
Enhancing Pseudorandom Number Generation using 
Environmental Sensor-based Entropy Sources⋆

Svitlana Poperehnyak1,∗,†, Ihor Syvachenko2,† and Yurii Shevchuk3,†

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Beresteiskyi ave., 03056 Kyiv, 
Ukraine
2 Institute of Software Systems of NAS of Ukraine, 40 Academician Glushkov ave., 03187 Kyiv, Ukraine 
3 DataArt, 3530 Carol Ln, Northbrook, 60062 Illinois, USA

Abstract
The article considers one of the methods of building a pseudorandom number generator (PSN) based on 
physical sensors that use natural fluctuations in the environment to obtain a source of entropy. The focus 
is  on the analysis  of  different types of  sensors,  such as temperature,  acoustic,  light,  gyroscopes,  and 
magnetometers, which can provide a sufficient level of randomness to reliably generate pseudorandom 
numbers.  Methods  of  digital  processing  of  sensor  signals  are  described,  including  noise  filtering, 
quantization, and data binarization to obtain a sequence of random bits. In addition, the quality of the 
obtained  pseudorandom  numbers  is  assessed  using  statistical  and  cryptographic  tests.  Hardware 
requirements  and possible  scenarios  for  the  use  of  such generators  in  cryptography,  the  Internet  of  
Things (IoT), the gaming industry, and other cyber-physical systems are highlighted. The article aims to 
develop  a  reliable  method  for  generating  high-quality  random  numbers,  which  is  based  on  the 
unpredictability of physical processes. The article discusses an approach to generating a pseudorandom 
sequence using sensors.  It  highlights the factors contributing to the randomness of  devices based on 
environmental sensors, which can be utilized in the basic configuration of a slow monostable timer. The  
method described enables the sensor to generate a random factor without requiring any user input. A 
study was conducted using a robot, and suggestions for improving the operation of a linear feedback shift  
register (LFSR) are provided. The concept of an LFSR can also be applied in programming languages to  
produce sequences of pseudorandom numbers.
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1. Introduction

In today’s world, pseudorandom numbers play a key role in many fields, including cryptography, 
computer modeling, statistical methods, and the gaming industry. However, traditional algorithmic 
pseudorandom  number  generators  have  certain  limitations,  including  repeatability  and 
predictability, which can be a serious problem for applications that require high levels of security 
and entropy [1, 2].

Because  of  this,  there  is  an  urgent  need  to  create  more  reliable  sources  of  entropy.  One 
promising approach is to use sensors to generate pseudo-random numbers that can exploit the 
natural random fluctuations of physical processes [3, 4]. Sensors that measure temperature, noise, 
motion,  lighting,  and  other  environmental  parameters  provide  a  high  level  of  entropy,  which 
makes them attractive for building hardware pseudorandom number generators.
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The article, devoted to one of the methods of constructing a generator of pseudo-random numbers 
based on sensors, is relevant for several reasons:

1. Growing need for security. The requirements for cryptographic security in networks and 
information systems are growing every year.

2. Problems of predictability of traditional algorithms. Algorithmic generators have limited 
entropy, which makes them vulnerable to attacks. The physical processes used by sensors 
have a much greater potential for unpredictability.

3. Development of hardware solutions. As hardware advances, particularly embedded systems 
and  the  IoT,  there  is  a  growing  need  for  compact  and  reliable  pseudorandom number 
generators that can be integrated into resource-constrained devices.

4. Innovations  in  scientific  and  technical  progress.  The  use  of  sensors  to  generate 
pseudorandom  numbers  opens  up  new  opportunities  for  scientific  research  and  the 
development of new technological solutions in various fields, such as telecommunications, 
automation, computer science, and others.

Therefore,  this  article  contributes  to  the  development  of  methods  for  generating  reliable 
pseudo-random  numbers  based  on  hardware,  offering  an  innovative  approach  to  solving  the 
problem of predictability and repeatability of numbers generated by traditional algorithms [5, 6].

Setting the problem. The generation of pseudo-random numbers is an important component 
of many modern systems, including cryptography, computer modeling, the gaming industry, and 
scientific  research.  Traditional  algorithmic  pseudo-random  number  generators  have  certain 
limitations related to their predictability and low entropy level, which can be critical in cases where 
high cryptographic security is required [7–9]. The question arises of finding alternative approaches 
that would increase the unpredictability and randomness of numbers. One such promising method 
is the use of sensors to generate pseudo-random numbers based on physical processes. However, 
the  problem  of  developing  a  mathematical  model  and  technical  solutions  for  the  effective 
implementation of this approach remains open.

The purpose of the article is to develop one of the ways to build a pseudorandom number 
generator based on sensors that use random physical phenomena to ensure a high level of entropy 
and unpredictability. The article deals with methods of measuring physical processes, analysis of 
their  randomness,  mathematical  processing  of  data  to  obtain  bits  of  a  random sequence,  and 
evaluation of the quality of the received pseudorandom numbers.

The task of the article:

1. Analysis of entropy sources available through sensors. An overview of the possible types of 
sensors (temperature, acoustic, light, etc.) that can be used to generate random signals.

2. Development of a mathematical model for the generation of pseudorandom numbers based 
on sensor measurements. Study of the processes of data normalization, quantization, and 
signal processing to convert physical measurements into a sequence of bits.

3. Implementation  of  digital  data  processing  to  ensure  randomness.  Definition  of  noise 
filtering methods, reduction of influence of deterministic components, and construction of 
process of obtaining bits.

