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Abstract
This paper introduces an innovative AI-powered platform designed to enhance comprehensive diabetes management. The
platform leverages advanced machine learning (ML) and deep learning (DL) algorithms to significantly improve the processes of
diagnosis, continuous monitoring, and overall patient care. By utilizing a substantial dataset obtained from a Taipei Municipal
medical center, the platform integrates a range of AI techniques, such as Logistic Regression, Decision Trees, Random
Forest, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks. These
algorithms work in tandem to provide accurate predictions and personalized insights into patient health. Key pre-processing
steps ensure high data quality, including handling missing values, assessing the relevance of attributes, and balancing the
dataset using the Synthetic Minority Over-sampling Technique (SMOTE). These measures enhance the robustness of the
models, resulting in improved prediction accuracy and model performance. Notably, the Random Forest model emerged as a
standout performer, achieving an impressive accuracy rate of 92.78%, significantly advancing the accuracy, sensitivity, and
specificity of diabetes prediction. The platform is built with a scalable software architecture, complemented by an intuitive
user interface that caters to a variety of clinical applications, making it a valuable tool for healthcare providers. This study
highlights the transformative potential of AI in revolutionizing diabetes care, empowering clinicians to make informed
decisions, and creating personalized treatment plans. Future research aims to expand the diversity of datasets, further refine
the AI models, and incorporate real-time patient feedback to optimize the platform’s effectiveness.
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1. Introduction
Diabetes mellitus is a chronic metabolic disorder char-
acterized by elevated blood sugar levels, which, if in-
adequately managed, can result in severe health com-
plications such as cardiovascular disease, neuropathy,
nephropathy, and retinopathy[1]. The prevalence of di-
abetes is steadily increasing worldwide, posing a signif-
icant public health challenge. According to the Inter-
national Diabetes Federation, approximately 463 million
adults were living with diabetes in 2019, with this number
projected to rise to 700 million by 2045. This growing bur-
den necessitates innovative approaches to improve the
diagnosis, monitoring, and management of diabetes[2].

The management of diabetes involves multiple compo-
nents, including early diagnosis, continuous monitoring
of blood glucose levels, lifestyle modifications, and per-
sonalized treatment regimens[3]. Traditional methods of
diabetes management rely heavily on manual monitoring
and periodic clinical visits, which can be cumbersome and
less effective in providing real-time feedback[4, 5, 6]. The
advent of artificial intelligence (AI) and machine learn-
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ing (ML) technologies[7, 8, 9] has opened new avenues
for improving diabetes care by enabling more accurate
predictions, continuous monitoring, and personalized
treatment strategies.

AI technologies, particularly ML and deep learning
(DL)[10], have shown immense potential in revolution-
izing healthcare. These technologies can analyze large
datasets to uncover hidden patterns, predict outcomes,
and provide actionable insights. In the context of dia-
betes management, AI can enhance various aspects such
as early diagnosis through predictive modeling, real-time
monitoring using wearable devices, and personalized
treatment plans based on patient-specific data[11, 12].

Recent studies have demonstrated the effectiveness of
AI in diabetes diagnosis and monitoring. For instance, ML
algorithms have been used to analyze patient data and
predict the onset of diabetes with high accuracy. DL mod-
els, such as convolutional neural networks (CNNs)[13]
and long short-term memory (LSTM) networks[14, 15],
have been applied to continuous glucose monitoring sys-
tems to provide real-time predictions of blood glucose
levels. These advancements highlight the potential of
AI to improve clinical outcomes and patient quality of
life[16, 17].

This paper aims to present a comprehensive AI-
powered platform for diabetes management that inte-
grates various ML and DL algorithms to enhance diag-
nosis, monitoring, and overall management. The specific
objectives of the study are as follows:
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1. Diagnosis: To evaluate and compare the perfor-
mance of different ML algorithms in predicting
diabetes using a comprehensive dataset.

2. Monitoring: To develop and assess DL models
for real-time blood glucose level prediction.

3. Platform Development: To design a scalable
and user-friendly software architecture that inte-
grates the AI models and supports clinical appli-
cation.

4. Evaluation: To analyze the empirical findings in
terms of accuracy, sensitivity, and specificity, and
to discuss the implications for diabetes care and
future research directions.

