the range from 0 to 1. Suppose
that the signal values are in the range from xmin to xmax:

xnorm(t)=
x (t)−xmin
xmax−xmin

(5)

370

 Signal binarization: After normalization, the signal can be quantized to obtain bits. For
this, you can use a threshold value, for example 0.5:

b(t)={1 , if xnorm(t)≥0.50 , if xnorm(t)<0.5
. (6)

The resulting bits can be sequenced and used as random numbers. To construct multi-bit
numbers, several bits can be combined into groups of k bits:

R=∑
i=0

k−1

b (t+1) ∙2i . (7)

This will allow you to get a pseudorandom number in the range from 0 to 2k−1.

5.4. Evaluation of the quality of bits

After generating the bits, it is important to check them for randomness using the following
methods:

 Fries test (to analyze the uniformity of distribution).
 Series test (to check the absence of regular patterns in the sequence).
 Test for the length of blocks of zeros and ones (to check whether there are no long

sequences of the same bits).

Implementation of digital data processing to generate random numbers from sensor signals
includes several stages:

 Noise filtering to remove deterministic components.
 Reducing the influence of regular components by subtracting the average or using Fourier

analysis.
 Normalization and binarization of the signal to obtain a sequence of random bits.
 Checking the quality of bits using randomness tests.

These methods make it possible to obtain pseudo-random numbers using the physical
properties of sensor signals, which significantly increases their unpredictability compared to
traditional algorithmic generators.

5.5. General mathematical model

Let S (t) be the signal from the sensor at the time t , then the PRNG model can be described by the
equation:

R (t)=H(Q(S (t)−min(S)
max (S)−min(S))), (8)

where H is a hashing or post-processing function; Q (x) is a quantization function that
converts values into binary bits.

Advantages:

 Number generation is based on physical processes, so it is difficult to predict the obtained
results.

 The possibility of using different types of sensors to increase entropy.

371

Disadvantages:

1. Measurements may be sensitive to external conditions or equipment calibration.
2. Additional processing is required to obtain high-quality pseudo-random numbers.

Thus, building a sensor-based pseudorandom number generator requires combining physical
measurements with mathematical signal processing to obtain unpredictable values.

6. Еmріrіcal рroblеms

Empirical research involves deriving results from observation or experience. It is generally
assumed that sensors like thermistors, humidity sensors, accelerometers, or pressure sensors
should perform consistently across different users, producing a wide range of random values.
However, this assumption cannot be fully trusted. In reality, researchers have long been interested
in whether it is possible to design a system that can generate an unpredictable sequence of
numbers completely independently, without being influenced by any external factors. It is crucial
to demonstrate and mathematically prove that a given sequence of numbers remains consistent
with each activation of the system.

Another key characteristic that indicates the quality of the generated sequence is the inability to
predict the next number until the sequence starts to repeat. This would resemble an ideal pseudo-
random number generator, as long as the sequence does not always start from the same point.
Despite these challenges, let’s attempt to implement such a device. Whether or not you need it
depends on how you intend to use it.

6.1. Lіnеar fееdback shіft rеgіstеr

Imagine we have a black box containing a mechanism that generates a stream of numbers without
any external influence. It is crucial to determine whether these numbers are truly random.

To achieve this, the stream must meet two requirements:

 The sequence of numbers should be relatively unpredictable. The term “relatively” is used
because any autonomous random number generator will eventually repeat its cycle if it
runs for a sufficiently long period. The goal of such a generator is to produce a sequence
that is long or complex enough to exceed human memory capacity or attention span.
Ideally, the generator would have a large enough physical size to avoid being affected by
quantum effects.

 The range of numerical values should be uniformly distributed, meaning each value should
have an equal probability of appearing in the sequence, with none being omitted.

There is a design that can nearly satisfy both of these requirements: a linear feedback shift
register (LFSR). The output sequence of an LFSR can be (almost) any length, and its values are
(almost) perfectly balanced. Let’s construct an LFSR such that these “almost” limitations are
minimal enough to be negligible.