4. Evaluation of the quality of the received pseudorandom numbers. Conducting randomness 
tests, such as cryptographic and statistical tests, to verify the reliability and unpredictability 
of the generator.

5. Development  of  recommendations  for  the  practical  implementation  of  a  sensor-based 
generator. Discussion of hardware requirements and potential scenarios for the use of such 
generators in various industries.
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So, the article will outline the concept of building a generator of pseudo-random numbers based on 
physical  phenomena  measured  by  sensors,  using  methods  of  mathematical  processing  and 
evaluation of the randomness of the received numbers.

2. Optimization of information protection means integrating sensory 
sources of entropy

Optimization of the composition of information protection tools in wartime conditions is one of the 
key elements of the research, which is focused on improving the quality of pseudo-random number 
generation using entropy sources based on environmental sensors. 

In  wartime  conditions,  when  traditional  means  of  ensuring  information  security  may  be 
ineffective due to resource constraints and reduced infrastructure reliability,  there is  a need to 
develop flexible, adaptive protection systems capable of operating in conditions of unstable power 
supply,  limited  access  to  Internet  resources,  and  other  logistical  constraints.  In  this  case,  the 
optimization  of  information  protection  tools  involves  a  strategic  approach  to  the  selection  of 
methods and technologies that allow for ensuring the maximum level of security at minimal cost.

A  key  aspect  in  such  optimization  is  the  effective  use  of  cryptography  technologies,  in 
particular the generation of pseudo-random numbers, which underlie many encryption algorithms. 
Traditional methods of generating pseudorandom numbers using standard hardware and software 
can  be  vulnerable  to  attacks,  especially  in  wartime  conditions,  when  infrastructure  can  be 
destroyed or sabotaged. 

The  use  of  entropy sources  based  on  environmental  sensors,  such  as  temperature  sensors, 
humidity sensors, or wind speed sensors, can significantly improve the quality of random number  
generation, as such sources provide high unpredictability and complexity. Given that most modern 
cryptographic  algorithms  require  stable  random  number  generation  for  encryption  and 
authentication, the integration of such technologies requires careful optimization in terms of cost  
and efficiency.

Therefore,  optimization  of  the  composition  of  information  protection  tools  in  wartime 
conditions can be achieved through the integration of sensor technologies for random number 
generation,  which  allows  reducing  the  cost  of  traditional  hardware  while  maintaining  high 
protection efficiency.  Taking into  account  the specifics  of  wartime conditions,  such as  limited 
resources  and  high  risk  of  attacks,  is  important  to  achieve  a  balance  between  the  cost  and 
effectiveness of the developed solutions, which guarantees the resistance of information systems to 
malicious influences.

3. Analysis of entropy sources available through sensors

Entropy in the context of pseudorandom number generation refers to the amount of information or  
randomness that can be extracted from a physical process. Sensors can measure various physical  
quantities, which by their nature contain a significant level of randomness. These values can be 
used as sources of entropy for generating random signals [10–12]. Below is an overview of the 
most common sensor types that can be used for this task.
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Table 1
Overview of the most common sensor types

Type Description Source of entropy Advantages Disadvantages

T
em

pe
ra

tu
re

 s
en

so
rs

Temperature sensors 
measure the 
temperature of the 
environment or certain 
components. Although 
temperature changes 
are often gradual, at the 
micro level temperature 
can fluctuate due to 
external factors that are 
random.

Thermal fluctuations: 
Temperature changes 
caused by both internal 
processes (for example, 
device operation) and 
external conditions 
(atmospheric effects) can 
have a random component.
Thermal noise (Johnson 
noise): It occurs due to 
random movements of 
charged particles in 
conductors. This type of 
noise can be used to 
generate random bits.

Ease of use.
Durability and 
stability in 
various 
environments.

Low frequency 
of fluctuations 
in macroscopic 
conditions.
Additional 
processing is 
required to 
obtain stable 
random bits.

A
co

us
ti

c 
se

ns
or

s 
(m

ic
ro

ph
on

es
)

Acoustic sensors are 
used to measure sound 
vibrations in air or 
liquids. Sound waves 
contain a significant 
level of noise that can 
be used as a source of 
entropy.

Acoustic noise: Sound 
fluctuations are always 
present in the environment, 
which are difficult to 
predict. For example, 
background noise may 
include wind noise, people’s 
movements, the operation 
of devices.
Signal Coherence: Small 
random fluctuations can be 
detected even in a relatively 
quiet environment.

Constant access 
to unpredictable 
fluctuations.
High frequency of 
signal changes.

Possible 
stability issues 
in very quiet 
environments.
Dependence on 
the level of 
ambient noise.

M
ag

ne
ti

c 
se

ns
or

s 
(m

ag
ne

to
m

et
er

s)

Magnetometers 
measure changes in the 
magnetic field around 
the device. Even in the 
absence of visible 
changes in the magnetic 
field, random 
fluctuations caused by 
microfluctuations in the 
environment can occur.

Changes in the magnetic 
field: Random changes in 
the magnetic field can be 
caused by the movement of 
magnetic objects, electrical 
currents, or geophysical 
factors.
Quantum fluctuations: 
Under certain conditions, 
magnetometers can pick up 
quantum fluctuations in 
magnetic fields.

No need for direct 
physical contact 
or changing the 
position of the 
sensor.
Constant 
presence of 
fluctuations in the 
magnetic field.