The subsequent sections of this paper will provide
a detailed literature review, describe the methodology
used in developing the platform, present the results and
findings, explore the technical aspects of the software
architecture, discuss the implications and future research
directions, and conclude with the key takeaways from
the study.

2. Literature Review
This section provides a brief overview of related work in
the field of AI-driven diabetes management.

2.1. Diagnosis of diabetes
Chandrashekar D. K. et al. [1] conducted a study on the
prediction of gestational diabetes utilizing the PIMA In-
dian dataset from the UCI Machine Learning Repository,
which comprises 8 features. The objective of the research
was to evaluate the efficacy of several machine learning
algorithms in predicting the onset of gestational diabetes
in female patients. The algorithms tested included Naive
Bayes (NB), K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), K-Means Clustering, Artificial Neural
Networks (ANN), and Random Forest (RF).

The study reported varying degrees of accuracy for
each algorithm. The Artificial Neural Network (ANN)
achieved an accuracy of 72%, Support Vector Machine
(SVM) attained 79%, K-Means Clustering and K-Nearest
Neighbors (KNN) both reached 77%, Random Forest (RF)
showed 80%, and Naive Bayes (NB) achieved the highest
accuracy at 82%. This research highlights the significant
potential of machine learning techniques in improving
the prediction and early detection of gestational diabetes,
offering valuable insights for developing more efficient
diagnostic tools.

Thotad et al. [2], in their study, analyze machine
learning-based classifiers to diagnose diabetes in India
using data from the Indian Demographic and Health Sur-
vey (2019–21). The study demonstrates that the Random
Forest algorithm achieved remarkable accuracy, with a

classification accuracy of 95.35% after Principal Com-
ponent Analysis (PCA) and 96.5% before PCA. Prior to
using PCA, XGBoost achieved 95.33% accuracy, while
SVM (RBF) obtained 74.83%. After applying PCA, SVM
(RBF) maintained an accuracy of 74.14%, and XGBoost’s
accuracy slightly decreased to 93.33%. These findings
indicate the reliable performance of the Random Forest
model in diagnosing diabetes.

Navya Pratyusha Miriyala et al. [18] suggested a di-
agnostic analysis of diabetes mellitus using a machine
learning approach. The study utilized the Pima Indians
Diabetes Dataset (PIDD) to train six different machine
learning (ML) algorithms, including Naïve Bayes, KNN,
Random Forest, Logistic Regression, Decision Tree, and
eXtreme Gradient Boosting (XGBoost). According to the
observed experimental data, the Decision Tree algorithm
delivered an accuracy of 85.3%, while XGBoost provided
the best accuracy at 88.2%. The study suggests that future
work could focus on handling the sampling strategy to
balance the data, as there is a slight imbalance present.

Jobeda JK et al. [11] suggested a comparison of ma-
chine learning algorithms for diabetes prediction using
the Pima Indian Diabetes (PID) dataset, which contains
data on 768 patients. They used seven different machine
learning algorithms, including Decision Tree (DT), K-
Nearest Neighbors (KNN), Random Forest (RF), Naïve
Bayes (NB), AdaBoost (AB), Logistic Regression (LR), and
Support Vector Machine (SVM). Every model offered an
accuracy of at least 70%, with LR and SVM providing
approximately 77-78% accuracy for both train/test split
and K-fold cross-validation methods. Additionally, they
tested a neural network (NN) model with varying hidden
layers (1, 2, 3) and epochs (200, 400, 800). The best accu-
racy, achieved by the NN with two hidden layers and 400
epochs, was 88.6%.

Sireesha et al. [3] proposed implementing a model
to detect diabetes using machine learning classifiers to
achieve high accuracy with the Pima Indian Diabetes
Dataset. They applied several classification algorithms,
including K-Nearest Neighbor (KNN), Decision Tree (DT),
Random Forest (RF), AdaBoost, Naive Bayes, and XG-
Boost. The results showed that the Decision Tree Clas-
sifier achieved 85.2% accuracy, the XGBoost Classifier
achieved 88.8% accuracy, the KNN Classifier achieved
86.2% accuracy, the Random Forest Classifier achieved
88.1% accuracy, the AdaBoost Classifier achieved 87.7%
accuracy, and the Naive Bayes Classifier achieved 80.7%
accuracy. Consequently, the study concluded that the
XGBoost Classifier is the best among all the classifiers
mentioned.

