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Abstract
The parametric methods have limited ability to take into account the complexity and heterogeneity of 
data distributions, and it is the problem of this category of methods. This paper presents a nonparametric  
method using local polynomial splines to estimate heterogeneous mixtures of distributions. By leveraging  
B-splines, the method adapts to various data distributions without strict assumptions about their shapes.  
This  approach improves  parameter  estimation accuracy in  complex data  structures  where  traditional 
parametric methods are inadequate.
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1. Introduction

The problem with parametric methods is their limited ability to take into account the complexity 
and heterogeneity of data distributions. This is especially true when the data does not follow a  
normal distribution, which is one of the basic assumptions of many parametric models. Real data  
often exhibit diverse and skewed distributions, which makes it difficult to use classical approaches. 
Therefore,  it  makes  sense  to  consider  methods  that  do  not  require  a  clear  model  and  strict  
adherence to this model and that are not so dependent on the skewness or kurtosis of individual 
components of the distributions.

Non-parametric  methods,  in  particular  the  method  of  reproducing  the  estimation  of 
heterogeneous mixtures of distributions based on local polynomial splines, are the answer to these 
limitations. They allow us to build models that adapt to the diversity of data distributions and do 
not require strict assumptions about their shape. Such methods provide more flexibility, especially 
in conditions where parametric methods are not effective enough.

2. Literature review

The Support Vector Machine (SVM) is a supervised learning method used for classification and 
regression. The basic idea is to find the optimal hyperplane that best separates objects of different  
classes on the feature plane. One of the advantages of SVM is its effectiveness in dealing with high-
dimensional data and the ability to work with heterogeneous mixtures of distributions, but it can  
be sensitive to large amounts of data and requires proper selection of hyperparameters, such as the  
regularization parameter and kernel selection [1, 2].

The k-means method is one of the most common cluster analysis methods in machine learning. 
It is used to divide a data set into k clusters based on the similarity of their features [3]. The basic  
idea is to select several cluster centers and assign each dataset to the cluster center closest to it. The 
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main advantages of the k-means method are its simplicity and speed, which allows you to perform 
clustering  quickly  even  on  large  amounts  of  data.  In  addition,  this  method works  well  when 
clusters are spherical.

However, the k-means method has its drawbacks. It is sensitive to the choice of initial cluster 
centers, which can lead to different results under different initial conditions. Paper [4] shows how 
this drawback can be improved. In addition, the k-means method assumes that each cluster has the 
same variance,  which  may not  be  sufficient  for  some types  of  data  where  clusters  may have 
different shapes or sizes [5–7]. It is also important to keep in mind that k-means is not able to  
account for heterogeneity in data distributions, which can be a problem in the context of mixture 
reproduction.

The  Expectation-Maximization  (EM)  algorithm is  an  iterative  method  used  to  estimate  the 
parameters of statistical  models with hidden variables,  such as a mixture of distributions.  This  
method combines an Expectation step and a Maximization step to iteratively update and find the 
most likely model parameters. One of the advantages of the EM algorithm is the ability to work 
with complex data distributions and find their parameters, but it can get stuck in local maxima and  
require  multiple  runs  from different  initial  conditions.  Publications  [8–10]  present  methods  to 
improve the algorithm’s performance.

3. Problem statement

The use of polynomial splines in the context of recreating mixtures of distributions can be an 
effective  approach that  allows you to  adapt  to  the  diversity  of  the  data  and approximate  the 
distribution density of each component of the mixture. The basic idea is to approximate complex  
functions using piecewise polynomial functions that maintain smoothness and continuity over the 
entire data interval. They can approximate even non-homogeneous distributions well, which can 
be useful in cases where other methods may not give satisfactory results. In addition, polynomial 
splines do not require any explicit assumptions about the shape of the data distribution, making  
them a versatile tool for analyzing a variety of data sets [1].

4. The study materials and methods

Let an array Ω2 , N={X l ; l=1 , N }, X l∈ R2 consisting of N  observations be given. Suppose that this 

data  set  consists  of  a  mixture  of  K  distributions.  Let  η1(X ) , η2(X ) ,…,ηk (X ) be  the 
distributional  densities  of  each  mixed  component  that  make  up  the  mixture.  The  goal  is  to 
reproduce  the  estimated  distributional  density  of  the  mixture  f (X ) without  reducing  the 

commonality f ( X )∈ C r ,…,r, which is a linear combination of the densities of each component:

f (X )=∑
k=1

K

ρk ηk (X ) ,

where ρk is the weighting factor of the kth component of the mixture, ∑
k=1

K

ρk=1.