Sensitivity to 
electromagneti
c interference.
Possible 
stability of the 
magnetic field 
under 
controlled 
conditions.
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Light sensors are used 
to measure the level of 
illumination. Random 
fluctuations in light 
intensity, even in a 
stable environment, can 
be a source of entropy.

Quantum Fluctuations in 
Light Intensity: The light 
perceived by the sensor has 
random quantum 
fluctuations due to the 
nature of photons, 
especially in low-intensity 
conditions (darkness or 
very low light).
External factors: Changes 
in illumination due to 
natural factors, such as 
cloud movement, changes 
in the angle of the sun’s 
rays, or other random 
processes that change the 
level of illumination.

High frequency of 
fluctuations in 
variable 
environments.
Availability of 
photodiodes and 
other light 
sensors.

In a controlled 
environment 
with constant 
lighting, 
entropy can be 
low.
Need to have a 
variable light 
source to get 
enough 
random 
changes.

M
ag

ne
ti

c 
se

ns
or

s 
(m
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ne

to
m

et
er

s)

Magnetometers 
measure changes in the 
magnetic field around 
the device. Even in the 
absence of visible 
changes in the magnetic 
field, random 
fluctuations caused by 
microfluctuations in the 
environment can occur.

Changes in the magnetic 
field: Random changes in 
the magnetic field can be 
caused by the movement of 
magnetic objects, electrical 
currents, or geophysical 
factors.
Quantum fluctuations: 
Under certain conditions, 
magnetometers can pick up 
quantum fluctuations in 
magnetic fields.

No need for direct 
physical contact 
or changing the 
position of the 
sensor.
The constant 
presence of 
fluctuations in the 
magnetic field.

Sensitivity to 
electromagneti
c interference.
Possible 
stability of the 
magnetic field 
under 
controlled 
conditions.

G
yr

os
co

pe
s 

an
d 

ac
ce

le
ro

m
et

er
s

These sensors are used 
to measure the 
orientation and 
movement of the device. 
They are very sensitive 
to the slightest changes 
in movement, even if 
the device is in relative 
rest.

Microfluctuations of 
movement: Gyroscopes 
and accelerometers can 
register small movements 
or vibrations caused by 
random processes, for 
example, micro-vibrations 
of the environment or 
vibrations of internal 
components.
Unpredictable vibrations: 
These sensors can detect 
micro-movements that are 
invisible to the eye, caused 
by, for example, changes in 
position or random 
vibrations.

High sensitivity 
to fluctuations.
Quick response to 
changes.

In stationary 
systems where 
there is no 
motion, 
entropy can be 
limited.
May require a 
high polling 
rate to 
efficiently use 
entropy.
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These sensors measure 
chemical changes in the 
environment, such as 
humidity levels or the 
concentration of certain 
chemicals.

Random chemical 
reactions: In many 
environments, even under 
stable conditions, random 
changes in chemical 
composition or 
concentration can occur.
Fluctuations in humidity 
or gases: Random changes 
in air composition or 
humidity can affect the 
performance of 
electrochemical sensors.

High sensitivity 
to changes in the 
chemical 
environment.
Use in special 
environments (for 
example, in 
chemical 
laboratories or 
controlled 
atmosphere 
environments)

Slow reaction 
in stable 
conditions.
Dependence on 
external 
factors. 

Various types of sensors can be used as sources of entropy to generate random numbers, but their 
effectiveness depends on the nature of the measured physical processes and the environment in  
which they operate. Depending on the target system, one or more sensors can be used to improve 
the randomness of the generator:

 Temperature and light sensors are suitable for systems with slow environmental changes.
 Acoustic  sensors  and gyroscopes  are  suitable  for  environments  with  high  dynamics  or 

movement.
 Magnetic sensors and electrochemical sensors can be used in specific environments or to 

measure special phenomena.

The variety of  sensors available allows for  flexible customization of  pseudorandom number 
generators to specific conditions or system requirements.

4. Random and еnvіronmеntal sеnsors

One approach to  generating  random numbers  involves  stopping a  high-frequency timer  at  an 
arbitrary moment. Some projects require user interaction to stop the timer. However, let’s consider 
a method in which a sensor can generate a random factor without any user involvement. In our 
experiment, we utilize a thermistor. To incorporate it into the circuit, simply replace the resistor in 
the original timer setup with the thermistor. 

Random factors influencing  the  operation  of  the  timers  include  not  only  changes  in  the 
thermistor’s resistance but also additional variables that may affect performance:

 During operation, timers can generate slight heat, which may affect their performance.
 The repeat button might behave differently with each press.
 The circuit’s power supply could experience minor fluctuations in current and/or voltage.
 The connections between the breadboard slots,  jumpers,  and component terminals have 

some resistance, which may change when jumpers or components are tapped.
 Other external factors, which we may not be aware of, could also influence the circuit’s 

operation.

Automatіon of arbіtrary sеlеctіon schеmе
The testing process can be accelerated by eliminating user input. The first step in this direction 

is to change the operation mode of the first timer from monostable to self-oscillating, with a period 
of one second. This adjustment allows for observing the results without needing to repeatedly 
press the repeat button.
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In the second step, the counter reset button can be removed, and the circuit modified to perform  
the reset automatically. In some microcircuits, the counter is reset by a positive edge of the signal  
supplied to its reset input. In our setup, the output level transitions from low to high at the start of  
each cycle. This signal can be used to reset the timer through a coupling capacitor, ensuring that  
the high level is only briefly present on the reset input.