Zhu et al. [19] recently conducted a comprehensive
review of how deep learning is being utilized in diabetes
care. They categorized their findings into three main
areas: diagnosing diabetes, monitoring blood sugar lev-
els, and identifying complications associated with the
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disease. The review included 40 studies that compared
deep learning models with traditional machine learning
methods, and found that deep learning models generally
outperformed the traditional approaches.

The review also examined how continuous glucose
monitoring and artificial pancreas devices could aid in
diabetes management. However, it highlighted the chal-
lenges of dealing with significant fluctuations in blood
sugar levels and maintaining them within target ranges.
The authors discussed various deep learning architec-
tures, such as Deep Multilayer Perceptrons (DMLPs),
Convolutional Neural Networks (CNNs)[20, 21? ], and
Recurrent Neural Networks (RNNs), that have been used
in diabetes research. They noted that these models excel
at handling complex data but face issues such as limited
data for training and the interpretability of their predic-
tions[? ].

The authors concluded that future advancements in
deep learning have the potential to significantly improve
diabetes management strategies.

Rahman et al. [7] introduced an innovative method
for detecting diabetes using a Convolutional Long Short-
term Memory (Conv-LSTM) model. This study was the
first to apply this type of model for diabetes detection.

The researchers utilized the Pima Indians Diabetes
Database (PIDD) to test their Conv-LSTM model against
three other well-known models: CNN-LSTM, Traditional
LSTM (T-LSTM), and Convolutional Neural Network
(CNN)[22]. They employed the Boruta method to iden-
tify the most significant features in the data, such as
age, blood pressure, insulin, glucose, and BMI. The Conv-
LSTM model achieved the highest performance with an
accuracy of 97.26% when tested with cross-validation,
outperforming the other models and previous techniques.

The study underscores the importance of using ad-
vanced methods and feature selection techniques for dia-
betes prediction. The Conv-LSTM model addressed sev-
eral issues inherent in other LSTM models, such as the
vanishing gradient problem and challenges related to
temporal data changes.

Swapna G. et al. [23] present a methodology for the
classification of diabetic and normal HRV signals using
deep learning architectures. They employed a combina-
tion of convolutional neural networks (CNN) and long
short-term memory (LSTM) networks applied to HRV
data, achieving an accuracy of 95.1%. The study fur-
ther improves upon this methodology by incorporating
a support vector machine (SVM) for classification, which
increased the accuracy to 95.7%.

2.2. Monitoring of diabets
Rabbi et al. [24] performed a groundbreaking study using
a novel approach for blood glucose prediction by em-
ploying a deep recurrent neural network (RNN) model

coupled with long short-term memory (LSTM) stacking-
based Kalman smoothing to address sensor failures. The
goal of this method was to establish ground truth by
comparing fingerprint blood glucose readings with ex-
pected continuous glucose monitoring (CGM) values. To
evaluate the model, their study utilized the OhioT1DM
dataset, which includes eight weeks of data from five T1D
patients. The proposed method outperformed previous
approaches, achieving root mean squared errors (RMSE)
of 6.45 mg/dL and 17.24 mg/dL for the 30-minute and
60-minute prediction ranges, respectively.

Hatice Vildan Dudukcu et al. [25] proposed a method
for blood glucose prediction using deep neural networks
with weighted decision level fusion, leveraging patients’
past BG data to address the challenge of accurately fore-
casting BG levels for diabetic patients. The authors em-
ployed three neural network architectures: Long Short-
Term Memory (LSTM), WaveNet, and Gated Recurrent
Units (GRU). They combined these models to enhance
prediction accuracy by fusing the outputs of these net-
works.

The study utilized the OhioT1DM dataset, which in-
cludes blood glucose history from 12 diabetic patients,
and evaluated the performance of the models over 30, 45,
and 60-minute prediction horizons. The results demon-
strated that the fusion of the three models yielded the
best results for short-term blood glucose prediction, with
RMSE values of 21.90 mg/dL for 30 minutes, 29.12 mg/dL
for 45 minutes, and 35.10 mg/dL for 60 minutes.

