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Abstract
The paper is dedicated to Multivariate Cryptography over general commutative ring K and protocols of 
symbolic computations for safe delivery of multivariate maps. We consider the iterative algorithm of 
generation of multivariate maps of prescribed degree or density with the trapdoor accelerator, i.e. piece of 
information which allows to compute the reimage of the map in polynomial time. The concept of Jordan-
Gauss temporal graphs is used for the obfuscation of known graph based public keys and constructions of  
new cryptosystems. We suggest use of the platforms of Noncommutative Cryptography defined in terms 
of Multivariate Cryptography over K for the conversion of Multivariate Public Keys into El Gamal type  
Cryptosystems. Some new platforms are introduced.
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1. Introduction

The paper is dedicated to the constructions of special multivariate maps on affine space  Kn over 
finite  commutative  ring  with  the  unity.  We are  interested  in  maps  of  prescribed  bounded by  
constant degree or unbounded degree but prescribed density which has a trapdoor accelerator, i.e. 
pieces of information such that its knowledge allows us to compute the reimage of the map in  
polynomial time. 

One of the applications of these maps is the following scheme of access control to the resources 
of Information System. Administrator A of the Information System (IS) possesses the map F in n-
variables and its trapdoor accelerator T. He/she is going to give secure access to the resources of IS 
to trusted user  U. So A and  U executes selected protocol of Noncommutative Cryptography in 
terms of special subsemigroup S of the affine Cremona semigroup of all multivariate maps of  Kn 

into itself. The output of the protocol X can be used by A and U for the creation of its deformation 
G(X) which is a transformation of Kn.

The administrator sends F+G(X) to U. User restores F. Now A is able to create pseudorandom or 
genuinely  random  passwords  (p1, p2,  ...,  pn) = p as  the  condition  to  enter  the  system.  The 
administrator solves the equation  F(x) = b and sends the solution  x = (d1, d2, ...,  dn)=d to the user 
together with the link for entering the password. User U gets the password as F(d1, d2, ..., dn).

The administrator has the option to change the password several times working with the same 
map F with the trapdoor accelerator. He/she is able to change F via a new session of the protocol 
and delivery scheme.

The  security  of  this  scheme  rests  on  the  security  of  selected  Postquantum  Protocol  on 
Noncommutative  Cryptography.  We  describe  Twisted  Diffie-Helman  protocol  which  use  the 
complexity of Conjugation Power Problem of the semigroup nES(K) of Eulerian endomorphisms of 
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K[x1, x2, ..., xn] which sends each variable xi, i = 1, 2, ..., n to a monomial term. Some other protocols 
of Noncommutative Cryptography with the platform nES(K) are given in [1].

For each positive integer d, d≥2 we present the multivariate map of degree d with the trapdoor 
accelerator. In fact we present the iterative process of expansion of initial map F0 which can be a 
bijective multivariate nonlinear map of degree at most d on Kn with the trapdoor accelerator T or 
an  element  of  general  affine  group  AGLn(K). The  input  parameters  are  positive  integers  m(1), 
m(2), ..., m(k), k≥2.  The step i, i = 1, 2, ..., k of the algorithm produces the multivariate map Gi of 
degree d on the Kn+m(1)+m(2)+...+m(i) with the trapdoor accelerator Ti.

Similarly we can take polynomial surjective map F0 of Kn onto Kr of degree at most d with the 
trapdoor  accelerator  T and  get  the  sequence  of  surjective  polynomial  multivariate  maps  of 
Kn+m(1)+m(2)+...+m(i) onto Kr+m(1)+m(2)+...+m(i) of degree d with the trapdoor accelerators.

So we can use known construction of multivariate cryptography over the general maps with 
trapdoor accelerators or linear maps on affine spaces for the construction of new maps together 
with the polynomial algorithm to compute reimage.

We  define  the  density  of  the  multivariate  polynomial  in  n  variables  as  the  number  of  its 
monomial terms. The density of multivariate map  F:  (x1, x2, ..., xn) → (f1(x1, x2, ..., xn), f2(x1, x2, ..., 
xn), ..., f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn)) is the maximal value of densities of fi for i = 1, 2, ..., m.

We also will work with the multivariate maps in n variable of unbounded degree and prescribed 
density O(nλ). Let K* stands for the multiplicative group of K. Assume that K* is nontrivial. We say 
that multivariate map F of Kn to itself has multiplicative trapdoor accelerator T if the restriction of F 
onto (K*)n is injective map and the knowledge of T allows to compute the reimage of the element 
from F((K*)n) in a polynomial time.

For each nonnegative rational number  λ  we present the explicit constructions of multivariate 
maps of density λ with unbounded degree and multiplicative trapdoor accelerator. Additionally we 
present the iterative process of the expansion of the selected initial map F0 which is a multivariate 
nonlinear  map  of  density  O(1) on  Kn with  unbounded  degree  and  the  multiplicative  trapdoor 
accelerator  T. The input consists of positive integers  m(1), m(2), ..., m(k), k≥2 and some internal 
parameters which are nonnegative rational numbers. 

The step i, i = 1, 2, ..., k of the algorithm produces the multivariate map Gi of polynomial density 
on the Kn+m(1)+m(2)+...+m(i) with the multiplicative trapdoor accelerator Ti. Appropriate choice of internal 
parameters allows us to construct Gk of prescribed density O((n+m(1)+m(2)+...+m(k))λ).

We can use multivariate maps of unbounded degree and prescribed polynomial density with the 
multiplicative  trapdoor  accelerator  instead of  maps of  bounded degree  in  the  presented above 
scheme of access control. We can use the same protocol of Noncommutative Cryptography and the 
same platform nES(K) of Eulerian transformations. The modification of the deformation rule will be 
presented.

Let us consider the case of finite commutative ring  K of the cardinality  O(1) with nontrivial 
multiplicative group. In the case of the map F of unbounded by constant degree of size O(n) and of 
density  O(1) with  the  multiplicative  trapdoor  accelerator  we  use  term pseudolinear  map.  The 
complexity of computation of F(p), pϵ(K*)n is O(n2). In the case of density O(nλ), λ<1 we use the term 
of sub quadratic map. The complexity of computation of F(p), pϵ (K*)n is O(n2+λ).

It is better then in the case of quadratic map on the space Kn. If density is O(n) we say that we 
have pseudo quadratic map.

We hope  that  defined  in  the  paper  wide  variety  of  the  quadratic  or  cubic  maps  with  the 
trapdoor accelerators and the varieties of pseudo-linear, sub quadratic and pseudo quadratic maps 
with the multiplicative trapdoor accelerators can be effectively used in the presented above scheme 
of the access control of Information System.

These varieties are defined via the symbolic computations in terms of algebraic graphs defined 
by the systems of nonlinear algebraic equations over the finite commutative ring  K with unity or 
temporal analogue of these graphs for which generic equations are changeable with the change of 
time. The sequences of pseudorandom or genuinely random graphs can be used for the change of  
coefficients in time dependent algebraic equations.
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For the design of maps we use Jordan-Gauss graphs which are bipartite graph with partition 
sets  Kn and  Km given via quadratic equations such that the neighbourhood of the vertex is the 
solution set of linear system of equations written in its row-echelon form.

Subsection 2.1 of Section 2 contains basic definitions of affine Cremona semigroup and group of 
endomorphism of multivariate ring K[x1, x2, ..., xn], endomorphisms with the trapdoor accelerators. 
It  contains  the  discussion  of  the  area  of  Multivariate  Cryptography  over  the  general  finite 
commutative ring.

In the subsection 2. 2 we define linguistic graphs over the general commutative ring and their 
temporal  analogue.  Algorithm 1.2  allows  us  to  construct  the  variety  of  elements  of  Cremona 
semigroup  with  the  trapdoor  accelerator  defined  in  terms  of  selected  linguistic  graph  or  its 
temporal analogue. Simple conditions insure that the constructive map is bijective transformation 
of Kn. The method allows us to construct surjective maps of Kn onto Km, n>m≥2 with the trapdoor 
accelerator.  For  practical  implementation  of  the  algorithm  we  need  select  special  classes  of 
linguistic graphs which allow us to control the degrees and densities of the outputs. We define the  
special class of Jordan-Gauss graphs and consider flexible families of generalised Double Schubert 
graphs DSs,r(K) and truncated Double Schubert graphs QDSs,r(K) which are convenient instruments for 
generating of families of multivariate maps of prescribed degree on the affine space Kn.

Assume that (F, T) stands for pair multivariate function F of degree d, d≥2 on K n and its trapdoor 
accelerator. We suggest the method of construction of new pair (F’, T’) of degree d on Kn’, n’>n from 
the known (F, T). It can be used iteratively. Many constructions of pairs  (F, T) over fields can be 
found in the recent papers on Classical Multivariate Cryptography [2–13].

In Section 3 we introduce semigroup of nES(K) of Eulerian endomorphisms of K[x1, x2, ..., xn] and 
consider iterative method of construction of multivariate maps of prescribed density O(nd) with the 
trapdoor accelerators or multiplicative trapdoor accelerators. These maps are constructed in terms 
of temporal truncated Schubert graphs.

In Section 4 we consider twisted Diffie-Hellman protocol implemented with the platform nES(K) 
of  Eulerian  transformations.  We  introduce  several  deformation  rules convenient  for  the  safe 
delivery of multivariate maps of prescribed degree or density from one correspondent to his/her 
partner. We discuss the use of stable subsemigroups of Cremona semigroup nCS(K) as a platform 
for the protocol. Stability means that the maximal degree of endomorphisms from the semigroup is  
a constant d.

Section 5 contains conclusive remarks. We have to note that last talk at Eurocrypt conferences 
was  delivered  in  2021.  It  is  paper  [14]  dedicated  to  cryptanalytic  studies.  Some  studies  on 
Multivariate Cryptography were presented during PQCrypt workshops [15–18].

2. Analysis of the last research and publications

2.1. General remarks

Let K be a finite commutative ring. It is possible to say that Multivariate Cryptography in a wide 
sense  is  about  the  use  of  polynomial maps  F of  affine  spaces  Kn to  itself  for  cryptographical 
purposes.

In  classical  case K=Fq the  map F is  an  element  of  affine  Cremona  semigroup  nCS(K)  of 
endomorphisms of multivariate ring  K[x1, x2, ..., xn]. Endomorphism  F can be given by its values 
F(x1) = f1, F(x2)=f2, ..., F(xn)=fn on the variables xi, i = 1, 2,..., n.

We can assume that polynomials fi are given in their standard form i.e. sum of monomial terms 
ordered in lexicographical order.

Endomorphism F induces the map F’: x1 → f1(x1, x2, ..., xn), x2 → f1(x1, x2, ..., xn), ..., xn → fn(x1, x2, ..., 
xn) of the affine space Kn into itself.
We define degree deg(F) as maximal value of deg (fi). The density den fi(x1, x2, ..., xn) is its number of 
monomial terms. We define density den(F) of F as maximal value of den (fi),  i = 1,  2, ...,  n and 
identify endomorphism F with the tuple (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn)).
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The image Im F’ is isomorphic to Km for some m, n≥m. We can treat F’ as surjective map of Kn 

onto Km.
We say that piece of information  T  is  trapdoor accelerator of surjective nonlinear polynomial 

map F’ of K n onto Km, n≥m if the knowledge of T allows to compute a reimage of given element 
bϵKm in a polynomial time.