To summarize what we’ve learned about the linear feedback shift register:

 If the LFSR’s memory cells start with all low states (e.g., 0000), they will continue to hold
these states, simply cycling through them during further operation.

 If the LFSR’s memory cells start with any value other than 0000, the register will cycle
through fourteen other distinct combinations before the sequence repeats. The output
sequence will include all values from 0001 to 1111, though not in a specific order. Every
value will appear exactly once (except 0000), and no value will repeat until the entire
sequence is completed.

372

However, the issue is that this sequence is short enough for the human brain to quickly recognize
its repetition pattern.

6.2. Fіndіng a solutіon

6.2.1. Thе рroblеm wіth zеros

To address the issue of the LFSR’s apparent non-responsiveness when all its memory cells are set
to a low state upon activation, various recommendations typically suggest preloading the register
with different values.

This can be done by modifying the circuit to include a module that provides clock pulses at a
high level for a short duration at the register’s input. However, there is a simpler solution:
replacing the XOR logic element in the circuit with an XNOR element. Although XNOR elements
are not commonly used in microcontrollers, they can effectively solve the problem.

6.2.2. Ensuring non-rереatabіlіty

Before assembling a test circuit using a four-element chip with two-input XNOR elements, it is
important to revisit the issue of sequence repetition. Specifically, it is crucial to ensure that more
than fifteen value combinations are generated before the sequence starts to repeat.

By utilizing all eight memory locations of the shift register, the output range can be expanded
from 00000000 to 11111110, allowing the sequence to reach 255 combinations before repeating.

6.2.3. Fеaturеs of thе mіcrocіrcuіt XNOR

It is crucial to exercise particular caution when connecting the XNOR chip to avoid incorrect
connections. The internal connections of this microcircuit are entirely distinct from those of other
logic microcircuits. If this microcircuit is mistakenly connected as an OR or XOR circuit, it may
sustain irreparable damage.

6.3. Conductіng rеsеarch

To obtain results from the study that are consistent with those in the article, the initial state of the
shift register needs to be identical. Specifically, at the start of the cycle, all cells in the examined
shift register must be set to a low state.

At this point, the LFSR will begin generating a random sequence, where a 0 indicates that the
LED is off and a 1 indicates that it is on. Each time the button is pressed, the subsequent sequence
in the table corresponds to the state of the LEDs in the circuit (Table 2).

Tablе 2
Sеquеncе of 255 combіnatіons of еіght-bіt lіnеar fееdback shіft rеgіstеr, рlus іnіtіal statе rереat