With  these  changes,  the  system  should  now  operate  independently  without  any  user 
intervention.

Tіmеr frеquеncy sеtuр 
If  the  results  from  the  automatic  generation  circuit  for  arbitrary  numbers  lack  sufficient 

variability,  the  speed  (i.e.,  frequency)  of  the  second  timer  should  be  increased.  To  raise  the 
frequency of the second timer to 500 Hz, it is recommended to replace the 1 μF timing capacitor 
with a 0.2 μF capacitor. For a frequency of 5 000 Hz, a capacitor with a capacitance of 0.01 μF 
should be used. 

The faster the second timer operates, the higher the likelihood that the states recorded after 
stopping will differ due to small variations in the timing.

5. Implementation of digital data processing to ensure randomness 

To  implement  digital  data  processing  to  generate  pseudo-random  numbers  based  on  sensor 
indicators, it is necessary to ensure (Fig. 1):

1. Noise filtering.
2. Reducing the influence of deterministic components.
3. Construction of the quantization process for obtaining bits.

Figure 1: Stages of data processing

Let’s consider the main stages of data processing.

5.1. Noise filtering

Real-world sensors measure signals consisting of both useful signals and random noise. Filtering is 
used to extract the random component of the signal. One of the most common approaches to noise  
filtering is the use of high-pass filters (such as low-pass filters) that filter out long-term fluctuations 
(the deterministic component).

Noise filtering algorithm:

 Median filter: used to reduce peak noise in signals. It works by calculating the median of a 
certain number of values in a sliding window of size n.
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Suppose we have a signal x ( t ) read from a sensor:

x filtered ( t )=med ian (x (t−n ) , . . . , x (t+n )) . (1)

This  method  allows  you  to  reduce  the  impact  of  abnormal  values  or  outliers  while 
preserving the underlying fluctuations.

 Moving average: Another way to smooth a signal is to average it over a moving window 
of size  w:

x smooth( t )=
1
w

∑
i=t−w /2

t+w /2

x ( i ). (2)

Such  filtering  allows  you  to  smooth  the  signal,  reducing  the  impact  of  short-term 
fluctuations.

5.2. Reducing the influence of deterministic components

To  isolate  the  truly  random  part  of  the  signal,  it  is  necessary  to  reduce  or  eliminate  the 
deterministic components. This can be done in several ways:

 Average  subtraction:  If  the  deterministic  component  has  a  stable  trend,  it  can  be 
eliminated by subtracting the average value of the signal:

xd etrended ( t )=x (t )−x , (3)

where x is the average value of the signal over a certain period

 Fourier analysis:  Fourier  transform can be applied to detect  regular  components  of  a 
signal  that  repeat  with  a  certain  frequency.  After  determining  the  main  harmonics 
(deterministic frequencies),  they can be removed from the spectrum, leaving only high-
frequency fluctuations (random noise).

Fourier transform for signal x (t ):

X ( f )=∫
−∞

∞

x (t )e−2 πift dt . (4)

After the conversion, the signal can be processed by removing the low-frequency harmonics 
corresponding to the regular oscillations and performing the inverse conversion to obtain a pure  
random signal.

5.3. Bit acquisition process

After processing the signal, it is necessary to convert it into a sequence of bits that will be used to 
generate random numbers.

Quantization algorithm:

 Signal normalization: First, the signal is normalized to the range from 0 to 1. Suppose 
that the signal values are in the range from xmin to xmax:

xnorm( t )=
x (t )−xmin
xmax−xmin

(5)
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 Signal binarization: After normalization, the signal can be quantized to obtain bits. For 
this, you can use a threshold value, for example 0.5:

b( t )={1 , if xnorm( t )≥0.50 , if xnorm( t )<0.5
. (6)

The  resulting  bits  can  be  sequenced  and  used  as  random numbers.  To  construct  multi-bit 
numbers, several bits can be combined into groups of k  bits:

R=∑
i=0

k−1

b (t+1) ∙2i . (7)

This will allow you to get a pseudorandom number in the range from 0 to 2k−1.

5.4. Evaluation of the quality of bits 

After  generating  the  bits,  it  is  important  to  check  them for  randomness  using  the  following 
methods:

 Fries test (to analyze the uniformity of distribution).
 Series test (to check the absence of regular patterns in the sequence).
 Test  for  the  length  of  blocks  of  zeros  and  ones  (to  check  whether  there  are  no  long  

sequences of the same bits).

Implementation of  digital  data processing to generate random numbers from sensor signals 
includes several stages:

 Noise filtering to remove deterministic components.
 Reducing the influence of regular components by subtracting the average or using Fourier 

analysis.
 Normalization and binarization of the signal to obtain a sequence of random bits.
 Checking the quality of bits using randomness tests.

These  methods  make  it  possible  to  obtain  pseudo-random  numbers  using  the  physical 
properties  of  sensor  signals,  which  significantly  increases  their  unpredictability  compared  to 
traditional algorithmic generators.

5.5. General mathematical model

Let S ( t ) be the signal from the sensor at the time t , then the PRNG model can be described by the 
equation: 

R ( t )=H(Q( S (t )−min(S )
max (S )−min(S ))), (8)

where  H  is  a  hashing  or  post-processing  function;  Q ( x ) is  a  quantization  function  that 
converts values into binary bits.

Advantages:

 Number generation is based on physical processes, so it is difficult to predict the obtained 
results.

 The possibility of using different types of sensors to increase entropy.
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Disadvantages:

1. Measurements may be sensitive to external conditions or equipment calibration.
2. Additional processing is required to obtain high-quality pseudo-random numbers.