New multivariate cryptosystem “TUOV: Triangular Unbalanced Oil and Vinegar” was officially 
submitted  to  NIST  recently  see  https://csrc.nist.gov/csrc/media/Projects/pqc-digsig/documents 
/round-1/spec-files/TUOV-spec-web.pdf). It is based on the quadratic map defined over finite fields 
with the trapdoor accelerator.

He hopes that this is the example of one way function, i.e. the reimage of this quadratic map is  
not possible to compute in a polynomial time without the knowledge of given trapdoor accelerator.

As you know the existence of one way function is not proven. Anyway there is a chance of  
NIST certification of TOUV as first representative from the class of Multivariate Public Keys.

As you know Multivariate cryptography uses the  gap between linearity and nonlinearity.  We 
know that the system of linear equations written over the field F can be solved in time O(n3) via 
Jordan-Gauss elimination method. 

The complexity of solving a nonlinear system of constant degree d, d>1 is subexponential.
Despite the convenience of Groebner basis method for the implementation the complexity of 

this  algorithm  is  equivalent  to  old  Gauss  elimination  method  for  solution  of  the  system  of 
nonlinear equation.

Recall that the standard way to transform of nonlinear system of equation of degree d, d>2 to an 
equivalent quadratic  system  via  introduction  of  additional  variables  and  substitutions  is  well 
known [19].

So if we have a nonlinear map F of bounded degree d in “general position” which has a trapdoor 
accelerator T then corresponding cryptosystem is secure. This status is insure the fact that  F is 
given as one way function i.e. reimage of F is impossible to compute in a polynomial time without 
knowledge of the secret T.

The map  F is not in “general position” if some additional specific information is known. For 
instance, if F is bijective cubic map and F-1 is also cubic. Then public user can generate O(n3) pairs of 
kind plaintext p/corresponding ciphertext c and approximate inverse map in time O(n10).

Known computer  tests  and cryptanalytic  methods are  attempts  to  justify that  map  F is  “in 
general position”. Noteworthy that the existence of one way function is not proven yet even under  
the main complexity conjecture that P≠NP.

Note that the investigation of nonlinear systems of equations over the commutative ring K with 
zero divisors is essentially harder case in comparison the case of a field. 

Multivariate  Cryptography over  rings  with  zero  divisors  can be  an interesting  direction of  
cryptographic research.

2.2. Linguistic graphs and multivariate maps over commutative rings 

Below we present  the  method of  construction  of  nonlinear  representatives  of  affine  Cremona 
semigroup End K[x1, x2,..., xn] where K is a finite commutative ring. 

The incidence structure is the set V with the partition sets P (points) and L (lines) and symmetric 
binary relation I such that the incidence of two elements implies that one of them is a point and 
another one is a line. We shall identify I with the simple graph of this incidence relation which is of 
course a bipartite graph. The pair  x, y, x ϵ P, yϵ L such that  x I y is called a flag of incidence 
structure I.
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Let K be a finite commutative ring with the unity. We refer to an incidence structure with a point 
set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as linguistic incidence structure Im if point x = (x1, x2, 
…, xs, xs+1, xs+2, …, xs+m) is incident to line y = [y1, y2, …, yr, yr+1,yr+2, …, yr+s] if and only if the following 
relations hold 

a1xs+1-b1yr+1 = f1(x1, x2, …, xs, y1, y2, …, yr),
a2xs+2-b2yr+2 = f2(x1, x2, …, xs, xs+1, xs+1, y1, y2, …, yr, yr+1),
…
amxs+m-bmyr+m = fm(x1,x2,… ,xs, xs+1, …, xs+m-1, y1, y2, …, yr, yr+1, …,yr+m-1) 

(1)

where  aj, and  bj,  j = 1,  2,  …,  m are not  zero divisors,  and  fj are multivariate  polynomials  with 
coefficients from K [20, 21]. Brackets and parenthesis allow us to distinguish points from lines.

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is defined as projection of an element 
(x) (respectively [y]) from a free module on its initial s (relatively r) coordinates. As it follows from 
the definition of linguistic incidence structure for each vertex of the incidence graph there exists a 
unique neighbour of a chosen colour.

We refer to ρ((x)) = (x1, x2, …, xs) for (x) = (x1, x2, …, xs+m) and ρ([y]) = (y1, y2, …, yr) for [y] = [y1, y2, 
…, yr+m] as the colour of the point and the colour of the line respectively. For each bϵKr and p = (p1, 
p2, …,ps+m) there is a unique neighbour of the point [l] = Nb(p) with the colour b. Similarly for each 
cϵKs and line l = [l1, l2, …, lr+m] there is a unique neighbour of the line (p) = Nc([l]) with the colour c. 
The triples of parameters s, r, m defines type of linguistic graph.

Let Ja(v) stands for the operator of change colour of vertex v (point or line) for a = (a1, a2, ..., at) 
where t=s or t=r.

We consider also linguistic incidence structures defined by infinite number of equations. Let  
I(K) and I’(K’) be two linguistic graphs of the same type (s, r, m) with governing polynomials fi and 
f’i written  in  their  standard  forms.  We  refer  to  them as  symbolically  equivalent  structures  if 
monomial terms of fi and f’i for each i are the same up to their nonzero coefficients.

We refer to  family  I(K)t,  t = 1,  2,  ... of  symbolically equivalent  linguistic  graphs as  temporal 
linguistic graph.

Algorithm 1.2. (Generation of multivariate map F with the trapdoor accelerator [22])
Let us consider linguistic graph mIs,r(K) given by equations (1) of type s, r, m, s ≥r together with 

graph mIs,r(R) where R is the commutative ring of multivariate polynomials K[z1, z2, ..., zs, zs+1, zs+2, ..., 
zs+m] given by the same equations (1) with coefficients from K but with variables xi, yj  from R.  So 
infinite graph mIs,r(R) has the point set Rs+m and the line set Rr+m.

Let us conduct the following symbolic computation. We consider the special point z = (z) = (z1, 
z2, ..., zs, zs+1, zs+2, ..., zs+m) which coordinates are variables, positive integer l and colours a(1), a(2), ..., 
a(l), b(1), b(2), ..., b(l) and c such that a(1), a(3), ..., a(l), b(2), b(4), ..., b(l-1) ϵ K[z1, z2, ..., zs]s, elements 
a(2), a(4), ..., a(l-1), b(1), b(3), ..., b(l)ϵK[z1, z2, ..., xs]r.

So,  we  compute  recurrently  v1 = Ja(1)(z),  u1 = Nb(1)(v1),  v2 = Ja(2)(u1), u2 = Nb(2)(v2),  ...,  vl = Ja(l)(ul-1), 
ul = Nb(l)(vl) and finally Jc(ul) = v. If l is odd then v = (f1, f2, ..., fr, f1+r, f2+r, ..., fm+r). Thus we construct the 
map F = F(a(1), a(2), ..., a(l), b(1), b(2), ..., b(l), c) from Ks+m to Kr+m sending the tuple (z1, z2, ..., zs, xs+1, 
xs+2, ..., xs+m) to (f1, f2, ..., fr, fr+1, fr+2, ..., fr+m). In the case of even k we construct the transformation 
F = F(a(1), a(2), ..., a(l), b(1), b(2), ..., b(l), c) of Ks+m given by the tuple (f1, f2, ..., fs, f1+s, f2+s, ..., fm+s).

Note that fi, i = 1, 2, ..., s are elements of K[z1, z2, ..., zs] but fiϵK[z1, z2, ..., zs, z1+s, z2+s, ..., zm+s].
Assume that map L1 is an element of AGLs+m(K) and L2 is taken from AGLr+m(K) in the case of odd 

l and L2 ϵAGLs+m(K) if l is even. The bijective polynomial maps L1 and L2 have degree 1. Then we can 
compute the standard form of the map G=L1FL2.

Proposition 1.  2. [22]  Assume that constant l is odd the tuple  c defines surjective multivariate 
map C from Ks to K r with trapdoor accelerator T and parameters a(i), b(i) and c have degrees of size 
O(1). Then polynomial surjective map G from Ks+m to Kr+m has the trapdoor accelerator T’ which is the 
knowledge on l, a(i), b(i), i = 1, 2, ..., l, C, T, L1, L2 and equations (1).
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Remark 1.2. If K = Fq we can take the pair C, T defined by J. Ding and his team and get a new 
surjective map G from larger vector space with the trapdoor accelerator.
Proposition 2.2. [22] Assume that l is even or r = s and the tuple c defines bijective multivariate map 
C from Ks to Ks with trapdoor accelerator T. Assume that a(i), b(i), c are of size O(1). Then the map G is 
bijective, it has trapdoor accelerator T’ which is the knowledge on l, a(i),  b(i), i =1, 2, ..., l, C, T, L1, L2 

and equations (1).
Remark 2.2. Under the condition of Proposition 2 in the case of even l it could be that r>s.
Procedure 1.2 (reimage computation).
Alice gets the image e = (e1,  e2,  ...,  et,  et+1,  et+2,  ...,  et+m), t = r  or t = s  of the map  G. She creates 

intermediate vector (z1, z2, .., zs, zs+1, zs+2, ..., zs+m). Alice computes (L2)-1(e) = (d1, d2, ..., dt, dt+1, dt+2, ..., 
ds+m) = d. She investigates the system of equations  c1(z1, z2, ..., zs) = d1, c2(z1, z2, ..., zs) = d2, …, ct(z1, 
z2, ..., zs) = dt.  The knowledge of T  allows her to take some solution z1 = α1, z2 = α2, ...,  zs = αs. Alice 
calculates values β(i) = b(i)(α1, α2, ..., αs), γ(i) = a(i)(α1, α2, ..., αs), i = 1, 2, ..., l.

She  computes Jβ(l)(d) = vl,  Na(l)(vl) = ul, Jβ(l-1)(ul) = vl-1,  Na(l-1)(vl-1) = ul-1, …, Jβ(1)(u2) = v1, Na(l)(v1) = u1, 
Ja(u1) = u for a = (α1, α2, ..., αs).

Alice computes the reimage as (L1)-1(u).
Remark. 3.2. We can define  F = F(a(1), a(2), ..., a(l), b(1), b(2), ..., b(l), c) = F(a(1), a(2), ..., a(l), 

b(1), b(2), ..., b(l), c, I1, I2, ..., Il) in the case of temporal linguistic graph mIs,r(K)t via simple assumption 
that operators  Nb(j) of the algorithm are executed in the graph Ij (K[z1,  z2,  ...,  zs,  zs+1, zs+2,  ...,  zs+m]) 
formed as expansion of momentum graph Ij = mIs,r(K)j/t = j, j = 1, 2, ..., l. Proposition 1.1 and 2.2 hold 
for temporal graphs as well. 

To control the degrees and densities of F = F(a1, a2, ..., al, b1, b2, ..., bl, c) we need a special class of 
linguistic graphs over K.