Sеquеncе of 255 combіnatіons

00000000 01110001 11001000 01001111 01111001 01011011 10000100 11100010

00000001 11100011 10010001 10011110 11110010 10110111 00001000 11000101

00000011 11000111 00100011 00111100 11100100 01101110 00010000 10001010

00000111 10001110 01000110 01111000 11001001 11011101 00100000 00010101

00001111 00011101 10001101 11110000 10010011 10111010 01000000 00101010

00011110 00111011 00011011 11100000 00100111 01110101 10000001 01010101

00111101 01110110 00110111 11000001 01001110 11101011 00000010 10101010

01111010 11101101 01101111 10000010 10011100 11010110 00000101 01010100

373

11110100 11011010 11011111 00000100 00111000 10101101 00001011 10101000

11101000 10110100 10111110 00001001 01110000 01011010 00010110 01010000

11010000 01101000 01111101 00010010 11100001 10110101 00101100 10100000

10100001 11010001 11111010 00100100 11000011 01101010 01011001 01000001

01000011 10100011 11110101 10001000 10000110 11010101 10110011 10000011

10000111 01000111 11101010 10010000 00001100 10101011 01100110 00000110

00001110 10001111 11010100 00100001 00011000 01010110 11001100 00001101

00011100 00011111 10101001 01000010 00110001 10101100 10011001 00011010

00111001 00111111 01010010 10000101 01100011 01011000 00110010 00110101

01110010 01111110 10100100 00001010 11000110 10110001 01100101 01101011

11100101 11111100 01001001 00010100 10001100 01100010 11001010 11010111

11001011 11111001 10010010 00101000 00011001 11000100 10010101 10101111

10010111 11110011 00100101 01010001 00110011 10001000 00101011 01011110

00101111 11100110 01001010 10100010 01100111 00010001 01010111 10111101

01011111 11001101 10010100 01000101 11001110 00100010 10101110 01111011

10111111 10011011 00101001 10001011 10011101 01000100 01011100 11110110

01111111 00110110 01010011 00010111 00111010 10001001 10111001 11101100

11111110 01101101 10100110 00101110 01110100 00010011 01110011 11011000

11111101 11011011 01001101 01011101 11101001 00100110 11100111 10110000

11111011 10110110 10011010 10111011 11010010 01001100 11001111 01100000

11110111 01101100 00110100 01110111 10100101 10011000 00111110 11000000

11101110 11011001 01101001 11101111 01001011 00110000 01111100 10000000

11011100 10110010 11010011 11011110 10010110 01100001 11111000 00000000

10111000 01100100 10100111 10111100 00101101 11000010 11110001

Subsequently, a computer program was developed to emulate a linear feedback shift register and
record its output.

In the following step, the binary numbers were converted into a decimal format for easier
comprehension by the human brain. This resulted in the same sequence being represented in
decimal format.

0, 1, 3, 7, 15, 30, 61, 122, 244, 232, 208, 161, 67, 135, 14, 28, 57, 114, 229, 203, 151, 47, 95, 191, 127,
254, 253, 251, 247, 238, 220, 184, 113, 227, 199, 142, 29, 59, 118, 237, 218, 180, 104, 209, 163, 71, 143,
31, 63, 126, 252, 249, 243, 230, 205, 155, 54, 109, 219, 182, 108, 217, 178, 100, 200, 145, 35, 70, 141, 27,
55, 111, 223, 190, 125, 250, 245, 234, 212, 169, 82, 164, 73, 146, 37, 74, 148, 41, 83, 166, 77, 154, 52, 105,
211, 167, 79, 158, 60, 120, 240, 224, 193, 130, 4, 9, 18, 36, 72, 144, 33, 66, 133, 10, 20, 40, 81, 162, 69,
139, 23, 46, 93, 187, 119, 239, 222, 188, 121, 242, 228, 201, 147, 39, 78, 156, 56, 112, 225, 195, 134, 12,
24, 49, 99, 198, 140, 25, 51, 103, 206, 157, 58, 116, 233, 210, 165, 75, 150, 45, 91, 183, 110, 221, 186, 117,
235, 214, 173, 90, 181, 106, 213, 171, 86, 172, 88, 177, 98, 196, 136, 17, 34, 68, 137, 19, 38, 76, 152, 48,
97, 194, 132, 8, 16, 32, 64, 129, 2, 5, 11, 22, 44, 89, 179, 102, 204, 153, 50, 101, 202, 149, 43, 87, 174, 92,
185, 115, 231, 207, 62, 124, 248, 241, 226, 197, 138, 21, 42, 85, 170, 84, 168, 80, 160, 65, 131, 6, 13, 26,
53, 107, 215, 175, 94, 189, 123, 246, 236, 216, 176, 96, 192, 128, 0.

374

At first glance, this sequence appears to be quite pseudo-random. A computer program was utilized
to verify that each value occurs only once, without any gaps or repetitions.

6.3.1. Onеs and zеros

After confirming that the logic circuit is functioning correctly, the next step is to determine how to
modify this sequence so that only 1 or 0 is produced in each cycle.

One method to achieve this output is by applying the XOR operation to the outputs of the shift
register. This approach utilizes a three-level “tree” of Exclusive OR gates, where each gate averages
the outputs of the previous level to yield a final 0 or 1.