Martinsson et al. [16] employed long short-term mem-
ory (LSTM) networks, a variant of RNNs that effectively
capture temporal dependencies in sequential data. Their
model processes historical blood glucose measurements
to predict future levels, requiring no additional feature
engineering or complex data preprocessing. The study
demonstrated that the model performs comparably to
state-of-the-art methods on the OhioT1DM dataset, us-
ing metrics such as root-mean-squared error (RMSE) and
the blood glucose-specific surveillance error grid (SEG)
to evaluate performance. Furthermore, by incorporating
a variance estimation method, the model generates a con-
fidence measure in the form of a univariate Gaussian dis-
tribution for every prediction. This feature enhances the
interpretability and reliability of the forecasts, allowing
users to know when to exercise caution based on pre-
dicted accuracy. Because this method is computationally
efficient, it can be used on devices with low computing
capacity, such as cell phones and CGM devices.

3. Methodology
To develop a comprehensive diabetes management plat-
form. We used a combination of AI techniques:
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3.1. Diagnosis of diabetes
In the diagnosis of diabetes we used several Machine
learning and deep learning algorithms as follows:

3.1.1. Logistic Regression (LR)

The statistics branch is where the LR models were ob-
tained. This approach has been modified for problem
statements including binary classification. The primary
goal of LR is to determine the coefficient values. The
value is converted to 0–1 by +e LR. The LR model de-
termines whether to anticipate a given data instance of
the class as 0 or 1. This method can be used to solve
issues if there are several plausible explanations for our
predictions .Standard function of lr is shown as follow
[26]:

ℎ𝜃(𝑋) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋)
(1)

Equation 1 represents the logistic decision for the pro-
jected data. The data label 𝑋 represents the constants as
𝛽1 and 𝛽0.

3.1.2. Decision Trees (DTs)

DTs form a tree structure by determining thresholds for
input features. The classifier creates judgment rules to
forecast the target class or value [27].

3.1.3. Random Forest

RF is a supervised learning system. The RF classifier
consists of many decision trees for different subjects from
the provided dataset. To boost forecast accuracy, the
algorithm takes the average of subsets from each tree.
Instead of depending on a single decision tree, RF uses
the majority vote from all trees to forecast the result.
Each node in the decision tree answers a query about the
data [26].

3.1.4. K-Nearest Neighbor (K-NN)

KNN is a popular machine learning algorithm that uses
the Supervised Learning approach. According to Brown-
lee (2016b), K-NN is commonly used for regression and
classification. The K-NN method compares the similari-
ties between new and current cases/data. The new case is
allocated to the most similar category from the available
possibilities [28].

3.1.5. Support Vector Machines (SVM)

SVM is non-parametric algorithms that solve regression
and classification problems with linear and non-linear
functions. These functions assign input feature vectors
to an n-dimensional space known as the feature space
[27].

3.1.6. Artificial neural networks

ANNs mimic real neural networks by connecting their
artificial neurons in a manner akin to that of the brain
network. The brain, or neural network, is made up of
connections between these cells, also known as neurons
[29] Information enters a biological neuron by its den-
drite, is processed by the soma, and then is transferred
via an axon [30]. When it comes to artificial neurons,
they are simply mathematical models (functions). This
model comprises three simple sets of rules: multiplica-
tion, summation, and activation. Artificial neuron inputs
are weighted, ensuring that each value is considered.is
multiplied by individual weight. The sum function in the
middle of an artificial neural network adds all weighted
inputs and biases. At the exit of an artificial neuron, the
total of previously weighted inputs and bias is passed
through the activation function, also known as the trans-
fer function.

3.1.7. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a powerful
class of deep learning models that are widely applied to
various tasks, including object detection, speech recog-
nition, computer vision [? ], classification imaging [? ?
] and bioinformatics. CNN is a feed forward neural net-
work that leverages convolutional structures to extract
features from data. Unlike traditional methods, CNN au-
tomatically learns and recognizes features in data without
the need for manual feature extraction by humans. The
design of CNN is inspired by visual perception. The main
components of a CNN include a convolutional layer, a
pooling layer, and a fully connected layer [31].

3.1.8. Dataset

This study used outpatient examination data from a
Taipei Municipal medical center, with 15,000 women aged
20-80 as samples. These ladies were hospitalized between
2018 and 2020, as well as 2021 and 2022, with or without
a diabetes diagnosis. The study looked at eight patient
parameters, including number of pregnancies, plasma
glucose level, diastolic blood pressure, sebum thickness,
insulin level, BMI, diabetes pedigree function, and age
where the patients with diabetic are 5000 and the healthy
patients count is 10000. Initial inspection shows an im-
balance in the dataset, with more non-diabetic instances
than diabetic ones (Figure 1).