The task is to find the estimates of the component densities  η1( X ) , η2( X ) ,…,ηk ( X ) and the 

corresponding weighting factors ρk.
One effective approach to solving this problem is to use local polynomial splines based on B-

splines  close  to  the  interpolation  mean,  a  mathematical  tool  that  allows  you  to  approximate 
functions using smooth curves, adapting to the diversity of the data. The main idea is to build a 
flexible model that takes into account the heterogeneity of  distributions and provides accurate 
parameter estimates.  This  approach allows us to take into account the complexity of  the data  
structure. 

Consider the algorithm.
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Step  1. We  perform  a  histogram  evaluation  of  the  variation  series,  as  a  result,  we  get  

{( x1 , i , x2 , j ) , ni , j , pi , j ; i , j∈ Z } based on a uniform partition of the set Δh1 ,h2
, where ( x1 , i , x2 , j ) is 

a variant that determines the center point of the ( i , j )th element of the partition Δh1 ,h2
; h1 , h2 is the 

partition step; ni , j is the frequency (the number of elements that fall within the boundaries of the 

( i , j )th element of the partition Δh1 ,h2); pi , j is the relative frequency of the variant.
Step 2. The resulting histogram is approximated by a two-dimensional local polynomial spline 

S2 ,0 based on B-splines that are close to interpolation on average [11] (Fig. 1b).

S2 ,0 ( p , x1 , x2)=∑
i∈ Z

∑
j∈ Z

B2 ,h1 (x1−i h1)B2 ,h2 (x2− j hσ ) pi , j ,

where (with the notation accuracy up to the split step) [8]

B2 ,h (x )={ 0 , x∉ [−3h /2 ;3h /2 ] ,
(3+2 x /h )2/8 , x∈ [−3h /2 ;−h /2 ] ,
3 /4−(2 x /h )2/4 , x∈ [−h /2 ;h /2 ] ,

(3−2 x /h )2/8 , x∈ [h /2 ;3h /2 ] .

Step 3. We search for local maxima of the spline (Fig. 1c) M q={(miq ,m jq );q=1 , g }, where 

g is the number of local maxima. We consider in pairs {M v , M s }, v , s=1 , g , v ≠ s. For each pair 
of local maxima, we implement the following algorithm:

1. Draw a line f v( x )=kα x+b passing through the points М v( x1 , v , x2 , v ) and М s( x1 , s , x2 , s ), 

where kα=
x2 , s−x2 , v
x1 , s−x1 , v

=tgα , b=
x1 , s x2 , v−x1 , v x2 , s

x1 , s−x1 , v
.

2. Draw lines  d v , ξ( x )∥f v( x ),  d v , ξ( x )=kα x+b+cξ,  where  cξ−const ,  ξ is  the number of 
parallel lines drawn.

3. Draw  lines  av ,ψ ( x )=k γ x+b at  an  angle  φ to  f v( x ),  where  γ=α ±φ,

k γ=
tgα ± tgφ

1∓ tgα ⋅ tgφ
=

kα± tgφ

1∓ kα⋅ tgφ
, ψ  is the number of lines drawn at an angle.

4. Form an array of lines  U={uτ , τ=1 , e },  where  uτ={f v( x ) , d v , ξ( x ) , av ,ψ ( x )}, e is the 

number of lines drawn, e=v⋅(1+ξ+ψ ). Find the point on each line ( x1 , τ , x2 , τ ) for which 

S2 ,0( pτ , x1 , τ , x2 , τ )=min. Form an array of the found minimum values (Fig. 1d):

Umin= argmin
S2 ,0( p , x1 , x2)

U q= argmin
S2 ,0( p , x1 , x2)

uq , τ ( x1 , x2) ,

where q=1 , g, τ=1 , e.
Step 4. Based on the data obtained, we find a regression.  In general, any regression can be 

created. To describe the algorithm, let’s  choose the simplest  example and reproduce the linear  
regression (Fig. 1e) x2 , q=βq ,0+βq ,1 x1, where x2 , q is the dependent variable, x1 is the independent 

variable and Β⃗={βq ,0 ; βq ,1} is the vector of parameters that is unknown. We find the estimates of 

the parameters β̂ using the least squares method

B̂=argmin
β

∑
τ=1

e

( x2 , q , τ− β̂q ,0− β̂q ,1 x1 , τ )
2 .

Similarly, we find the linear regression x1 , q=λq ,0+ λq ,1 x2, where x1 , q is the dependent variable, x2 

is the independent variable and ( λq ,0 , λq ,1) is the vector of parameters that is unknown [12–14].
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Next,  we  form  the  average  vector  of  parameters  (ωq ,0 ,ωq ,1),  where  ωq ,0=
βq ,0+ λq ,0

2
, 

ωq ,1=
βq ,1+ λq ,1

2
. We build a linear regression x2 , q=ωq ,0+ωq ,1 x1. 