Jordan-Gauss  graphs are  linguistic  graphs  given  by  special  quadratic  equations  over  the 
commutative ring K with unity such that the neighbour of each vertex is defined by the system of  
linear equation given in its row-echelon form [23–25].

Generalised  Double  Schubert  graph  DSs,r(K) (see  [22] and  [26]  and  further  references)  is  a 
bipartite graph with the points of kind (x) = (x1, x2, ..., xs, x11, x12, ..., xsr) and lines [y] = [y1, y2, ..., yr, 
y11, y12, …yst] such that point (x) is incident to [y] if and if the conditions

xij-yij = xiyj (2)
hold for i = 1, 2, ..., s and j = 1, 2, ..., r.

Temporal graph DSs,r(K)t is given by equations
i,jα(t)xij-i,jβ(t)yij = i,jγ(t)xiyj (2′)

where i,jα(t) and i,jβ(t) are elements of multiplicative group K* and i,jγ(t) are elements of K-{0}.
To form momentum graphs D1 = DSs,r(K)t/t = 1, D2 = DSs,r(K)t/t = 2, ... we can use pseudorandom or 

random sequences  of  elements  from K* or K-{0} respectively. For  the  constructions  genuinely 
random sequences Quantum Computer can be used.

Remark 4.2. Graph DSs,r(K),  K = Fq is  formed by  spaces  of  dimension s and  s+1 from two 
corresponding largest Schubert cells of projective geometry PGs+r(Fq). 

In fact many other temporal Jordan-Gauss graphs and their configurations the reader can find 
in  [27].  These  constructions  are  defined  in  terms  of  theory  of  Lie  Geometries  and  their 
generatisations [28–30].

Proposition 3.2. [22] Let us consider map introduced above map G = L1F(a(1), a(2), ..., a(l), b(1), 
b(2), ..., b(l), c, D1, D2, ..., Dl)L2 in the case of the temporal graph DS 

s,r(K)t. Assume that deg a(i)+deg 
b(i)≤d, deg c = d. Then degree of G = G(a(1), a(2), ..., a(l), b(1), b(2), ..., b(l), c) is d. 

In  the  case  of  d = 2,  3 we  can  use  this  construction  to  obfuscate  selected  multivariate 
cryptosystem  C, T. In particular we can take as  C, T  already mentioned quadratic cryptosystem 
TUOV (Triangular Unbalanced Oil and Vinegar cryptosystem). We can also introduce enveloping 
trapdoor accelerator for Matsumoto-Imai cryptosystem over finite fields of characteristic 2, for the 
Oil  and  Vinegar  public  keys  over  Fq.  Another  quadratic  multivariate  public  keys  defined over 
Jordan-Gauss graphs  D(n, K),  where  K is  arbitrary finite commutative ring with the nontrivial 
multiplicative  group.  It  gives  us  the  option  to  use  Proposition  3.2  in  the  case  of  arbitrary 
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commutative ring K [24, 31]. We can obfuscate presented above constructions of multivariate maps 
of degree d with the trapdoor accelerator T below via deleting of some coordinates of points and 
lines  with  double  indexes  together  with  corresponding  equations.  It  will  give  us  examples  of 
multivariate maps of prescribed degree with the trapdoor accelerator on arbitrary free module Kn. 
Instead of generalised Schubert graph DSs,r(K) with points of kind (x) = (x1, x2, ..., xs, x11, x12, ..., xsr) 
and lines [y] = [y1, y2, ..., yr, y11, y12, …, yst] we consider homomorphic image QDSs,r(K)  where Q is 
selected proper subset of Cartesian product of {1,2, …, s} = N and [1, 2, …, r} = M. We assume that 
r = O(s), the projection (i, j) → i maps Q onto N and the projection (i, j) → j maps Q onto M. Let 
Q = {α(1), α(2), ..., α(m)} where m = O(st), 1≤t≤2. Then partition sets of QDSs,r(K) are affine space Ks+m 

and Kr+m. We consider the map QF = QF(a1, a2, ..., al, b1, b2, ..., bl, c) obtained in the case of linguistic 
graph QDSs,r(K). We also consider QG as L1

QFL2 where L1 and L2 are bijective affine transformations of 
partition sets of  QDSn,k(K).  We refer to graphs QDSs,r(K) as Truncated Schubert Graphs and consider 
their temporal analogous QDSs,r(K)t introduced via the deletion of coordinates indexed by elements 
of N∙M-Q and corresponding equations from the system (2′).
Let D1 = DSs,r(K)t/t = 1,D2 = DSs,r(K)t/t = 2, ... stands for the momentum graphs of QDSs,r(K)t .

Proposition 3’.2. [22] Let us consider map introduced above map G = L1F(a(1), a(2), ..., a(l), b(1), 
b(2), ..., b(l), c, D1, D2, ..., Dl)L2 in the case of the temporal graph QDS 

s,r(K)t. Assume that deg a(i)+deg 
b(i)≤d, deg c = d. Then degree of G = G(a(1, a2, ..., al, b1, b2, ..., bl, c, D1, D2, ..., Dl) is d.

Corollary.  Formulated above proposition allows us to construct multivariate bijective map G of 
prescribed degree d, d≥2 with the trapdoor accelerator on arbitrary affine space Kn.

We can use the construction of Proposition 3’ iteratively.
Example 1.2. Let us select finite commutative ring K and positive numbers s, m(1), m(2), ... to 

generate the sequence of bijective maps of prescribed degree  d on Ks+m(1),  Ks+m(1)+m(2),  ...  with the 
trapdoor accelerators.

1 step. We use Proposition 3’.2 in the case of selected d, temporal Jordan-Gauss graph of type s, 
r, s+m(1) where  s+m(1)≤sr, l = l(1) is even, tuples a(1) = a(1, i), b(1) = b(1, i) satisfy the condition of 
the statement and c = (c1, c2,.., cs) has degree 1 and the map C of kind zi → ci(z1, z2, ..., zs), i = 1, 2, ..., l 
is an element of AGLs(K). Let the standard form G1 from s+m(1)CG(K) with the corresponding trapdoor 
accelerator T1 be the output of the procedure.

2 step and iteration.  We use Proposition 3’.2 in the case of Jordan graph of type s+m(1), r(1), 
s+m(1)+m(2) where s+m(1)+m(2) ≤(s+m(1))r(1), l = l(2) is even, a(i) and b(i) satisfy the condition of 
the statement and  c coincides with the tuple g(1) = (G1(z1), G1(z2), ...,  G1(zs+m(1))).  Let the standard 
form of G2 and  its  trapdoor accelerator T2 be  the  output  of  Step  2.  Notice  that  the  piece  of 
information T2 is an expansion of T1.

We use the tuple  c = g(2) = (G2(z1),  G2(z2),  ...,  G2(zs+m(1)+m(2))) and Proposition 3’ to generate the 
transformation G3 of affine space Ks+m(1)+m(2)+m(3) with the trapdoor accelerator T3 expanding T2. If we 
use k  as total number of steps, then the continuation of this recurrent procedure of generating 
tuples  g(3),  g(4),  ...,  g(k-1) via  free  selection  of  even  parameters  l(3),  l(4),  ...,  l(k) gives  the 
transformation Gk_of degree d on the affine space of dimension s+m(1)+m(2)+...+m(k) together with 
the trapdoor accelerator Tk.

Procedure 2.2 (reimage computation for (Gk, Tk)).
Assume that Gj = jL1Fj jL2, j = 1,2, ..., k and Fj=F(a(1, j), a(2, j), ..., a(l(j), j), b(1, j), b(2, j), ..., b(l(j),j), 

g(j-1), jD1, jD2, ..., jDl(j)) acting on the affine space jW of dimension s+m(1)+m(2)+...+m(j) = n(j).
Alice  obtained  the  ciphertext  0c = (0c1,  0c2,  ...,  0cn(k)).  She  computes kL2

-1(0c) = kc  and  takes  its 
projection kc’ on the first n(k-1) coordinates.

Alice  computes k-1L2
-1(kc’) = k-1c  and  takes  its  projection k-1c’  on  first n(k-2)  coordinates. She 

continue this procedure and gets the tuple 1c = (b1, b2, ..., bs, bs+1, bs+2, ..., bs+m(1)) and 1c’=(b1, b2, ..., bs).
Alice forms the intermediate tuple (z1, z2, ..., zs) and investigates the system of linear equations 

c1(z1, z2, ..., zs) = b1, c2(z1, z2, ..., zs) = b2, ..., cs(z1, z2, ..., zs) = bs.  She gets the solution z1 = α1, z2 = α2, …, 
zs = αs. Alice computes tuples a*(i, 1) = a(1, 1)(α1, α2, ..., αs), b*(i, 1) = b(1, 1)(α1,α2, ..., αs), i = 1, 2, ..., l(1) 
with coordinates from K.
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Alice takes graph 
1Dl(1) and computes d(l(1)) = Jb*(l(1),1)(1c).  She takes the neighbour d’(l(1) = Na*(l(1)),1) 

(d(l(1)) of the point d(l(1) of colour a*(l(1), 1). Alice treats the tuple d’(l(1)) as the line of graph 1Dl(1). 
She  computes Jb*(l(1)-1),1)  (d’(l(1)) = d(l(1)-1)  and  its  neighbour d’(l(1)-1) = Na*(l(1)-1),1)  (d(l(1)-1).  Alice 
continue this process and gets d’(1) = Na*(1,1) (d(1)) in the graph 1D1. So she gets e(1) = Jγ(d’(1)), γ = (α1, 
α2, ..., αs).

The tuple (1L1)-1(e(1)) = r(1)  is the solution of the equation L1F1(z1, z2, zs, zs+1, ..., zs+m(1)) = 1c=1(L2)-

1(2c’) which is equivalent to G1(z1, z2, zs, zs+1, ..., zs+m(1)) = 2c’.
Alice considers the equation 2L1F2(z1, z2, ..., zs, zs+1, ..., zs+m(1), zs+m(1)+1, ..., Zs+m(1)+m(2)) = 2c = 2L2(3c’). The 

first s+m(1) equations of this system are equivalent to  L1F1(z1, z2, ...,  zs+m(1)) = 1c  with the solution 
γ(1) = (1α1, 1α2, …, 1αs+m(1)).

Alice computes the specializations a*(1, 2), a*(2, 2), ..., a*(l(2), 2), b*(1, 2), b*(2, 2), ..., b*(l(2), 2) of 
a(1, 2),  a(2, 2),  ...,  a(l(2),  2),  b(1, 2),  b(2, 2),  ...,  b(l(2),  2) under the substitution z1 = 1α1,  z2 = 1α2,  …, 
zs+m(1) = 1αs+m(1).

She computes the point d(l(2)) = Jb*(2,  l(2))(2c)  and line  d’(l(2)) = Na*(2,  l(2))(d(l(2)))  of the graph 2Dl(2), 

computes d(l(2)-1) = Jb*(2,  l(2)-1)(d’(l(2))  and vertex d’(l(2)-1) = Na*(2,  l(2)-1)(d(l(2)-1))  of the graph 2Dl(2)-1. 
Alice continue this process and gets d’(1) = Na*(2,1) (d(1)) in the graph 2D1. So she gets e(1) = Jγ(1)(d’(1)) 
in this graph.