3.1.9. Data Pre-processing

Data pre-processing is a critical step to ensure the effec-
tiveness of AI techniques. Structured data is essential for
accurate modeling and prediction.
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Figure 1: Diabetes and non-diabetes dataset count .

Selected Features Description of Selected
Features

Range

1 Pregnancies Number of times a partic-
ipant is pregnant

0–17

2 PlasmaGlucose Plasma glucose concen-
tration a 2 h in an oral glu-
cose tolerance test

0–199

3 DiastolicBloodPressure Diastolic blood pressure
(mm Hg), when blood ex-
erts into arteries between
heart

0–122

4 TricepsThickness Triceps skinfold thickness
(mm), concluded by the
collagen content

0–99

5 SerumInsulin 2-Hour serum insulin (mu
U/ml)

0–846

6 BMI Body mass index (weight
in kg/(height in m)2)

0–67.1

7 DiabetesPedigree An appealing attribute
used in diabetes progno-
sis

0.078–2.42

8 Age Age of participants 21–81
9 Diabetic (Outcome) Diabetes class variable,

Yes represents the patient
is diabetic and No repre-
sents the patient is not di-
abetic

Yes/No

Table 1
Description of PIMA Indian dataset attributes [7].

1. Handling Missing Values: We checked for and
addressed any missing values in the dataset by
either eliminating rows/columns with missing
data or imputing them using statistical methods.
In our dataset, there were no missing values, as
shown in Figure 2.

2. Determining Attribute Relevance: The rele-
vance of each attribute was assessed using Pear-
son’s correlation coefficient, illustrated in Figure
3. This method calculates a correlation coefficient
between −1 and 1 to quantify the relationship
between input and output properties. A coeffi-
cient value above 0.5 or below −0.5 indicates a

Figure 2: Missing values.

substantial correlation, while a value close to zero
indicates no correlation [32].

Figure 3: Correlation heatmap.

3. Balancing the Dataset: To balance the dataset,
we employed the Synthetic Minority Oversam-
pling Technique (SMOTE). This technique en-
sures an equal number of diabetic and non-
diabetic data points, preventing bias caused by
under-sampling. SMOTE generates synthetic
samples that are close to the existing minority
class samples, as demonstrated in our dataset [2].

3.2. Monitoring of diabets
3.2.1. AI Background

An improved version of recurrent neural networks (RNN)
called long short-term memory (LSTM) deals with the
problem of storing long-term dependencies. The LSTM
was first presented by in 1997.The current input in an
LSTM network at a given moment in time step and the
output from the preceding time step are supplied to the
Long Short-Term Memory (LSTM) unit, which produces
an output that is forwarded to the subsequent time step.
For categorization purposes, the last hidden layer of the
last time step—and occasionally all hidden layers—are
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frequently used [31]. An LSTM network’s general archi-
tecture is shown in figure 4:

Figure 4: The high- level architecture of LSTM model [31].

By including three gated units—a forget gate, input
gate, and output gate—that allow for effective control
over the memory of previous states, LSTM circumvents
the vanishing gradient problem in RNN .Based on the
current input and the prior internal state, the input gate
determines how to update the internal state. How much
of the prior internal state should be lost is decided by the
forget gate. Lastly, the output gate controls how much
the internal state affects the system [31].

Figure 5: LSTM block with memory cell and gates [33].

Figure 5 shows the input, output, and cell values as
𝐶 , 𝑥, and ℎ. In other words, 𝑡− 1 is from the previous
LSTM block (or from time 𝑡 − 1), while 𝑡 indicates the
current block. Subscript 𝑡 indicates the time step value.
The hyperbolic tangent function is denoted by tanh, and
the sigmoid function is represented by 𝜎. Elements are
summed elementwise by operator + and multiplied ele-
mentwise by operator ×.

The equations below describe how the gates are com-
puted [33].

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑤𝑓ℎ𝑡−1 + 𝑏𝑓 ) (2)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑤𝑖ℎ𝑡−1 + 𝑏𝑖) (3)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑤𝑜ℎ𝑡−1 + 𝑏𝑜) (4)

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑤𝑐ℎ𝑡−1 + 𝑏𝑐) (5)

ℎ𝑡 = 𝑜𝑡 ⊗ tanh(𝑐𝑡) (6)

where the input and output gate vectors are denoted
by the letters f, i, and o, respectively. W , w, b and ⊗
represent weights of input,weights of recurrent output,
bias and element-wise multiplication respectively.