All eight memory locations remain in use during the feedback process. The eighth, sixth, fifth,
and fourth cells continue to be XNORed as before, allowing us to maintain a non-repeating
sequence of 255 values. It is recommended to take a subsample from this sequence, which will also
undergo 255 combinations before starting to repeat. Consequently, the computer program was
adjusted to extract only the rightmost bit from each of the 255 combinations generated by the
linear feedback process. As a result, thе followіng sеquеncе of 1 and 0 was obtaіnеd:

0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1
0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0

If we conduct this experiment on a physical circuit and only observe the rightmost LED, the
same sequence will be produced.

6.3.2. Thе wеіghtіng factors рroblеm

Analyzing the frequencies of the repeating subsequences of 1s and 0s yields the following results,
which are presented in Table 3.

Tablе 3
Analysіs of thе frеquеncіеs of rереatіng subsеquеncеs 1 and 0

Valuе 0 Valuе 1

0 33 tіmеs 1 32 tіmеs

00 16 tіmеs 11 16 tіmеs

000 8 tіmеs 111 8 tіmеs

0000 4 tіmеs 1111 4 tіmеs

00000 2 tіmеs 11111 2 tіmеs

000000 1 tіmе 111111 1 tіmе

0000000 1 tіmе 1111111 1 tіmе

Total 128 valuеs 0 Total 127 valuеs 1

In the presented sequence list (Table 2), there is one anomaly that appears to be incorrect—it
contains 33 single zeros but only 32 single ones. The issue arises as follows: theoretically, the range
of all values in the sequence should extend from 00000000 to 11111111. However, an XNOR gate
linear feedback shift register cannot process the value 11111111, so it skips it. Since this value ends
with a 1, it does not appear in our table of values that end in 1.

375

6.3.3. Skірріng thе 254th valuе

One solution to this problem would be to add additional shift registers. For instance, by connecting
a chain of four registers that together have 32 memory cells, the entire non-repeating sequence of
such an LFSR would consist of over four trillion values. However, this sequence would also include
all combinations of 32 ones and zeros, except for the last value, which consists of 32 ones. This
single value would now be obscured among more than four trillion other values, which should be
acceptable for nearly any application.

Unfortunately, implementing this scheme requires additional work and components. Therefore,
let’s consider a simpler alternative. We can simply instruct the shift register to skip one value that
has a zero at the end to compensate for the value 11111111, which ends with a one. This
adjustment will balance the number of ones and zeros in the final sequence of one-digit values.

To avoid the need to guess which value to skip, we will bypass the value 11111110 (decimal
254), which precedes the unused value 11111111. While blocking one of the input values may not
be the most elegant solution, many LFSRs in the encryption industry, where large-scale LFSRs are
utilized to generate pseudo-random numbers, employ more shift registers. However, this approach
can be quite complex to implement.

6.3.4. Seed

There is one more problem to address. The core issue is that if there are no voltage surges when
the circuit is powered on, the initial state of the shift register will consistently be 00000000. We
cannot achieve the goal of making the sequence random if it always starts in the same state.
Therefore, we need to initialize it with some unknown sequence value.

To accomplish this, we will utilize a standard technique in random number generation known
as “seeding”. This means that each time the generator is activated, it is initialized to a different
value. In computer programs, this value is often derived from the current system clock value, as
time is constantly changing. For our random-generating circuit, the ideal solution would be to
allow it to run for an arbitrary number of idle cycles before applying its output.

To implement this, a system can be designed where, upon powering on, a combination of a
resistor and a capacitor initiates a slow timer (operating at a low frequency) in monostable mode,
generating a single pulse. The duration of this pulse can be configured using any type of sensor.
During this pulse, the slow timer enables the fast self-oscillating timer to function, which feeds the
clock signal to the LFSR. At the end of the slow timer pulse, the LFSR circuit halts at an unknown
state of memory cells, thereby providing an ideal level of pseudo-randomness.