The tuple (2L1)-1(e(1)) = γ(2) is the solution of the  equation 2L1F2(z1, z2, zs, zs+1, ..., zs+m(1), zs+m(1)+1, ..., 

zs+m(1)+m(2)) = 2c = 1(L2)-1(3c’) which is equivalent to G2(z1, z2, zs, zs+1, ..., zs+m(1)+m(2)) = 3c’.

Alice continue this recurrent process and gets the solution  γ(k) of the equation  Gk(z1,  z2,  zs, 
zs+1, ..., zs+m(1)+m(2)+...+m(k)) = 0c.

Example 2.2. Let us select finite commutative ring K and positive numbers s, r, s≥r, m(1), m(2), 
... to generate the sequence of bijective maps of prescribed degree d from Ks+m(1) onto Kr+m(1), from 
Ks+m(1)+m(2) onto Kr+m(1)+m(2), ... with the trapdoor accelerators. We will use Proposition 3’ several times 
in the case of odd parameter l. 

1 step. We use Proposition 3’ in the case of selected d, temporal Jordan-Gauss graph of type s, r, 
m(1)  where s≤m(1)≤ sr, l = l(1) is odd, tuples a(i), b(i)  satisfy the condition of the statement and 
c = (c1, c2, ..., cs) has degree 1 and the map C: (z1, z2, ..., zs) → (c1(z1, z2, ..., zs), c2(z1, z2, ..., zs), …, cr(z1, 
z2, ..., zs) is surjective. We can assume that linear expressions c1, c2, ..., cr are written in a row echelon 
form.

Let  the  standard  form the  map G1 from Ks+m(1)onto Kr+m(1)) with  the  corresponding  trapdoor 
accelerator T1 be the output of this step.

2 step and iteration. We use Proposition 3’ in the case of Jordan graph of type s+m(1), r(1)+m(1), 
m(1)+m(2) where s+m(1)+m(2)≤(s+m(1))(r(1)+m(1), l = l(2) is odd, a(i) and b(i) satisfy the condition 
of the statement and c coincides with the tuple g(1) = (G1(z1), G1(z2), ..., G1(zr+m(1))). Let the standard 
form of G2 and  its  trapdoor accelerator T2 be  the  output  of  Step  2.  Notice  that  the  piece  of 
information T2 is an expansion of T1.

We use the tuple c = g(2) = (G2(z1), G2(z2), ..., G2(zr+m(1)+m(2))) and Proposition 3’ to generate the map 
G3 of affine space Ks+m(1)+m(2)+m(3) onto Kr+m(1)+m(2)+m(3) with the trapdoor accelerator T3 expanding T2. If 
we use k as total number of steps, then the continuation of this recurrent procedure of generating 
tuples g(3), g(4), ..., g(k-1) via free selection of odd parameters l(3), l(4), ..., l(k) gives the standard 
form of the map Gk_of degree d from the affine space of dimension s+m(1)+m(2)+...+m(k) onto free 
module of dimension r+m(1)+m(2)+...+m(k) together with the trapdoor accelerator Tk.

The procedure of reimage computation of Gk is similar to the case of Example 1.2.
Remark 4. 2. (nonlinear disturbance). In both examples instead of linear map C any nonlinear 

surjective map H of degree at most d with the trapdoor accelerator can be used. In particular one 
can use quadratic transformations of arbitrary free module  Kn presented in [24] and  [31]. In the 
case  of  Example  2.  In  case  of  finite  field  many  classical  broken  or  unbroken  multivariate 
cryptosystem can be used (see [32] and further references).
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3. On the multivariate maps of prescribed density with the trapdoor 
accelerator

Let Assume that commutative ring K contains nontrivial multiplicative group K*. Let us consider 
the totality nES(K) of endomorphisms of K[z1, z2,..., zn] of kind

z1 → q1z1 a(1,1) z2 a(1,2) … zn a(1,n),
z2 → q2z1 a(2,1) z2 a(2,2) … zn a(2,n),
…zn → qnz1 a(n,1) z2 a(n,2) … zn a(n,n) (3)

where qi are regular elements of finite commutative ring K with the unity. 
It is easy to see that the complexity of the composition of two elements of kind (3) is O(n3).
The semigroup nES(K) acts naturally on (K*)n and contains large subgroup nEG(K) of bijective 

transformations of the variety [1].
Recall that we define density den (f) of element f from K[z1, z2, ..., zn] written in its standard form 

as its number of monomial terms. The density of the tuple H(z1, z2, ..., zn) is defined as maximum of 
den(hi), i = 1,2, ..., m.

The following statements are proven in [22].
Proposition 1. 3. Let us consider map introduced above map F = F(a(1), a(2), ..., a(l), b(1), b(2), ..., 

b(l), c, D1, D2, ..., Dl) in the case of the temporal graph QDSs,r(K)t where K is a commutative ring with 
nontrivial multiplicative group K*. Assume that the densities of a(i), b(i) and c are of size O(sα(i)), 
O(sβ(i)) and O(sγ) such that 0≤α(i)+β(i)≤d and γ≤d for some d, d≥0. Then den F has size O(sd).

Remark 1.3. Parameter d can be selected as a rational number.
Corollary 1.3. Let s = r or l is even, r = O(s), m = O(sμ), 1≤μ≤2, H be an element of s+mES(K) and 

LϵAGLs+m  (K) and  F satisfies  conditions  of  Proposition  1.3.  Then  the  density  of  standard  form of 
G = HFL is O(sd+μ) = O((s+m)d/μ+1).

Remark 2.3. We can select L of density O(1) or density O(mλ), 0≤λ≤1. The simplest case is of 
kind zi → diiżi+dii+1żi+1+…+dis+mżi+sm, i = 1, 2, …, m+s. Then the density of the map is O((s+m)d/μ+λ).

Corollary  2.3. Assume  that  conditions  of  Corollary  1.3  holds  and C = EN, where EϵsEG(K), 
NϵsCG(K). Then G induces an injective map of (K*)s+m into (K)s+m.

Let Ms(K) = GLs(K)∩sES(K) be the monomial group of linear transformations.
Corollary 3.3. Assume that conditions of Proposition 1.3 hold and
HϵMs+m (K) and CϵsCG(K). Then G is a bijective map of Ks+m onto itself.
Formulated above statements allow us to construct element G of  nCG(K) of unbounded degree 

and prescribed density d, d≥O(n) with the trapdoor accelerator.
We define multiplicative trapdoor accelerator (F, T) of F which is the map of density d such that 

its restriction F’ on (K*)n is injective map and the knowledge of T allows to compute the reimage of 
F’ in a polynomial time.

Remark 3.3. We can construct multiplicative accelerators (F, T) where FϵnCS(K) has unbounded 
degree and prescribed density O(nd ), d≥0.

Algorithm  1.3.  Public  key  with  the  multivariate  map  G with  the  multiplicative  trapdoor 
accelerator. 

Alice select even parameter l of size O(1) and commutative ring K with nontrivial multiplicative 
group K*. Natural examples are finite field Fq or modular arithmetic Zq where q = 2 s, s>1.

She  selects  parameters  n and k = O(n) together  with  the  subset Q = {α(1), α(2),  ...,  α(m)} of 
Cartesian product of {1, 2, ..., n} and {1, 2, ..., k} of cardinality m, m = O(nμ) where 1≤μ≤2. Alice will 
work with graph QDSn,k(R)t, k = O(n), R = K[z1, z2, ..., zn, zα(1), zα(2), ..., zα(m)]. She selects parameter d and 
tuples of polynomials  a(1),  a(2),  ...,  a(l),  b(1),  b(2),  ..., b(l) with coordinates from  K[z1,  z2,  ...,  zn] 
satisfying conditions of Proposition 1.3, i.e. den(a(i)) has size O(s α(i)), 

den(b(i)) has size O(s β(i)) and α(i)+β(i) = d.
Alice forms the tuples ai, bi, i = 1, 2, ... l of with coordinates of kind q1z1 a(1,1) z2 a(1,2) … zn a(1,s)+q2z1 

a(2,1) z2 a(2,2) … zn a(2,n)+…+qrz1 a(r,1) z2 a(r,2) … zn a(r,n) where qi ≠ 0. 
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She selects the pair of E, E’ϵnEG(K) such that (EE’, (K*)n) and (E’E, (K*)s) are identity permutations.
The procedure 1 for this step is given below. She takes N of density O(1) from AGLn(K) and L 

from  AGLn+m(K) together  with H  and H’ from m+nEG(K) such  that HH’  and H’H are  identity 
transformations of (K*)s+m(1). Alice computes C=EN moving (z1, z2, ..., zn) to c = (c(1), c(2), ..., c(n)). 

She select parameters  i,jα(t)ϵK*,  i,jβ(t) and i,jγ(t) where t = 1, 2, ..., l, (i, j)ϵQ for construction of 
momentum Jordan-Gauss graphs D1, D2, ..., Dl of the temporary graph QDSs,k(K)t.

Alice  will  use Dj(K[z1,  z2,  ...,  zs, zα(1),  zα(2),  ...,  zα(m(1))]) which are special  momentum graphs  of 
QDSs,k(R)t defined by equations with coefficients from K but with the point set Rn+m and line set Rk+m.

She uses symbolic computation in the graph QDSn,k(R)t to construct the transformation F = F(a(1), 
a(2), ..., a(l), b(1), b(2), ..., b(l), c, D1, D2, ..., Dl) of Kn+m to itself. Alice uses Procedure 1 to form H from 
n+m EG(K).  She forms L from AGLn+m(K) of density O(mλ), λ≤1 and the element  G = HFL  of affine 
Cremona semigroup. She computes the standard form of  G and announces this multivariate rule 
publicly.

The standard form of G will be used as an encryption tool in the case of the space of plaintexts 
(K*)n+m. 

Alice generates the map via special walks on the graph. The degree of the map G is O(n+m). The 
density of the map is O(n+m) λ+d/μ.

Thus the complexity of encryption of computation of the image of (p1, p2,  ...,  pn+m)ϵ(K*)m+n is 
O(n+m)λ+d/μ+1.

Decryption procedure.
Public user Bob writes his plaintext p = (p1, p2, ..., pm+n) and sends the ciphertext s = G(p) to Alice.
Alice decrypts via the following procedure.
She computes  L-1(s) = (d1,  d2,  ...,  dn,  dα(1),  dα(2),  ...,  dα(m)) = d.  Alice creates intermediate tuple of 

variables (z1, z2, ..., zn, zα(1), zα(2), ..., zα(m)) consider the equations. She computes N-1(d1, d2, ..., dn) = (e1, e2, 
..., en) and considers the equations 

E(z1, z2,..., zn) = e1,
E(z1, z2,..., zn) = e2,
...,
E(z1, z2,..., zn) = en,
Alice uses E’ and gets the solution z1 = t1, z2 = t2, ..., zn = tn.
She computes a(i)(t1, t2, ..., tn) = a*i, i = 1, 2, ..., l, b(i)(t1, t2, ..., tn) = b*i, i = 1, 2, ..., l and writes the 

system of linear equations F = F(a*(1), a*(2), …, a*(l), b*(1), b*(2), ..., b*(l), d’)(t1, t2, ..., tn, zα(1), zα(2), ..., 
zα(m)) = d where d’ = (d1, d2, ..., dn).