Thus, building a sensor-based pseudorandom number generator requires combining physical 
measurements with mathematical signal processing to obtain unpredictable values.

6. Еmріrіcal рroblеms

Empirical  research  involves  deriving  results  from  observation  or  experience.  It  is  generally 
assumed  that  sensors  like  thermistors,  humidity  sensors,  accelerometers,  or  pressure  sensors 
should  perform consistently  across  different  users,  producing a  wide  range of  random values. 
However, this assumption cannot be fully trusted. In reality, researchers have long been interested 
in  whether  it  is  possible  to  design  a  system that  can  generate  an  unpredictable  sequence  of  
numbers completely independently, without being influenced by any external factors. It is crucial 
to demonstrate and mathematically prove that a given sequence of numbers remains consistent 
with each activation of the system.

Another key characteristic that indicates the quality of the generated sequence is the inability to 
predict the next number until the sequence starts to repeat. This would resemble an ideal pseudo-
random number generator, as long as the sequence does not always start from the same point.  
Despite these challenges, let’s attempt to implement such a device. Whether or not you need it  
depends on how you intend to use it.

6.1. Lіnеar fееdback shіft rеgіstеr

Imagine we have a black box containing a mechanism that generates a stream of numbers without 
any external influence. It is crucial to determine whether these numbers are truly random. 

To achieve this, the stream must meet two requirements:

 The sequence of numbers should be relatively unpredictable. The term “relatively” is used 
because any autonomous random number generator will eventually repeat its cycle if it  
runs for a sufficiently long period. The goal of such a generator is to produce a sequence  
that  is  long  or  complex  enough to  exceed  human memory capacity  or  attention  span. 
Ideally, the generator would have a large enough physical size to avoid being affected by 
quantum effects.

 The range of numerical values should be uniformly distributed, meaning each value should 
have an equal probability of appearing in the sequence, with none being omitted.

There is a design that can nearly satisfy both of these requirements: a linear feedback shift  
register (LFSR). The output sequence of an LFSR can be (almost) any length, and its values are 
(almost)  perfectly  balanced.  Let’s  construct  an  LFSR  such  that  these  “almost”  limitations  are  
minimal enough to be negligible.

To summarize what we’ve learned about the linear feedback shift register:

 If the LFSR’s memory cells start with all low states (e.g., 0000), they will continue to hold  
these states, simply cycling through them during further operation.

 If the LFSR’s memory cells start with any value other than 0000, the register will cycle  
through  fourteen  other  distinct  combinations  before  the  sequence  repeats.  The  output 
sequence will include all values from 0001 to 1111, though not in a specific order. Every 
value  will  appear  exactly  once  (except  0000),  and no value  will  repeat  until  the  entire 
sequence is completed.
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However, the issue is that this sequence is short enough for the human brain to quickly recognize  
its repetition pattern.

6.2. Fіndіng a solutіon

6.2.1. Thе рroblеm wіth zеros

To address the issue of the LFSR’s apparent non-responsiveness when all its memory cells are set 
to a low state upon activation, various recommendations typically suggest preloading the register 
with different values. 

This can be done by modifying the circuit to include a module that provides clock pulses at a  
high  level  for  a  short  duration  at  the  register’s  input.  However,  there  is  a  simpler  solution: 
replacing the XOR logic element in the circuit with an XNOR element. Although XNOR elements 
are not commonly used in microcontrollers, they can effectively solve the problem.

6.2.2. Ensuring non-rереatabіlіty

Before assembling a test circuit using a four-element chip with two-input XNOR elements, it is 
important to revisit the issue of sequence repetition. Specifically, it is crucial to ensure that more 
than fifteen value combinations are generated before the sequence starts to repeat. 

By utilizing all eight memory locations of the shift register, the output range can be expanded  
from 00000000 to 11111110, allowing the sequence to reach 255 combinations before repeating.

6.2.3. Fеaturеs of thе mіcrocіrcuіt XNOR

It  is  crucial  to exercise  particular  caution when connecting the XNOR chip to avoid incorrect 
connections. The internal connections of this microcircuit are entirely distinct from those of other 
logic microcircuits. If this microcircuit is mistakenly connected as an OR or XOR circuit, it may 
sustain irreparable damage.

6.3. Conductіng rеsеarch

To obtain results from the study that are consistent with those in the article, the initial state of the  
shift register needs to be identical. Specifically, at the start of the cycle, all cells in the examined 
shift register must be set to a low state.

At this point, the LFSR will begin generating a random sequence, where a 0 indicates that the 
LED is off and a 1 indicates that it is on. Each time the button is pressed, the subsequent sequence  
in the table corresponds to the state of the LEDs in the circuit (Table 2).