It’s also worth noting that to seed the internal random number generator, it is a common
practice to read the value of an unconnected pin of the microcircuit through the microcontroller’s
internal A/D converter.

7. Development of recommendations for the practical implementation
of a generator of pseudo-random numbers based on sensors

7.1. Hardware requirements for implementing a sensor-based generator

For the successful implementation of a pseudo-random number generator (PSN) based on sensors,
it is necessary to take into account several hardware requirements that will ensure stable operation
and sufficient entropy of random number generation.

Selection of sensors. The main types of sensors that can be used to generate random numbers
include:

 Temperature sensors: measure temperature fluctuations at the micro level, especially in
sensitive environments (eg in cooling systems).

 Acoustic sensors: use microphones or other devices to pick up noise in the environment.

376

 Light sensors: measure changes in illumination or the infrared spectrum, which can vary
even under controlled conditions.

 Gyroscopes and accelerometers: These can measure small oscillations or movements of the
device that are difficult to predict.

Data collection performance and frequency. Sensor-based PRNG requires a sufficiently
high sampling rate to provide a stable stream of random numbers. A typical sensor polling
frequency can vary from a few hundred hertz to a few kilohertz, depending on the accuracy and
characteristics of the signal.

 For sensors with a low frequency of data collection (for example, temperature sensors), it is
possible to use filtering and accumulation of data to obtain sufficient entropy.

 For high-frequency sensors (acoustics or gyroscopes), a more direct data stream can be used
with minimal processing.

Processing power. Since the signal from the sensors often needs processing (noise filtering,
normalization, binarization), computing power is required. The generator can be implemented as:

 Embedded System on Microcontroller: For resource-constrained devices (e.g. IoT) where
power consumption must be kept to a minimum.

 Hardware in servers or security modules: here a more powerful processor can be used to
process large amounts of sensor data in real-time.

Energy consumption. Sensor-based PRNG can be critical in power-constrained systems such
as mobile or IoT devices. Recommendations:

 Use sensors with low energy consumption.
 Adjust the polling frequency of sensors according to the needs of a specific application

(reducing the frequency of data collection in cases where high entropy is not critical).

7.2. Methods of signal processing in practical implementation

To build a generator with a high level of unpredictability, it is necessary to implement effective
signal processing methods:

 Signal filtering: application of median filters or low-pass filters to remove regular
components (environmental fluctuations).

 Quantization and binarization: normalization of data from sensors and their transformation
into binary sequences through a threshold value.

 Application of hashing or cryptographic algorithms to further improve the quality of
random numbers and their security.

Let’s consider some potential application scenarios for sensor-based generators.
Cryptography and security. The most important application scenario for such generators is

cryptography. The use of sensor-based PRNG makes it possible to significantly increase the
reliability and stability of security systems due to the generation of more unpredictable keys:

 Generation of cryptographic keys for data encryption.
 Protection against pseudo-randomness attacks: The physical nature of sensors allows

protection against predictable algorithmic schemes.

377

Internet of Things (IoT). Sensor-based PRNG can be integrated into IoT devices, where
resistance to hacking and ensuring the uniqueness of communication sessions is important:

 Device authentication through cryptographic algorithms that use random numbers to
generate unique tokens.

 Encryption of transmitted data to protect privacy in IoT networks.

Gaming industry. In-game applications, randomness plays a key role in ensuring the integrity
of the game and creating an unpredictable experience for users. Sensor-based PRNG can be used to:

 Generation of random events or numbers in-game processes (for example, in gambling,
simulations, or generation of playing cards).

 Protection against player manipulation through the use of complex physical processes to
generate unpredictable numbers.

Modeling and forecasting systems. Sensor-based generators can be used in scientific
research where high-quality random numbers are required:

 Simulation of physical processes: in environments where the accuracy of random
parameters is important, for example, in simulations of quantum systems or climatic
conditions.

 Financial models: for random market changes or volatility forecasting.