The resulting line is reduced to the form zq=ωq ,0+ωq ,1 x1−x2, where q is the number of local 
maxima.

Step 5. We build a classifier based on the constructed lines (Fig. 1f). Let ~Y={~yk , k=1 , K } be 

the set of classes, Z={zk (X ) , k=1 , K } be the set of discriminant functions that separate classes 
~yk. Then we define ∀ l :~y l=I (X ) , l=1 , N , where

I (X )={
1 , z1(X )<0∧ zv(X )>0 ,
2 , z1(X )>0∧ z2(X )>0 ,
⋮ ⋮
i , zi(X )<0∧ zi+1(X )>0 ,
⋮ ⋮
K , zK−1(X )<0∧ zK (X )<0.

Figure 1: Illustrated description of the algorithm

Remarks. If the lines do not intersect at one point but form a triangle, the classification of the 
points in the middle of the triangle can be done as follows:
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 This area is not identified.
 Identification is carried out with priority, the points are classified into a mixture that has a 

higher empirical probability.
 If  the  empirical  probability  of  several  mixtures  coincides,  the  identification  can  be 

performed in the order of bypassing the constructed boundaries [15].

For the experiment, we model  K  two-dimensional distributions (Fig. 1a). To further compare 
with  existing  methods,  we  will  model  a  normal  distribution  with  the  parameters 

Θ⃗k={μ1 , k , μ2 , k , σ1 , k , σ 2 , k , rk , ρk , N k }, k=1 , K , where  ρk is  the  weighting  factor  of  the  k-th 

component of the mixture, ∑
k=1

K

ρk=1 , N k is the number of elements of the k-th component of the 

mixture [16–18]. 

We  obtain  Ω2 , N={X l , y l ; l=1 , N },  where  X={x1 ; x2}, X ∈ R2 , y={1 ,…, K } is  the  class 

index.
Then the density of the mixture of K  components is defined as:

f (X ,Θ⃗ )=∑
k=1

K

ρk ηk (X ,Θ⃗k ) ,

ηk (X ,Θ⃗k )=

exp( −1
2(1−rk

2)[ ( x1−μ1 , k )
2

σ1 , k
2 +

( x2−μ2 , k )
2

σ 2 , k
2 −

2rk ( x1−μ1 , k )( x2−μ2 , k )
σ1 , k σ 2 , k ])

2π σ1 , k σ 2 , k √1−rk
2

.

It is necessary to find Ω2 , N={X l ,
~y l ; l=1 , N }, so that y l=~y l.

Let’s illustrate each of the stages of the algorithm. Then, after applying the clustering method,  
comparing  the  obtained  arrangement  of  elements  in  clusters  with  the  initial  arrangement  of 

elements (reference), it is possible to estimate the clustering error  ε=
N ε

N
, where  N  is the total 

number of elements, N ε=∑
l=1

N

Q(X l ) is the number of elements that fell into a class different from 

the one they were in according to the modeling results, where 

Q(X l )={1 , y l≠
~y l

0 , y l=~y l

.

Let’s compare the above algorithm with existing methods. The results are shown in Table 1.

Table 1
Comparative Analysis of Methods

Comparative factors Presented 
method

Support vector 
method (SVM)

K-means method EM-algorithm

Processing large 
amounts of data

+ – + +

Resilience to the 
choice of initial 
parameters

+ – + +

Robustness to 
emissions

+ – – –

Independence from 
data normalization

+ – – +
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Independence from 
the choice of the 
number of clusters

+ + – –

Conclusions and future studies

According to the results of the study, one of the main advantages of the proposed method is the 
ability to process an arbitrary amount of data due to the preliminary histogram approximation. In  
contrast to the support vector method, this method demonstrates robustness to the choice of initial 
parameters.  Compared to the k-means method and the EM algorithm, the proposed method is 
robust to outliers, as it can identify anomalies as unlikely events and disregard them. In addition, 
the proposed method does not depend on a predefined number of clusters, as it is determined based  
on the number of local  maxima of the density function. In addition, unlike the support vector 
method  and the  k-means  method,  this  method does  not  require  data  normalization,  since  the 
polynomial spline approximation does not require strict assumptions about the shape of the data 
distribution [19].

Given that the model of digital images is not well formalized, further research is planned to 
apply the proposed method to segment digital  images.  This will  avoid data normalization and 
dependence  on assumptions  about  their  distribution.  The next  stage  of  research is  to  test  the 
effectiveness of the method in the tasks of segmentation and anomaly detection in digital images.
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