This system is already written in row-echelon form.
So Alice gets the solution zα(1) = tα(1), zα(2) = tα(2),...,zα(m) = tα(m).
She forms t = (t1, t2, ..., tn, tα(1), tα(2), ..., tα(m)) and p as H’(t).
Procedure 1.3.  Let  K be a finite commutative ring with unity and nontrivial multiplicative 

group K* of order d>1. Assume that parameter n is selected and we have the task of generating two 
elements E and E’ of nEG(K) such that EE’ and E’E act on (K*)n as identity transformations.

We form the transformation J1 and J2 from nEG(K) of kind 
y1 = μ1x1

a(1,1)

y2 = μ2x1
a(2,1) x2

a(2,2) 

…
yn = μnx1

a(n,1) x2
a(n,2)

 … xn
a(n,n) 

where (a(1,1), d) = 1, (a(2, 2), d) = 1, …, (a(n, n), d) = 1,

z1 = μ’1y1
b(1,1) y2

b(1,2)
 … yn

b(1,n) 

z2 = μ’1y2
b(2,2) y2

b(2,3)
 … yn

b(2,n) 

…
zn = μ’nyn

b(n,n)

where (b(n,n), d) = 1, (b(n-1, 2), d) = 1, …, (b(1, n), d) = 1.
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The computation of inverses  J’1 and  J’2 of the transformations  J1 and  J2 of the variety  (K*) n is 
straightforward. So Alice computes E = J1J2 and E’ = J’2J’1.

Similarly, she constructs lower triangular and upper triangular bijective transformations  JG1 

and JG2 from (m+nES(K), (K*)m+n). 
So Alice computes H = GJ1 GJ2 and H’ = GJ’2 GJ’1.
In case d = 0 and λ = 0 when the density of a(i), b(i), and L are O(1)  we obtain a pseudolinear 

cryptosystem. Its complexity for the encryption is O(n+m)2.
In  the  case  of d/μ+λ<1  we  get  sub  quadratic  cryptosystem.  It  has  complexity  better  than 

O(n+m)3.
If d/μ+λ = 1 we obtain a pseudo quadratic cryptosystem. 
More general methods of generation of invertible elements of nES(K) can be found in [1].
The family of pseudo quadratic transformations with the trapdoor accelerators based on the 

modification DSn,k(K) in terms of generalisations of projective geometries was presented in [33].
Corollary 4.3. Let K be a commutative ring with nontrivial multiplicative group K*. Then for each 

natural n, n>2 we can construct a multivariate map of the prescribed density with the multiplicative 
trapdoor accelerator.

Recall that G = EQQL induces an injective map of (K*)n+m into Kn+m.
The standard form of G has the trapdoor accelerator Q, E, L, H, N, ai, bi, i = 1, 2, ..., l, T’. We assume 

that equations of DS(n, K) are known publicly.
Remark 4.3. Note that  the map with the trapdoor accelerator  of  polynomial  density  O(nd) 

where d, d ≥2 is a natural number can be obtained as the product of J1 and J2 of Procedure 1 and 
selected multivariate map F of degree d with the trapdoor accelerator T.

In [34] the first implementation of the scheme of the previous Remark 4.3 was presented in the  
case of F induced by the special walk on the Jordan-Gauss graphs D(n, K) and A(n, K) for the case 
when K = Fq, of characteristic 2. Recall that in [24] the special walks of odd length in the Jordan-
Gauss graphs D(n, K) of type 1, 1, n-1 were used for the generation of quadratic multivariate map F 
with the trapdoor accelerator.

In [35] the scheme of remark 4.3 was suggested for the graph-based encryption with D(n, K) and 
A(n, K) in the case of arithmetical rings Zm.

The point (p) = (p1, p2, …, pn) of the graph D(n, K) is incident with the line [l] = [l1, l2, …, ln], if the 
following relations between their coordinates hold:

l2-p2 = l1p1, l3-p3 = l2p1, l4-p4 = l1p2, li-pi = l1pi-2, li+1-pi+1 = li-1p1, li+2-pi+2 = lip1, li+3-pi+3=l1pi+1 where i≥5.
So the encryption scheme is the following. Let us take graph D(n, K[x1, x2, …, xn]), sequence of 

colors d(1)+x1,d(2)+ x1, …, d(k)+x1 where d(i) ϵK), k is a length of walk.
Then we have to take sequence x = (x1, x2, …, xn) (point from D(n, K[x1, x2, …, xn])), v1 = Nd(1)+x1(x), 

Nd(2)+x1(v1) = v2, Nd(k)+x1(vk-1) = v1.
Let F be the map x1 → v1(x1, x2, …, xn ),  x2 → v2(x1, x2, …, xn), …,  xn → vn(x1, x2, …, xn). Then deg 

F = 3.
We consider the map of kind G = J1J2L1FL2 where L1 and L2 are elements of AGLn(K).
In the case of linguistic graph A(n, K) we simply change the incidence condition between points 

and lines:
l2-p2 = l1p1, l3-p3 = p1l2,l4-p4 = l1p3, l5-p5 = p1l4, …
ln-pn = l1pn-1 (for even n) or ln-pn = p1ln-1 (for odd n).

Recently we implement the generating process  described above map G  in the case when  K is 
arithmetic ring Zq, q=232.

Let us denote G as G(n, k, K) in the case when the length of the sequence of colours d(1), d(2),…, 
d(k) has length  k.  We present time the total number  M(G) of monomial terms in all  gi (global 
density). We refer to parameter  k as the  length of the walk.  We can see the “condensed matter 
physics” digital effect. If k is “sufficiently large”, then M(g) is independent of k constant c. 

We  have  written  a  program  for  generating  elements  and  for  encrypting  a  text  using  the  
generated public  key.  The program is  written in  C++.  We use an average  PC with  processor  
Pentium 3.00 GHz, 2GB memory RAM, and system Windows 7. 
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We have implemented three cases:

1. L1 and L2 are identities.
2. L1 and L2 are maps of kind z1 → z1+a2z2+a3z3+ … +atzt, z2 → z2, z3 → z3, …, zn → zn, ai ≠ 0, i = 1, 

2, …, n (linear time of computing for L1 and L2).
3. L1 = Ax+b, L2 = A1x+b1; matrices A, A1 and vectors b, b1 have mostly nonzero elements.

Tables 1, 2, and 3 present the case of graphs D(n, K).
Tables 4. 5, and 6 corresponds to the case 2 of graph A(n, K).

Table 1
Number of monomial terms of the map induced by the graph D(n, Z2

32) case I 

n
length of the walk

16 32 64 128 256

16 152 152 152 152 152

32 559 560 560 560 560

64 1615 2143 2144 2144 2144

128 3727 6303 7977 8384 8384

Table 2
Number of monomial terms of the cubic map induced by the graph D(n, Z2

32), case II

n
length of the walk

16 32 64 128 256

16 6118 6118 6118 6118 6118

32 76447 76448 76448 76448 76448

64 813949 1066557 1066606 1066606 1066606

128 7373743 11418905 14820693 15857411 15858485

Table 3
Number of monomial terms of the map induced by the graph D(n, Z2

32), case III

n
length of the walk

16 32 64 128 256

16 15504 15504 15504 15504 15504

32 209440 209440 209440 209440 209440

64 3065920 3065920 3065920 3065920 3065920

128 46866559 46866560 46866560 46866560 46866560
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Table 4
Number of monomial terms of the map induced by the graph A(n, Z2

32), case I

n
length of the walk

16 32 64 128 256

16 257 257 257 257 257

32 785 1025 1025 1025 1025

64 1841 3105 3849 4097 4097

128 3953 7265 9578 13681 15992

Table 5
Number of monomial terms of the map induced by the graph graph A(n, Z2

32) case II

n
length of the walk

16 32 64 128 256

16 8840 8840 8840 8840 8840

32 94087 113168 113168 113168 113168

64 868811 1309887 1549061 1599519 1599520

128 7380170 11986066 17063985 19410643 22875533

Table 6
Number of monomial terms of the map induced by the graph A(n, Z2

32), case III

n
length of the walk

16 32 64 128 256

16 15504 15504 15504 15504 15504

32 209440 209440 209440 209440 209440

64 3065920 3065920 3065920 3065920 3065920

128 46866560 46866560 46866560 46866560 46866560

Tables confirm that in Cases 2 and 3 we have multivariate transformations of density  O(n3) and 
global O(n4). So, the encryption process for this map of unbounded degree takes O(n5).

Similarly to Example 1 we can use Proposition 4 iteratively.
Example 1.3.  Alice selects finite commutative ring K  and positive number s  and prescribed 

degree d.
Step 1. Alice selects even parameter l = l(1) of size O(1) and the degree d(1) of the initial map and 

parameter μ(1), 1≤μ(1)≤2.
She takes parameter  k = O(s) together with the subset Q = {α(1), α(2), ..., α(m(1))} of Cartesian 

product of  {1, 2, ..., s} and {1, 2, ..., k} of cardinality m(1), m(1) = O(sμ(1)) where 1≤μ(1)≤2. Alice will 
work with graph QDSs,k(R) t,  k = O(s),  R = K[z1,  z2,  ...,  zs, zα(1),  zα(2),  ...,  zα(m(1))]. She selects  tuples of 
polynomials  a(1) = a(1,  1),  a(2) = a(1,  2),  ...,  a(l) = a(1,  l), b(1,  1),  b(1,  2),  ..., b(1,  l),  l = l(1) with 
coordinates from K[z1, z2, ..., zs] satisfying conditions of Proposition 4, i.e. 

deg (a(i)) = α(i), deg b(i) = β(i) and α(i)+β(i) = d(1).
Alice forms the tuples ai, bi, i = 1, 2, .... l of with coordinates of kind q1z1 a(1,1) z2 a(1,2) … zs a(1,s) +q2z1 a(2,1) 

z2 a(2,2) … zs a(2,s)+…+qrz1 a(r,1) z2 a(r,2) … zs a(r,s) where qi ≠ 0. 
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She  selects  the  pair  of E,  E’ϵsEG(K)  such  that (EE’,  (K*)s) and  (E’E,  (K*)s) are  identity 
permutations. She takes  N of density  O(1) from  AGLs(K) and  L of density  O(1) from  AGLs+m(1)(K) 
together  with H = H1 and H’ = H’1 from m(1)+sEG(K) such  that HH’  and H’H are  identity 
transformations of (K*)s+m(1). Alice computes C = EN moving (z1, z2, ..., zs) to c = (c(1), c(2),..., c(s)). 
She selects parameters i,jα1(t)ϵK*, i,jβ1(t) and i,jγ1(t) where t = 1, 2, ..., l(1), (i, j)ϵQ for the construction 
of momentum Jordan-Gauss graphs 1D1, 1D2, ..., 1Dl of the temporary graph QDSs,k(K)t.