Cyber-physical systems. Sensor-based PRNG can be integrated into cyber-physical systems
(CPS), which combine physical components and computational processes. Examples:

 Security control in energy supply or production automation systems where random
numbers are required to protect against hacking or sabotage.

Requirements for testing and certification. Before the practical implementation of sensor-
based PRNG, it is necessary to conduct thorough testing for randomness and resistance to attacks
[13, 14]:

 Use of NIST test suites to verify cryptographic strength.
 Carrying out statistical tests to assess the uniformity and entropy of random numbers.
 Certification to cryptographic security standards to ensure compliance with international

standards such as FIPS 140-2.

Sensor-based pseudorandom number generators open new possibilities for applications where
high unpredictability and reliability are required. For the successful implementation of such
generators, it is necessary to ensure the correct selection of sensors, optimal signal processing, low
power consumption, as well as thorough testing and certification.

Conclusions

The article considered one of the promising ways to build a pseudorandom number generator
(PRNG) based on physical sensors. Sensors of various types, such as temperature, acoustic, light,
gyroscopes, and magnetometers, are reliable sources of entropy due to their natural fluctuations
and unpredictable characteristics. The physical phenomena measured by these sensors provide a
high level of unpredictability, which is necessary for the construction of reliable pseudorandom
numbers.

378

A method of digital processing of signals from sensors has been developed, which includes noise
filtering, normalization, quantization, and binarization to obtain random bits. The evaluation of the
quality of the obtained numbers using cryptographic and statistical tests showed that generators
based on sensors can successfully provide a high level of randomness and resistance to
predictability.

The article presents an approach for generating a pseudo-random sequence based on sensors. It
discusses the factors influencing the randomness of devices that rely on environmental sensors,
which can be utilized in the basic design of a slow monostable timer. The method proposed allows
the sensor to generate a randomness factor without requiring any user input. A study was
conducted on a robot, leading to suggestions for enhancing the circuit for the operation of a linear
feedback shift register.

The concept of a linear feedback shift register is used in programming languages to create
sequences of pseudo-random numbers. These languages also encompass the high-level languages
employed for programming microcontrollers. Depending on the specific microcontroller used,
various operators can enable the program to generate seemingly random numbers on demand.

It is important to note that the results from studies on random number generation functions in
the C language version of the Arduino microcontroller system yield relatively evenly weighted
sequences. However, there was a dependence on the range specified for generating random
numbers, resulting in some values being encountered significantly more frequently than others.

Practical guidelines include selecting the appropriate sensor type based on specific application
conditions and hardware requirements. Generators of this type can be effectively applied in
industries where high security is required, including cryptography, the Internet of Things (IoT), the
gaming industry, and cyber-physical systems.

Therefore, the generation of pseudo-random numbers based on physical sensors is a promising
direction for creating reliable and secure generators that can be integrated into a variety of systems
to provide high entropy and protect against possible attacks.

Declaration on Generative AI

While preparing this work, the authors used the AI programs Grammarly Pro to correct text
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors
reviewed and edited the content as needed and took full responsibility for the publication’s content.

References

[1] F. Rastoceanu, R. Rughiniş, D.-C. Tranca, Lightweight cryptographic secure random number
generator for IoT devices, in: 24th International Conference on Control Systems and Computer
Science (CSCS), 2023, 180–185. doi:10.1109/CSCS59211.2023.00036

[2] A. Parisot, L. M. S. Bento, R. C. S. Machado, Testing and selecting lightweight pseudo-random
number generators for IoT devices, in: IEEE International Workshop on Metrology for
Industry 4.0 & IoT, 2021, 715–720. doi:10.1109/MetroInd4.0IoT51437.2021.9488454

[3] S.-M. Cho, E. Hong, S.-H. Seo, Random number generator using sensors for drone, in: IEEE
Access, vol. 8, 2020, 30343–30354. doi:10.1109/ACCESS.2020.2972958

[4] P. Jindal, B. Singh, RC4 encryption—A literature survey, Procedia Computer Science 46 (2015)
697–705.