Tablе 2
Sеquеncе of 255 combіnatіons of еіght-bіt lіnеar fееdback shіft rеgіstеr, рlus іnіtіal statе rереat

Sеquеncе of 255 combіnatіons

00000000 01110001 11001000 01001111 01111001 01011011 10000100 11100010

00000001 11100011 10010001 10011110 11110010 10110111 00001000 11000101

00000011 11000111 00100011 00111100 11100100 01101110 00010000 10001010

00000111 10001110 01000110 01111000 11001001 11011101 00100000 00010101

00001111 00011101 10001101 11110000 10010011 10111010 01000000 00101010

00011110 00111011 00011011 11100000 00100111 01110101 10000001 01010101

00111101 01110110 00110111 11000001 01001110 11101011 00000010 10101010

01111010 11101101 01101111 10000010 10011100 11010110 00000101 01010100
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11110100 11011010 11011111 00000100 00111000 10101101 00001011 10101000

11101000 10110100 10111110 00001001 01110000 01011010 00010110 01010000

11010000 01101000 01111101 00010010 11100001 10110101 00101100 10100000

10100001 11010001 11111010 00100100 11000011 01101010 01011001 01000001

01000011 10100011 11110101 10001000 10000110 11010101 10110011 10000011

10000111 01000111 11101010 10010000 00001100 10101011 01100110 00000110

00001110 10001111 11010100 00100001 00011000 01010110 11001100 00001101

00011100 00011111 10101001 01000010 00110001 10101100 10011001 00011010

00111001 00111111 01010010 10000101 01100011 01011000 00110010 00110101

01110010 01111110 10100100 00001010 11000110 10110001 01100101 01101011

11100101 11111100 01001001 00010100 10001100 01100010 11001010 11010111

11001011 11111001 10010010 00101000 00011001 11000100 10010101 10101111

10010111 11110011 00100101 01010001 00110011 10001000 00101011 01011110

00101111 11100110 01001010 10100010 01100111 00010001 01010111 10111101

01011111 11001101 10010100 01000101 11001110 00100010 10101110 01111011

10111111 10011011 00101001 10001011 10011101 01000100 01011100 11110110

01111111 00110110 01010011 00010111 00111010 10001001 10111001 11101100

11111110 01101101 10100110 00101110 01110100 00010011 01110011 11011000

11111101 11011011 01001101 01011101 11101001 00100110 11100111 10110000

11111011 10110110 10011010 10111011 11010010 01001100 11001111 01100000

11110111 01101100 00110100 01110111 10100101 10011000 00111110 11000000

11101110 11011001 01101001 11101111 01001011 00110000 01111100 10000000

11011100 10110010 11010011 11011110 10010110 01100001 11111000 00000000

10111000 01100100 10100111 10111100 00101101 11000010 11110001

Subsequently, a computer program was developed to emulate a linear feedback shift register and 
record its output. 

In the following step,  the binary numbers were converted into a  decimal  format  for  easier 
comprehension by the  human brain.  This  resulted  in  the  same sequence  being represented in 
decimal format.

0, 1, 3, 7, 15, 30, 61, 122, 244, 232, 208, 161, 67, 135, 14, 28, 57, 114, 229, 203, 151, 47, 95, 191, 127,  
254, 253, 251, 247, 238, 220, 184, 113, 227, 199, 142, 29, 59, 118, 237, 218, 180, 104, 209, 163, 71, 143, 
31, 63, 126, 252, 249, 243, 230, 205, 155, 54, 109, 219, 182, 108, 217, 178, 100, 200, 145, 35, 70, 141, 27,  
55, 111, 223, 190, 125, 250, 245, 234, 212, 169, 82, 164, 73, 146, 37, 74, 148, 41, 83, 166, 77, 154, 52, 105,  
211, 167, 79, 158, 60, 120, 240, 224, 193, 130, 4, 9, 18, 36, 72, 144, 33, 66, 133, 10, 20, 40, 81, 162, 69,  
139, 23, 46, 93, 187, 119, 239, 222, 188, 121, 242, 228, 201, 147, 39, 78, 156, 56, 112, 225, 195, 134, 12, 
24, 49, 99, 198, 140, 25, 51, 103, 206, 157, 58, 116, 233, 210, 165, 75, 150, 45, 91, 183, 110, 221, 186, 117,  
235, 214, 173, 90, 181, 106, 213, 171, 86, 172, 88, 177, 98, 196, 136, 17, 34, 68, 137, 19, 38, 76, 152, 48,  
97, 194, 132, 8, 16, 32, 64, 129, 2, 5, 11, 22, 44, 89, 179, 102, 204, 153, 50, 101, 202, 149, 43, 87, 174, 92,  
185, 115, 231, 207, 62, 124, 248, 241, 226, 197, 138, 21, 42, 85, 170, 84, 168, 80, 160, 65, 131, 6, 13, 26,  
53, 107, 215, 175, 94, 189, 123, 246, 236, 216, 176, 96, 192, 128, 0.
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At first glance, this sequence appears to be quite pseudo-random. A computer program was utilized 
to verify that each value occurs only once, without any gaps or repetitions.

6.3.1. Onеs and zеros

After confirming that the logic circuit is functioning correctly, the next step is to determine how to 
modify this sequence so that only 1 or 0 is produced in each cycle. 

One method to achieve this output is by applying the XOR operation to the outputs of the shift  
register. This approach utilizes a three-level “tree” of Exclusive OR gates, where each gate averages 
the outputs of the previous level to yield a final 0 or 1. 

All eight memory locations remain in use during the feedback process. The eighth, sixth, fifth,  
and  fourth  cells  continue  to  be  XNORed  as  before,  allowing  us  to  maintain  a  non-repeating 
sequence of 255 values. It is recommended to take a subsample from this sequence, which will also  
undergo 255 combinations before starting to repeat.  Consequently,  the computer program was 
adjusted to extract only the rightmost bit from each of the 255 combinations generated by the 
linear feedback process. As a result, thе followіng sеquеncе of 1 and 0 was obtaіnеd:

0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1  
1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0  
1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1  
0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0  
1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 

If we conduct this experiment on a physical circuit and only observe the rightmost LED, the 
same sequence will be produced.