Alice  will  use 1Dj(K[z1,  z2,  ...,  zs, zα(1),  zα(2),  ...,  zα(m(1))])  which are special  momentum graphs of 
QDSs,k(R)t,  R = K[z1,  z2,  ...,  zs, zα(1),  zα(2),  ...,  zα(m(1))])  defined  by  equations  of  1D1,  1D2, ...,  1Dl with 
coefficients from K but with the point set Rs+m(1) and line set Rk+m(1).

She  uses  symbolic  computation  in  the  graph  QDSs,k(R) t to  construct the  transformation 
F = F1 = F(a(1, 1), a(1, 2), ..., a(1, l(1)), b(1, 1), b(1, 2), ..., b(1, l), c, 1D1, 1D2, ..., 1Dl(1)) of Ks+m(1). She already 
formed L = L1 from AGLs+m(1)(K) of density O(1). Alice computes the element  G1=H1F1L1 of affine 
Cremona  semigroup.  She  computes  the  standard  form  of  G1.  The  degree  of  the  map G1 is 
O(s+m(1)).The  density  of  the  map  is O(s+m(1))d(1)/μ(1). The  trapdoor  accelerator T1 consist  of Q, 
equations  of QDSs,k(K),  tuples a(1),  a(2), ...,  a(l),  b(1),  b(2), ...,  b(l) and  momentum  graphs, 
transformations E, N and H1, L1. 

Step 2 and the iteration.
Alice  selects  parameter  k(1) = O(s+m(1)) and  positive  integer  s+m(1)≤m(2)≤s+m(k)k(1), even 

parameter  l(2) and constants  d(2), d(2)≥d(1)/μ(1) and μ(2) where  1≤μ(2)≤2. She selects the subset 
Q(1) = {α(1, 1), α(1, 2), ..., α(1, m(2))} of Cartesian product of  {1, 2, ..., s+m(1)} and {1, 2, ..., k(1)} of 
cardinality m(2), m(2) = O((s+m(1))μ(2)). Alice will work with graph Q(1)DSs+m(1),k(1)(R)t,  R = K[z1, z2, ..., 
zs+m(1), zα(1,1),  zα(1, 2),  ..., zα(1, m(2))]. She selects parameters to create momentum graphs 2D1, 2D2, ..., 2Dl(2) of 
the temporary graph Q(1)DSs+m(1),k(1)(K)t.

Alice will use 2Dj(K[z1, z2, ..., zs+m(1), zα(1, 1), zα(1, 2), ..., zα(1, m(2))]),
J = 1, 2, ..., l(2) which are special momentum graphs of QDSs+m(1), k(1)(R)t, R = K[z1, z2, ..., zs, zα(1), zα(2), 

..., zα(m(1))]) defined by equations of 2D1,  2D2, ...,  2Dl(2) with coefficients from K but with the point set 
Rs+m(1)+m(2) and line set Rk(1)+m(1+)m(2).

She selects tuples a(2, 1), a(2, 2), ..., a(2, l(2)), b(2, 1), b(2, 2), ..., b(2, l(2)) with coordinates from 
K[z1, z2, ..., zs+m(1)] such that den (a(2, i)b(2, i)) = O((s+m(1))d(2)).  Alice constructs the transformation 
F2 = F(a(2, 1), a(2, 2), ..., a(2, l(2)), b(2, 1), b(2, 2), ..., b(2, l(2)), g(1), 2D1, 2D2, ..., 2Dl(2)) of Ks+m(1)+m(2) where 
g1 is the tuple  (G1(z1),  G1(z2), ..., G1(zs+m(1)). She selects the pair of H2,  H2’ϵs+m(1)+m(2)EG(K)  such that 
(H2H2’, (K*)s+m(1)+m(2)) is identity permutations. 

She selects L = L2 from AGLs+m(1)+m(2)(K) of density O(1) and forms
G2=H2F2L2.

The  density  of  the  standard  form  of  the  map  G2 will  be  determined  as  O((s+m(1))d(2)) or 
O((s+m(1)+m(2))d(2)/μ(2)).The map G2 has a multiplicative trapdoor accelerator T2 which is extension of 
T1 via adding Q(1) of cardinality m(2), parameters k(1), l(2) equations of Q(1)DSs+m(1), k(1)  (K),  tuples 
a(2.1),  a(2,  2), ...,  a(2,  l(2)),  b(2,  1),  b(2, 2), ...,  b(2,  l(2)), momentum graphs  2D1,  2D2, ...,  2Dl(2) and 
transformations H2, H2’, L2. 

Alice takes parameters d(3), d(3)≥d(2)/μ(2), μ(3), 1≤μ(3))≤2, k(2) of size O(s+m(1)+m(2)) and m(3) 
of  size O(  (s+m(1)+m(2))μ(3) such  that s+m(1)+m(2)≤m(3)≤(s+m(1)+m(2))k(2). She  takes  even 
parameter l(3) and selects subset Q(2) = { α(2, 1), α(2, 2), ..., α(2, m(3))} of Cartesian product of {1, 2, 
..., s+m(1)+m(2)} and {1, 2, ..., k(2)}.

Alice will work with graph Q(2)DSs+m(1)+m(2),k(2)(R)t, R = K[z1, z2, ..., zs+m(1)+m(2), zα(2,1), zα(2, 2), ..., zα(2, m(3))]. She 
selects  parameters  to  create  momentum  graphs  3D1,  3D2, ...,  3Dl(3) of  the  temporary  graph 
Q(2)DSs+m(1)+m(2), k(2)(K)t.

Alice forms tuples a(3, 1), a(3, 2), ..., a(3, l(3)), b(3, 1), b(3, 2), ..., b(3, l(3)) with coordinates from 
K[z1, z2, ..., zs+m(1)+m(2)  ] such that  den (a(3, i)b(3, i)) = O((s+m(1)+m(2)+m(3))d(3). Alice constructs the 
transformation F3 = F(a(3, 1), a(3, 2), ..., a(3, l(3)), b(3, 1), b(3, 2), ..., b(3, l(3)), g(2), 3D1, 3D2, ..., 3Dl(3)) of 
Ks+m(1)+m(2)+m(3) where g(2) is the tuple (G2(z1), G2(z2), ..., G2(zs+m(1)+m(2)).
She  selects  the  pair  of H3,  H3’ϵs+m(1)+m(2)+m(3)EG(K)  such  that (H3H3’, (K*)s+m(1)+m(2)+m(3)) is  identity 
permutation. 
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She selects L = L3 from AGLs+m(1)+m(2)+m(3)(K) of density O(1) and forms G3 = H3F3L3.
The density of the standard form of the map  G3 will be determined as  O((s+m(1)+m(2) d(3)) or 

O((s+m(1)+m(2)+m(3)) d(3)/μ(3)). The map G3 has a  multiplicative  trapdoor accelerator  T3 which is 
extension  of T2 via  adding Q(2)  of cardinality m(3), parameters k(2),  l(3), equations  of 
Q(2)DSs+m(1)+m(2) ,k(2) (K), tuples a(3, 1), a(3, 2), ..., a(3, l(2)), b(3, 1), b(3, 2), ..., b(3, l(3)), momentum graphs 
3D1, 3D2, ..., 3Dl(3) and transformations H3, H3’, L3.

Alice continues the iterative process. She creates G4, G5, ..., Gr of the densities of kind O(n(i)) β(i), 
i = 4, 5, ...,  r where  n(i) is the dimension of the space of ciphertexts and β(i) = d(i)/μ(i) with the 
multiplicative trapdoor accelerators Ti, i =4, 5, ..., r respectively.

So the final map Gr of Ks+m(1)+m(2)+…+m(r) to itself with the multiplicative trapdoor accelerator Tr has 
a polynomial density.

Recall  that d(i)≥d(i-1)/μ(i-1) for i = 2,  3, ...,  r.  In  the  case  when  these inequalities  become 
equalities d(r)/μ (r) = d(1)/(μ(1)μ(2)μ(3) ... μ(r)).

Alice can select d(1) = 0 when Gr has density O(1). Then the output will be a pseudolinear map. 
The choice of small parameter d(1) will allow her to get sub quadratic map of the density O(nλ) with 
arbitrarily selected λ, λ<1. Obviously, Alice can create the map Gr  of prescribed density O(nd) with 
the multiplicative trapdoor accelerator.

Note that Alice can take Gr L where L has degree 1 and density O(n) and use the standard form 
of transformation of density O(nd+1) with the multiplicative trapdoor accelerator.

Procedure 1.3.  (reimage computation for  (Gr,  Tr)). Assume that Gj = HjFjLj,  j = 1,  2,  ...,  r and 
Fj = F(a(1, j), a(2, j), ..., a(l(j), j), b(1, j), b(2, j), ..., b(l(j),j), g(j-1),  jD1,  jD2, ...,  jDl(j)) acting on the affine 
space jW of dimension s+m(1)+m(2)+...+m(j) = n(j).

Alice  obtained  the  ciphertext  0c = (0c1,  0c2,  ...,  0cn(r)).  She  computes Lr
-1(0c) = rc  and  takes  its 

projection rc’ on the first n(r-1) coordinates. 
Alice computes Lr-1

-1(rc’) = r-1c and takes its projection  r-1c’ on the first n(r-2) coordinates. She 
continue this procedure and gets the tuples 1c = (b1, b2, ..., bs, bs+1, bs+2, ..., bs+m(1)) and 1c’ = (b1, b2, ..., 
bs).

Alice forms the intermediate tuple (z1, z2, ..., zs) and investigates the system of linear equations 
c1(z1, z2, ..., zs) = b1,c2(z1, z2, ..., zs) = b2, ..., cs(z1, z2, ..., zs) = bs.  She gets the solution z1 = α1, z2 = α2, …, 
zs = αs. In fact (α1, α2, …, αs) = E’(N-1(b1, b2, …, bs)).

Alice computes tuples a*(i, 1) = a(1, 1)(α1, α2, ..., αs), b*(i, 1) = b(1, 1)(α1,α2, ..., αs), i = 1, 2, ..., l(1) 
with coordinates from K.

Alice takes graph 1Dl(1) and computes d(l(1)) = Jb*(l(1),1)(1c). She takes the neighbour d’(l(1) = Na*(l(1)),1) 

(d(l(1)) of the point d(l(1) of colour a*(l(1), 1).
Alice treats the tuple d’(l(1)) as the line of the graph 1Dl(1). She computes Jb*(l(1)-1),1) (d’(l(1)) = d(l(1)-

1)  and its neighbour d’(l(1)-1) = N  a*(l(1)-1),1)  (d(l(1)-1).  Alice continue this process and gets  d’(1) = N 
a*(1,1) (d(1)) in the graph 1D1. So she gets e(1) = Jγ(d’(1)), γ = (α1,α2,..., αs).