[5] B. Zhurakovskyi, et al., Secured remote update protocol in IoT data exchange system, in:
Workshop on Cybersecurity Providing in Information and Telecommunication Systems, vol.
3421 (2023) 67–76.

[6] V. Dudykevych, et al., Platform for the security of cyber-physical systems and the IoT in the
intellectualization of society, in: Workshop on Cybersecurity Providing in Information and
Telecommunication Systems, CPITS, vol. 3654 (2024) 449–457.

379

https://doi.org/10.1109/ACCESS.2020.2972958
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488454
https://doi.org/10.1109/CSCS59211.2023.00036

[7] A. Ruhillo, Using smartphone sensors to generate cryptographic keys, Int. J. Innov. Technol.
Explor. Eng. 9 (2020) 1025–1029. doi:10.35940/ijitee.C8994.029420

[8] G. Cotrina, A. Peinado, A. Ortiz, Gaussian pseudorandom number generator based on cyclic
rotations of linear feedback shift registers, Sensors 20(7) (2020) 2103. doi:10.3390/s20072103

[9] U. Zia, M. McCartney, B. Scotney, A novel pseudo-random number generator for IoT based on
a coupled map lattice system using the generalised symmetric map, SN Appl. Sci. 4(48) (2022).
doi:10.1007/s42452-021-04919-4

[10] R. Florin, et al., Sensor-based entropy source analysis and validation for use in IoT
environments, Electron. 10(10) (2021). doi:10.3390/electronics10101173

[11] S. Hong, L. Chang, Sеnsor-basеd random numbеr gеnеrator sееdіng, in: Accеss ІЕЕЕ, vol. 3,
2015, 562–568.

[12] N. Lv, T. Chen, Y. Ma, Analysis on entropy sources based on smartphone sensors (2020) 21–31.
doi:10.1145/3442520.3442528

[13] S. Popereshnyak, Technique of the testing of pseudorandom sequences, Int. J. Comput. 19(3)
(2020) 387–398. doi:10.47839/ijc.19.3.1888

[14] V. Masol, S. Popereshnyak, Joint distribution of some statistics of random bit sequences,
Cybernetics Syst. Anal. 57(1) (2021) 139–145. doi:10.1007/s10559-021-00337-x

380

https://doi.org/10.1007/s10559-021-00337-x
https://doi.org/10.47839/ijc.19.3.1888
https://doi.org/10.1145/3442520.3442528
https://doi.org/10.3390/electronics10101173
https://doi.org/10.1007/s42452-021-04919-4
https://doi.org/10.3390/s20072103
https://doi.org/10.35940/ijitee.C8994.029420

	1. Introduction
	2. Optimization of information protection means integrating sensory sources of entropy
	3. Analysis of entropy sources available through sensors
	4. Random and еnvіronmеntal sеnsors
	5. Implementation of digital data processing to ensure randomness
	5.1. Noise filtering
	5.2. Reducing the influence of deterministic components
	5.3. Bit acquisition process
	5.4. Evaluation of the quality of bits
	5.5. General mathematical model

	6. Еmріrіcal рroblеms
	6.1. Lіnеar fееdback shіft rеgіstеr
	6.2. Fіndіng a solutіon
	6.2.1. Thе рroblеm wіth zеros
	6.2.2. Ensuring non-rереatabіlіty
	6.2.3. Fеaturеs of thе mіcrocіrcuіt XNOR

	6.3. Conductіng rеsеarch
	6.3.1. Onеs and zеros
	6.3.2. Thе wеіghtіng factors рroblеm
	6.3.3. Skірріng thе 254th valuе
	6.3.4. Seed

	7. Development of recommendations for the practical implementation of a generator of pseudo-random numbers based on sensors
	7.1. Hardware requirements for implementing a sensor-based generator
	7.2. Methods of signal processing in practical implementation

	Conclusions
	Declaration on Generative AI
	References