6.3.2. Thе wеіghtіng factors рroblеm

Analyzing the frequencies of the repeating subsequences of 1s and 0s yields the following results,  
which are presented in Table 3.

Tablе 3
Analysіs of thе frеquеncіеs of rереatіng subsеquеncеs 1 and 0

Valuе 0 Valuе 1

0 33 tіmеs 1 32 tіmеs

00 16 tіmеs 11 16 tіmеs

000 8 tіmеs 111 8 tіmеs

0000 4 tіmеs 1111 4 tіmеs

00000 2 tіmеs 11111 2 tіmеs

000000 1 tіmе 111111 1 tіmе

0000000 1 tіmе 1111111 1 tіmе

Total 128 valuеs 0 Total 127 valuеs 1

In the presented sequence list  (Table 2),  there is  one anomaly that  appears to be incorrect—it  
contains 33 single zeros but only 32 single ones. The issue arises as follows: theoretically, the range  
of all values in the sequence should extend from 00000000 to 11111111. However, an XNOR gate 
linear feedback shift register cannot process the value 11111111, so it skips it. Since this value ends  
with a 1, it does not appear in our table of values that end in 1. 
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6.3.3. Skірріng thе 254th valuе

One solution to this problem would be to add additional shift registers. For instance, by connecting 
a chain of four registers that together have 32 memory cells, the entire non-repeating sequence of 
such an LFSR would consist of over four trillion values. However, this sequence would also include 
all combinations of 32 ones and zeros, except for the last value, which consists of 32 ones. This 
single value would now be obscured among more than four trillion other values, which should be  
acceptable for nearly any application. 

Unfortunately, implementing this scheme requires additional work and components. Therefore, 
let’s consider a simpler alternative. We can simply instruct the shift register to skip one value that 
has  a  zero  at  the  end  to  compensate  for  the  value  11111111,  which  ends  with  a  one.  This 
adjustment will balance the number of ones and zeros in the final sequence of one-digit values. 

To avoid the need to guess which value to skip, we will bypass the value 11111110 (decimal 
254), which precedes the unused value 11111111. While blocking one of the input values may not 
be the most elegant solution, many LFSRs in the encryption industry, where large-scale LFSRs are 
utilized to generate pseudo-random numbers, employ more shift registers. However, this approach 
can be quite complex to implement.

6.3.4. Seed

There is one more problem to address. The core issue is that if there are no voltage surges when 
the circuit is powered on, the initial state of the shift register will consistently be 00000000. We 
cannot achieve the goal  of  making the sequence random if  it  always starts  in the same state. 
Therefore, we need to initialize it with some unknown sequence value.

To accomplish this, we will utilize a standard technique in random number generation known 
as “seeding”. This means that each time the generator is activated, it is initialized to a different 
value. In computer programs, this value is often derived from the current system clock value, as  
time is  constantly changing. For our random-generating circuit,  the ideal solution would be to 
allow it to run for an arbitrary number of idle cycles before applying its output.

To implement this, a system can be designed where, upon powering on, a combination of a  
resistor and a capacitor initiates a slow timer (operating at a low frequency) in monostable mode,  
generating a single pulse. The duration of this pulse can be configured using any type of sensor. 
During this pulse, the slow timer enables the fast self-oscillating timer to function, which feeds the  
clock signal to the LFSR. At the end of the slow timer pulse, the LFSR circuit halts at an unknown  
state of memory cells, thereby providing an ideal level of pseudo-randomness.

It’s  also worth noting that  to  seed the internal  random number generator,  it  is  a  common 
practice to read the value of an unconnected pin of the microcircuit through the microcontroller’s 
internal A/D converter.

7. Development of recommendations for the practical implementation 
of a generator of pseudo-random numbers based on sensors

7.1. Hardware requirements for implementing a sensor-based generator

For the successful implementation of a pseudo-random number generator (PSN) based on sensors,  
it is necessary to take into account several hardware requirements that will ensure stable operation 
and sufficient entropy of random number generation.

Selection of sensors. The main types of sensors that can be used to generate random numbers 
include:

 Temperature sensors:  measure temperature fluctuations at  the micro level,  especially in 
sensitive environments (eg in cooling systems).

 Acoustic sensors: use microphones or other devices to pick up noise in the environment.
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 Light sensors: measure changes in illumination or the infrared spectrum, which can vary 
even under controlled conditions.

 Gyroscopes and accelerometers: These can measure small oscillations or movements of the 
device that are difficult to predict.

Data collection performance and frequency.  Sensor-based  PRNG requires  a  sufficiently 
high  sampling  rate  to  provide  a  stable  stream  of  random  numbers.  A  typical  sensor  polling 
frequency can vary from a few hundred hertz to a few kilohertz, depending on the accuracy and 
characteristics of the signal.

 For sensors with a low frequency of data collection (for example, temperature sensors), it is 
possible to use filtering and accumulation of data to obtain sufficient entropy.

 For high-frequency sensors (acoustics or gyroscopes), a more direct data stream can be used 
with minimal processing.

Processing power. Since the signal from the sensors often needs processing (noise filtering, 
normalization, binarization), computing power is required. The generator can be implemented as:

 Embedded System on Microcontroller:  For resource-constrained devices (e.g.  IoT) where 
power consumption must be kept to a minimum.

 Hardware in servers or security modules: here a more powerful processor can be used to  
process large amounts of sensor data in real-time.