3.2.2. Dataset

We trained and evaluated our method on the Ohio T1DM
dataset, which is developed to advance research in blood
glucose levels. This data was gathered over eight weeks
from 12 individuals with type 1 diabetes. Each participant
supplied self-reported life events, insulin delivery records,
physiological sensor metrics, and continuous glucose
monitoring (CGM) data, all of which were anonymized by
a random ID. The dataset facilitates research on machine
learning with the goal of improving blood glucose level
prediction accuracy, which is important for managing
diabetes and developing artificial pancreas devices. The
dataset contains extensive data points: CGM readings
every 5 minutes, blood glucose levels from finger sticks,
insulin doses (bolus and basal), self-reported meal times
with carbohydrate estimates, exercise, sleep, work, stress,
and illness records, along with physiological data from
fitness bands. The first cohort used Basis Peak fitness
bands, while the second cohort used Empatica Embrace
bands, providing detailed metrics such as heart rate, skin
temperature, galvanic skin response, and step count. To
determine the ideal attribute set for the BG prediction
model, we test each of these attributes individually. The
quantity of training and test examples for every patient
is displayed in Table 2 [24].

3.2.3. Pre-processing data

The preprocessing process consists of several key steps,
as illustrated in Figure 6.

Loading Data Each XML file is parsed to create an
XML tree, which forms the basis for data extraction.

6



Yousra Beldjebel et al. CEUR Workshop Proceedings 1–15

Patient ID Gender Training examples Test examples
559 Female 10796 2514
563 Male 12124 2570
570 Male 10982 2745
575 Female 11866 2590
588 Female 12640 2791
591 Female 10847 2760

Table 2
Patient data with training and test examples of six patients .

Rounding Timestamps Each timestamp in the col-
lection is rounded to the nearest defined period (in this
example, 120 minutes).

Data Extraction The data extraction step depends on
the study:

• Study 1: Extracting glucose level.
• Study 2: Extracting glucose level and carbohy-

drates to analyze their effect on glucose levels.
• Study 3: Extracting glucose level, carbohydrates,

and steps.
• Study 4: Extracting glucose level, carbohydrates,

and quality of sleep (1 for Poor, 2 for Fair, 3 for
Good).

• Study 5: Extracting glucose level, carbohydrates,
and intensity of exercise (on a scale of 1 to 10,
with 10 being the most physically active).

• Study 6: Extracting glucose level, carbohydrates,
quality of sleep, and intensity of exercise.

Merging Data The extracted data are merged into a
single DataFrame indexed by the rounded timestamps.

Handling Missing Values Missing values for ex-
tracted data expected glucose level are filled with -1,
indicating nothing was recorded at those times. Rows
with missing glucose levels are dropped to maintain data
integrity.

Removing Duplicates Data is grouped by timestamps,
and the maximum value for each group is retained to
ensure each time span has a distinct entry.

Loading and Splitting Data The integrated data for
each patient is loaded, with timestamps converted to
datetime objects. The data is split into training (80%)
and testing (20]%) sets and then consolidated into two
comprehensive data frames: integrated_train_data and
integrated_test_data.

Data Scaling The data is normalized using MinMaxS-
caler to ensure all features are on a similar scale.

Figure 6: preprocessing steps .

4. Results and Findings

4.1. Diagnosis of diabetes
4.1.1. Performance criteria

Model Evaluation Metrics The following measures
were utilized to assess the suggested model. When mak-
ing predictions about occurrences, there will be four cat-
egories of outcomes[34]:

True Positives (TP): Someone with diabetes who was
anticipated to develop diabetes.

False Positives (FP): A person who did not have diabetes
was projected to have it.

False Negatives (FN): Someone with diabetes was not
expected to have diabetes.

True Negatives (TN): A person without diabetes was
not expected to have diabetes.