The tuple (H1)’(e(1)) = r(1) is the solution of the equation H1F1(z1, z2,  zs,  zs+1, ..., zs+m(1)) = 1c = (L1)-

1(2c’) which is equivalent to G1(z1, z2, zs, zs+1, ..., zs+m(1)) = 2c’.
Alice considers the equation H2F2(z1, z2, ..., zs, zs+1, ..., zs+m(1), zs+m(1)+1, ..., zs+m(1)+m(2)) = 2c = L2(3c’).
The first s+m(1)  equations of this system are equivalent to  H1F1(z1,  z2,  ...,  zs+m(1)) = 1c  with the 

solution γ(1) = (1α1, 1α2, …, 1αs+m(1)) obtained due to the knowledge of the trapdoor accelerator. 
Alice computes the specializations a*(1, 2), a*(2, 2), ..., a*(l(2), 2), b*(1, 2), b*(2, 2), ..., b*(l(2), 2) of 

a(1, 2),  a(2, 2),  ...,  a(l(2),  2),  b(1, 2),  b(2, 2),  ...,  b(l(2),  2) under the substitution  z1 = 1α1,  z2 = 1α2,  …, 
zs+m(1) = 1αs+m(1).

She computes the point d(l(2)) = Jb*(2,  l(2))(2c)  and line d’(l(2)) = Na*(2,  l(2))(d(l(2)))  of the graph 2Dl(2), 

computes d(l(2)-1) = Jb*(2,  l(2)-1)(d’(l(2))  and vertex d’(l(2)-1) = Na*(2,  l(2)-1)(d(l(2)-1))  of the graph 2Dl(2)-1. 
Alice continue this process and gets d’(1)= N a*(2,1) (d(1)) in the graph 2D1. So she gets e(2) = Jγ(1)(d’(1)) 
in this graph.
The  tuple (H2)’(e(2)) = γ(2) is  the  solution  of  the  equation H2F2(z1,  z2,  zs,  zs+1,  ...,  zs+m(1),  zs+m(1)+1,  ..., 

zs+m(1)+m(2)) = 2c=L2(3c’)  which is equivalent to  G2(z1, z2, zs, zs+1, ..., zs+m(1)+m(2)) = 3c’.  Alice continue this 
recurrent process and gets the solution γ(r) of the equation Gr(z1, z2, zs, zs+1, ..., zs+m(1)+m(2)+...+m(k)) = 0c.

419



Remark 5.3. (nonlinear disturbance). In this iterative algorithm instead of the combination EN 
on Ks one can take any pseudolinear map Z with the multiplicative trapdoor accelerator at most d 
with the trapdoor accelerator can be used.

4. On the safe delivery of multivariate maps

4.1. On protocols of Noncommutative Cryptography

The following protocol is one of the classical instruments of Noncommutative Cryptography.
Twisted Diffie-Hellman protocol.
Similarly, let S be an abstract group which has some invertible elements. 
Alice and Bob pose common element  gϵS and the pair of invertible elements  h, h  -1 from this 

semigroup. 
Alice selects natural numbers k(A) and r(A), and she forms 
h-r(A)gk(A)hr(A) = gA.
Bob chooses k(B) and r(B), and he forms h-r(B)gk(B)hr(B) = gB.
They exchange gA, gB and compute the collision element X as 
Ag = h-r(A)gB

k(A)hr(A) 

(Alice) and Bg = h-r(B)gA
k(B)hr(B) (Bob) respectively.

The security of this scheme is based on the complexity of the Power Conjugacy Problem, the  
adversary has to solve the equation h-xgyhx = b, where b coincides with gB or gA. The complexity of 
this problem essentially depends on the choice of highly noncommutative platform S.

In the case of platform S = nES(K) where K = Fq or K = Zq this problem is intractable even with 
the use of a quantum computer.

The computational complexity of this protocol is O(n3).
If we assume that the degree of transformations h and g from nES(K) is O(1) then the complexity 

of the protocol is O(n).
Other platforms defined in terms of  multivariate cryptography and corresponding protocols 

readers can be found in [22, 36–41].
Foundations of Noncommutative Cryptography,  description of algorithms and cryptanalytic 

results reader can find in [42–62].

4.2. Some definitions 

Let  F  be the map from  (K*)n in  Kn of density  O(nd),  0≤d≤1 such that its restriction on (K*) n is 
injective. Assume that T is a multiplicative trapdoor accelerator of F and Alice has the pair (F, T).

Below please find examples of the deformation.
Example 1.4. (the case of maps of unbounded degree).
Alice and Bob conduct Twisted Diffie-Hellman protocol based on the platform nES(K). Assume 

that the collision map C is given by formula (1). Correspondents can use subsemigroup of nES(K) 
with generators from the set M = {g, h, C}. They use open channel to agree on words wj(C) = (jgi(1), 
jgi(2), …, jgi(s(j))) of length s(j), s(j)≥1 where jgi(1), jgi(2), ..., jgi(s(j)), j = 1, 2, ..., r is the sequence of elements of 
the alphabet M which contains at least one appearance of C.

Let jg(C) be an element of nES(K) generated as a product of characters of the wj(C). We form jh(C) 
sending xi to jg(C )(xi)a(i, j) where a(i, j) are publicly known elements of K-{0}.

Let G(C) be the sum 1h(C )+2h(C)+... rh(C).
Alice can send the tuple (F(x1)+G(C) (x1), F(x2)+G(C)(x2), ...
F(xn)+G(C)(xn)) to Bob. He is able to restore the map F.
This “steganographic” way of safe delivery of the multivariate map is secure even in the case r is 

a linear expression from n of size O(n).
Example 2.4. (the case of nonlinear transformation of constant degree d). 

Alice takes the collision element C and nonempty subsets of {1, 2, ..., n} of kind {i(1), i(2), ..., i(m)} 
of cardinality m, 1≤m≤d.
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She form gi as the linear combination of monomial terms (qi(1)) a(i,  i(1))(qi(2)) a(i,  i(2))...(qi(m)) a(i,  i(m))... 
xi(1)xi(2)...xi(m) and constant  C(xi)(q1, q2,..., qm) with known nonzero coefficients from K. Alice sends 
(F(x1)+g1, F(x2)+g2, ..., F(xn)+gn) to Bob.

Remark 1.4. Assuming that the map F of degree O(n) is not given publicly, Alice and Bob use it 
in a protocol-based secure way.

An adversary may intercept a polynomial number of pairs of kind plaintext/ciphertext but even 
this information can be insufficient for restoration of F without the knowledge of the symbolic type 
of Z, i.e. lists of nontrivial monomial terms of F(xi) with coefficients 1. 

Remark 2.4. It is known that a polynomial system of equations of degree d(n) can be rewritten 
as a system of quadratic equations via the method of introducing extra variables. If the degree is  
unbounded  then  the  growth  of  the  number  of  variables  does  not  allow for  investigating  the 
resulting quadratic system. In case when the system is not given publicly the method of degree 
reduction can not be used. 

Conclusions

The  technique  of  Jordan-Gauss  graphs  and  their  temporal analog  defined  over  arbitrary 
commutative ring K can be used for the construction of bijective multivariate map F of prescribed 
degree d on free module Kn with the trapdoor accelerator T which allows computing the reimage of 
the given value in a polynomial time. In the case of d = 2 and 3 such maps can be used for the 
construction of public keys.

If d is a constant larger than 3 we can construct sparse maps of density O(n) with the trapdoor 
accelerator T. So the value of the function can be computed in time O(n2). For each constant d, we 
can  construct  the map  of  degree d, density O(n), and  trapdoor  accelerator  which allows  the 
computation of the reimage in time O(n2). Recall that we define the density of F as the maximal 
density of polynomials F(xi) for i = 1, 2, ..., n.

It is known that there is a special way to increase the number of variables and rewrite the 
nonlinear system  F(x)=b as equivalent to it quadratic system in many variables. One can select 
“sufficiently large” d such that the corresponding quadratic system is unfeasible for cryptanalytic 
investigation.

We define sup(t) of the monomial term t = t(x1, x2, ..., xn) as the number of variables xi in positive 
power in the expression of t. The support of the multivariate map F is defined as the maximal value 
of  sup(F) supports  its  monomial  terms.  We  can  construct  multivariate  maps  on  Kn with  the 
prescribed density  O(nα), 0≤α≤1, and prescribed support O(nβ) with the trapdoor accelerator. We 
construct multivariate map F of unbounded degree with the support n and prescribed density O(nβ) 
and multiplicative trapdoor accelerator.

Mentioned above pairs of kind (F, T) can be investigated as potential public key constructions of 
multivariate Cryptography. Alternatively, Alice can use her pair (F, T) in a different way. She and 
her trusted partner Bob can use twisted Diffie-Hellman protocol with the platform  nES(K), and 
deform the output  E via its transformation to polynomial transformation  D(E) of  Kn. Alice sends 
F+D(E)  to  Bob.  The security  of  this  asymmetric  algorithm described in  Section 1  rests  on the 
security of the selected protocol.

Note that the mentioned above pairs (F, T) can be used as stream ciphers when the knowledge of 
T is shared between Alice and Bob.

Acknowledgments

This research is partially supported by the British Academy Fellowship for Researchers under Risk 
2022.

421



Declaration on Generative AI

While  preparing  this  work,  the  authors  used  the  AI  program Strike  Plagiarism to  search  for 
possible plagiarism. After using this tool, the authors reviewed and edited the content as needed  
and took full responsibility for the publication’s content.

References

[1] V. Ustimenko,  On  Eulerian  semigroups  of  multivariate  transformations  and  their 
cryptographic applications, Eur. J. Math. 9(93) (2023).

[2] J. Ding, A. Petzoldt, Current state of multivariate cryptography. IEEE Secur. Priv. 15(4) (2017) 
28–36. doi:10.1109/MSP.2017.3151328

[3] D. Smith-Tone, 2F—A new method for constructing efficient multivariate encryption schemes, 
in: PQCrypto 2022, 13th International Conference on Post-Quantum Cryptography, virtual, DC, 
US, 2022.

[4] D. Smith-Tone, New practical multivariate signatures from a nonlinear modifier, IACR e-print 
archive, 2021/419.

[5] D. Smith-Tone,  C. Tone,  A nonlinear  multivariate  cryptosystem based on a  random linear 
code. URL: https://eprint.iacr.org/2019/1355

[6] D. Jayashree, R. Dutta, Progress in multivariate cryptography: systematic review, challenges, 
and research directions, ACM Comput. Surv. 55(12(246)) (2023) 1–34. doi:10.1145/3571071

[7] F. Cabarcas,  D. Cabarcas,  J. Baena,  Efficient  public-key  operation  in  multivariate  schemes, 
Adv. Math. Commun. 13(2) (2019) 343-371. doi:10.3934/amc.2019023

[8] R. Cartor, D. Smith-Tone, EFLASH: A new multivariate encryption scheme, in: International 
Conference on Selected Areas in Cryptography, 2018, 281–299.

[9] A. Casanova, et al., Gemss: A great multivariate short signature, Submission to NIST, 2017.
[10] J. Chen, et al., A new encryption scheme for multivariate quadratic systems, Theor. Comput. 

Sci. 809 (2020) 372–383.
[11] M.-S. Chen,  et al.,  SOFIA:  MQ-based  signatures  in  the  QROM,  in:  IACR  International 

Workshop on Public Key Cryptography, 2018, 3–33.
[12] D. H. Duong, et al., An efficient multivariate threshold ring signature scheme, Comput. Stand. 