Energy consumption. Sensor-based PRNG can be critical in power-constrained systems such 
as mobile or IoT devices. Recommendations:

 Use sensors with low energy consumption.
 Adjust the polling frequency of sensors according to the needs of a specific application 

(reducing the frequency of data collection in cases where high entropy is not critical).

7.2. Methods of signal processing in practical implementation

To build a generator with a high level of unpredictability, it is necessary to implement effective  
signal processing methods:

 Signal  filtering:  application  of  median  filters  or  low-pass  filters  to  remove  regular 
components (environmental fluctuations).

 Quantization and binarization: normalization of data from sensors and their transformation 
into binary sequences through a threshold value.

 Application  of  hashing  or  cryptographic  algorithms  to  further  improve  the  quality  of 
random numbers and their security.

Let’s consider some potential application scenarios for sensor-based generators.
Cryptography and security. The most important application scenario for such generators is 

cryptography.  The  use  of  sensor-based  PRNG  makes  it  possible  to  significantly  increase  the 
reliability and stability of security systems due to the generation of more unpredictable keys:

 Generation of cryptographic keys for data encryption.
 Protection  against  pseudo-randomness  attacks:  The  physical  nature  of  sensors  allows 

protection against predictable algorithmic schemes.
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Internet  of  Things  (IoT). Sensor-based  PRNG  can  be  integrated  into  IoT  devices,  where 
resistance to hacking and ensuring the uniqueness of communication sessions is important:

 Device  authentication  through  cryptographic  algorithms  that  use  random  numbers  to 
generate unique tokens.

 Encryption of transmitted data to protect privacy in IoT networks.

Gaming industry. In-game applications, randomness plays a key role in ensuring the integrity 
of the game and creating an unpredictable experience for users. Sensor-based PRNG can be used to:

 Generation of random events or numbers in-game processes (for example,  in gambling, 
simulations, or generation of playing cards).

 Protection against player manipulation through the use of complex physical processes to 
generate unpredictable numbers.

Modeling  and  forecasting  systems.  Sensor-based  generators  can  be  used  in  scientific 
research where high-quality random numbers are required:

 Simulation  of  physical  processes:  in  environments  where  the  accuracy  of  random 
parameters  is  important,  for  example,  in  simulations  of  quantum  systems  or  climatic 
conditions.

 Financial models: for random market changes or volatility forecasting.

Cyber-physical systems.  Sensor-based PRNG can be integrated into cyber-physical systems 
(CPS), which combine physical components and computational processes. Examples:

 Security  control  in  energy  supply  or  production  automation  systems  where  random 
numbers are required to protect against hacking or sabotage.

Requirements for testing and certification. Before the practical implementation of sensor-
based PRNG, it is necessary to conduct thorough testing for randomness and resistance to attacks 
[13, 14]:

 Use of NIST test suites to verify cryptographic strength.
 Carrying out statistical tests to assess the uniformity and entropy of random numbers.
 Certification to cryptographic security standards to ensure compliance with international 

standards such as FIPS 140-2.

Sensor-based pseudorandom number generators open new possibilities for applications where 
high  unpredictability  and  reliability  are  required.  For  the  successful  implementation  of  such 
generators, it is necessary to ensure the correct selection of sensors, optimal signal processing, low 
power consumption, as well as thorough testing and certification.

Conclusions

The article  considered one of  the promising ways to build a pseudorandom number generator 
(PRNG) based on physical sensors. Sensors of various types, such as temperature, acoustic, light,  
gyroscopes, and magnetometers, are reliable sources of entropy due to their natural fluctuations 
and unpredictable characteristics. The physical phenomena measured by these sensors provide a 
high level of unpredictability, which is necessary for the construction of reliable pseudorandom 
numbers.
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A method of digital processing of signals from sensors has been developed, which includes noise 
filtering, normalization, quantization, and binarization to obtain random bits. The evaluation of the 
quality of the obtained numbers using cryptographic and statistical tests showed that generators 
based  on  sensors  can  successfully  provide  a  high  level  of  randomness  and  resistance  to 
predictability.

The article presents an approach for generating a pseudo-random sequence based on sensors. It 
discusses the factors influencing the randomness of devices that rely on environmental sensors, 
which can be utilized in the basic design of a slow monostable timer. The method proposed allows 
the  sensor  to  generate  a  randomness  factor  without  requiring  any  user  input.  A  study  was 
conducted on a robot, leading to suggestions for enhancing the circuit for the operation of a linear 
feedback shift register.

The concept of  a linear feedback shift  register is  used in programming languages to create  
sequences of pseudo-random numbers. These languages also encompass the high-level languages 
employed  for  programming  microcontrollers.  Depending  on  the  specific  microcontroller  used, 
various operators can enable the program to generate seemingly random numbers on demand.

It is important to note that the results from studies on random number generation functions in 
the C language version of the Arduino microcontroller system yield relatively evenly weighted 
sequences.  However,  there  was  a  dependence  on  the  range  specified  for  generating  random 
numbers, resulting in some values being encountered significantly more frequently than others.

Practical guidelines include selecting the appropriate sensor type based on specific application 
conditions  and  hardware  requirements.  Generators  of  this  type  can  be  effectively  applied  in 
industries where high security is required, including cryptography, the Internet of Things (IoT), the 
gaming industry, and cyber-physical systems.

Therefore, the generation of pseudo-random numbers based on physical sensors is a promising 
direction for creating reliable and secure generators that can be integrated into a variety of systems 
to provide high entropy and protect against possible attacks.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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