Interfaces 74 (2021). doi:10.1016/j.csi.2020.103489
[13] J.-C. Faugere, et al., A new perturbation for multivariate public key schemes such as HFE and 

UOV, Cryptology ePrint Archive, 2022.
[14] W. Buellens, Improved cryptanalysis of UOV and rainbow improved cryptanalysis of UOV and 

rainbow, in: Advances in Cryptology, EUROCRYPT 2021, Lecture Notes in Computer Science, 
vol. 12696, 2021.

[15] 12th International Workshop, PQCrypto 2021, Lecture Notes in Computer Science, vol. 12841, 
2021.

[16] Post quantum cryptography, in: 13th International Workshop, PQCrypt 2022, Virtual Event, 
September 28-30, 2022, Proceeding, Lecture Notes in Computer Science (LNCS, volume 13512)

[17] Post-quantum cryptography, in: 14th International Workshop, PQCrypto 2023, Lecture Notes in 
Computer Science, vol. 14154, 2023.

[18] Post-quantum cryptography, in: 15th International Workshop, PQCrypto 2024, Part 2, Lecture 
Notes in Computer Science, vol. 14772, 2024.

[19] N. Koblitz, Algebraic aspects of cryptography, Springer, 1998.
[20] V. Ustimenko,  Maximality of  affine group,  hidden graph cryptosystem and graph’s  stream 

ciphers, J. Algebr. Discret. Math. 1 (2005) 51–65.
[21] V. Ustimenko, Linguistic Dynamical systems, graphs of large girth and cryptography, J. Math. 

Sci. 140(3) (2007) 412–434.
[22] V. Ustimenko,  Graphs  in  terms  of  algebraic  geometry,  symbolic  computations  and  secure 

communications in post-quantum world, UMCS Editorial House, 2022.

422

https://doi.org/10.1016/j.csi.2020.103489
https://doi.org/10.3934/amc.2019023
https://doi.org/10.1145/3571071
https://eprint.iacr.org/2019/1355
https://doi.org/10.1109/MSP.2017.3151328


[23] V. Ustimenko,  O. Pustovit,  Jordan-Gauss  graphs  and  quadratic  public  keys  of  multivariate 
cryptography,  in:  ITTAP  2024,  4th International  Workshop  on  Information  Technologies: 
Theoretical and Applied Problems, vol. 3896, 2024.

[24] V. Ustimenko,  T. Chojecki,  A. Wróblewska,  On  the  Jordan-Gauss  graphs  andmultivariate 
public keys, in: IACR Cryptol. ePrint Arch., 2024/1793.

[25] T. Chojecki, et al., On affine forestry over integral domains and families of deep Jordan-Gauss 
graphs, Eur. J. Math. 11(10) (2025). doi:10.1007/s40879-024-00798-2

[26] V. Ustimenko,  On  computations  with  double  schubert  automaton  and stable  maps  of 
multivariate  cryptography,  Interdiscip.  Stud.  Complex  Syst.  19  (2021)  18–32. 
doi:10.31392/iscs.2021.19.018

[27] V. Ustimenko,  On  small  world  non  Sunada  twins  and  cellular  Voronoi  diagrams,  Algebr. 
Discret. Math. 30(1) (2020) 118–142.

[28] A. Brower, A. Cohen, A. Nuemaier, Distance regular graphs, Springer, 1989.
[29] R. W. Carter, Simple Groups of Lie Type, Wiley, 1972.
[30] F. Buekenhout (Editor), Handbook on incidence geometry, North Holland, 1995.
[31] V. Ustimenko,  A. Wróblewska,  On extremal  algebraic  graphs,  quadratic  multivariate  public 

keys and temporal rules, in: FedCSIS, 2023, 1173–1178.
[32] J. Ding, A. Petzoldt, D. S. Schmidt, Multivariate public key cryptosystems, 2nd ed., Advances in 

Information Security, Springer, 2020. doi:10.1007/978-1-0716-0987-3
[33] V. Ustimenko,  O. Pustovit,  On Schubert  cells  of  projective  geometry  and  pseudo-quadratic 

public  keys  of  multivariate  cryptography,  in:  Cybersecurity  Providing  in  Information  and 
Telecommunication Systems II, vol. 3826, 2024, 198–205.

[34] V. Ustimenko. O. Pustovit, On the implementations of new multivariate public keys based on 
transformations  of  linear  degree,  in:  Proceedings  of  the  Conference  on  Mathematical 
Foundations of Informatics MFOI 2919.

[35] V. Ustimenko,  On  new  multivariate  cryptosystems  based  on  hidden  Eulerian  equations, 
Dopovidi of National Academy of Science of Ukraine N5, 2017.

[36] V. Ustimenko, A. Wroblewska, On the key exchange with nonlinear polynomial maps of stable 
degree, Annalles UMCS Informatica AI XI, 2 (2011) 81–93.

[37] V. Ustimenko, On short digital signatures with Eulerian transformations, IACR e-print archive, 
2024/001.

[38] V. Ustimenko,  On  the  restoration  of  historical  matsumoto-imai  cryptosystem  and  other 
schemes in terms of noncommutative cryptography, in: Future Technologies Conference (FTC) 
2024, vol. 2, FTC 2024, Lecture Notes in Networks and Systems, vol. 1155.  doi:10.1007/978-3-
031-73122-8_7

[39] V. Ustimenko,  M. Klisowski,  On  noncommutative  cryptography  with  cubical  multivariate 
maps  of  predictable  density,  in:  Intelligent  Computing,  CompCom  2019,  Advances  in 
Intelligent Systems and Computing, vol. 998, 2019, 654–674.

[40] V. Ustimenko, M. Klisowski, On new protocols of noncommutative cryptography in terms of 
homomorphism of stable multivariate transformation groups,  Algebra Discrete Math.  35(2) 
(2023) 220–250. doi:10.12958/adm1523

[41] V. Ustimenko, On multivariate algorithms of digital signatures on secure El Gamal-type mode, 
Computational  Methods  and  Mathematical  Modeling  in  Cyberphysics  and  Engineering 
Applications 1, 2024.

[42] D. N. Moldovyan, N. A. Moldovyan, A new hard problem over non-commutative finite groups 
for cryptographic protocols, in: international conference on mathematical methods, models, 
and  architectures  for  computer  network  security,  MMM-ACNS  2010:  Computer  Network 
Security, 2010, 183–194.

[43] L. Sakalauskas, P. Tvarijonas, A. Raulynaitis, Key agreement protocol (KAP) using conjugacy 
and discrete logarithm problem in group representation level, Informatica 18(1) (2007) 115–
124.

423

https://doi.org/10.12958/adm1523
https://doi.org/10.1007/978-3-031-73122-8_7
https://doi.org/10.1007/978-3-031-73122-8_7
https://doi.org/10.1007/978-1-0716-0987-3
https://doi.org/10.31392/iscs.2021.19.018
https://doi.org/10.1007/s40879-024-00798-2


[44] V. Shpilrain,  A. Ushakov,  The  conjugacy  search  problem  in  public  key  cryptography: 
unnecessary  and  insufficient,  in:  Applicable  Algebra  in  Engineering,  Communication  and 
Computing, vol. 17(3–4), 2006, 285–289.

[45] D. Kahrobaei,  B. Khan,  A non-commutative generalization of  ElGamal  key exchange using 
polycyclic groups, in: IEEE GLOBECOM 2006, Global Telecommunications Conference, 2006. 
doi:10.1109/GLOCOM.2006

[46] A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography, Berlin, Birkhäuser Verlag, 
2008.

[47] Z. Cao, New Directions of modern cryptography, Boca Raton: CRC Press, Taylor & Francis 
Group, 2012.

[48] B. Fine, et al. Aspects of non abelian group based cryptography: A survey and open problems, 
arXiv. doi:10.48550/arXiv.1103.4093

[49] A. G. Myasnikov, V. Shpilrain, A. Ushakov, Non-commutative cryptography and complexity of 
group-theoretic problems, American Mathematical Society, 2011.

[50] I. Anshel,  M. Anshel,  D. Goldfeld,  An algebraic  method for public-key cryptography.  Math. 
Res. Lett. 6(3–4) (1999) 287–291.

[51] S. R. Blackburn, S. D. Galbraith, Cryptanalysis of two cryptosystems based on group actions, 
in: Advances in Cryptology, ASIACRYPT’99, Lecture Notes in Computer Science, vol. 1716, 
1999, 52–61.

[52] K. H. Ko, et al, New public-key cryptosystem using braid groups, in: Advances in Cryptology—
CRYPTO 2000, Santa Barbara, CA. Lecture Notes in Computer Science, vol. 1880, 2000, 166–
183.

[53] G. Maze, C. Monico, J. Rosenthal, Public key cryptography based on semigroup actions, Adv. 
Math. Commun. 1(4) (2007) 489–507.

[54] P. H. Kropholler, et al., Properties of certain semigroups and their potential as platforms for 
cryptosystems, Semigroup Forum 81 (2010) 172–186.

[55] J. A. Lopez Ramos, et al., Group key management based on semigroup actions, J. Algebra Appl. 
16(08) (2017) 1750148.

[56] G. Kumar, H. Saini, Novel noncommutative cryptography scheme using extra special group, 
Secur. Commun. Netw. 2017(1) (2017). doi:10.1155/2017/9036382

[57] A. Myasnikov,  V. Roman’kov,  A  linear  decomposition  attack,  Groups  Complex.  Cryptol.  7 
(2015) 81–94. doi:10.1515/gcc-2015-0007.

[58] V. Roman’kov, A nonlinear decomposition attack, Groups Complex. Cryptol. 8(2) (2017) 197–
207.

[59] V. Roman’kov,  Two general  schemes of  algebraic  cryptography,  Groups Complex.  Cryptol. 
10(2) (2018) 83–98. 

[60] V. Roman’kov, An improved version of the AAG cryptographic protocol, Groups Complex. 
Cryptol. 11(1) (2019). doi:10.1515/gcc-2019-2003

[61] B. Tsaban, Polynomial time solutions of computational problems in noncommutative algebraic 
cryptography, J. Cryptol. 28(3) (2015) 601–622.

[62] A. Ben-Zvi, A. Kalka, B. Tsaban, Cryptanalysis via algebraic spans, in: Advances in Cryptology 
– CRYPTO 2018, Lecture Notes in Computer Science, vol. 10991, 2018, 1–20.

424

https://doi.org/10.1515/gcc-2019-2003
https://doi.org/10.1155/2017/9036382
https://doi.org/10.48550/arXiv.1103.4093
https://doi.org/10.1109/GLOCOM.2006

	1. Introduction
	2. Analysis of the last research and publications
	2.1. General remarks
	2.2. Linguistic graphs and multivariate maps over commutative rings

	3. On the multivariate maps of prescribed density with the trapdoor accelerator
	4. On the safe delivery of multivariate maps
	4.1. On protocols of Noncommutative Cryptography
	4.2. Some definitions

	Conclusions
	Acknowledgments
	Declaration on Generative AI
	References