Accuracy (Acc.,) refers to the overall performance of a
classifier and its ability to properly predict data [18].as
this formula 7:

Acc =
TP + TN

TP + TN + FP + FN
(7)

Sensitivity (SN): The metrics describe the classifier’s
positive results , as follows:

Sensitivity (Recall) =
TP

TP + FN
(8)

Specificity (Sp.) refers to the negative result discovered
by the classifier and is expressed as:

Specificity (Sp.) =
TN

TN + FP
(9)
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Precision (Pr.,) is the ratio of total positive findings to
projected positive results , represented as:

Precision (Pr.) =
TP

TP + FP
(10)

The F1-Score (F1.,) represents the precision and recall
harmonic mean, with a range of [0,1]. The F1-Score
indicates classifier robustness, with the mathematical
expression :

𝐹1 = 2× 1
1

𝑅𝑒𝑐𝑎𝑙𝑙
+ 1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(11)

4.1.2. Machine learning results

Figure 7: ROC curve figure of five machine-learning models.

The ROC curve plot provides a visual comparison of
the performance of the five machine learning models.
The Area Under the Curve (AUC) measures the model’s
ability to discriminate between classes, with a higher
AUC indicating better performance. As shown in Figure
7 , the logistic regression model (blue curve) has a mod-
erate AUC, indicating adequate but not optimal perfor-
mance. The decision tree model (orange curve) performs
slightly better with an AUC of 0.89. The random forest
model (green curve) demonstrates the best performance
with an AUC of 0.98, indicating excellent classification
power. The support vector machine (SVM) model (red
curve) also performs well with an AUC of 0.94. The K-
Nearest Neighbor (KNN) model (purple curve) shows
good performance with an AUC of 0.92, although it is
slightly less efficient than the random forest and SVM
models

Based on the evaluation metrics in Figure 8, the Ran-
dom Forest classifier stands out as the best-performing
model for diabetes prediction in this study achieved the
highest accuracy (92.78%) .

Figure 8: Random Forest .

To ensure accurate evaluation, we conduct two sep-
arate investigations using different cross-validation
methodologies on the classifier that has shown high ac-
curacy in previous study (Random forest ): 10-fold cross-
validation and 5-fold cross-validation. We also employ
GridSearchCV during hyper-parameter tuning to deter-
mine the optimal model parameters.
The Random Forest classifier performed well with both
5-fold and 10-fold cross-validation, achieving overall ac-
curacies of 92.84% and 92.67%, respectively, as shown in
the Figure ?? and ??. This performance is comparable
to the initial evaluation without cross-validation, which
had an accuracy of 92.78% .

4.1.3. Deep learning results

Artificial Neural Network The following table 3 pro-
vides a detailed overview of the architecture and training
details of the Artificial Neural Network (ANN) employed
in this study.

• Results Before Enhancement Strategies The
initial performance of the ANN was evaluated
using the original architecture and training setup.
The plots in Figures 9 and 10 indicates that the
model performs well and learns efficiently. Both
the training and validation accuracy curves indi-
cate a consistent rise, beginning at 0.75 and attain-
ing 0.93 after 50 epochs. The validation accuracy
closely tracks the training accuracy, indicating
high generalization with minimal overfitting. The

8
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Details
Building the
Neural Network

- Four dense layers with ReLU activa-
tion: 64, 32, 16, and 8 neurons respec-
tively.
- L2 regularization (0.01) applied to
each dense layer.
- Batch normalization after the first
dense layer.
- Dropout (0.2) after each dense layer
to prevent overfitting.
- Additional dense layer with 4 neu-
rons.
- Output layer: Single neuron with
sigmoid activation.

Model Compila-
tion

- Loss function: Binary cross-entropy.
- Optimizer: Adam optimizer.

Callbacks
- Model checkpoints to save the best
model during training.
- Early stopping to halt training when
performance plateaus.

Enhancement
Strategies

- Increased model complexity (add
layers ).
- Implemented k-fold cross-
validation (10-fold and 5-fold).

Table 3
Summary of Model Architecture and Training Details

red dashed line at 0.93 represents the best valida-
tion accuracy attained, and the model’s accuracy
plateaus around this value after about 20 epochs,
suggesting convergence. The loss curves for both
training and validation data fall significantly in
the early epochs before stabilizing at low values,
showing effective learning and minimal overfit-
ting. Overall, the closely aligned training and val-
idation curves for both accuracy and loss show
that the model generalizes effectively to unknown
data.

• Results After Enhancement Strategies Follow-
ing the implementation of enhancement strate-
gies, the performance of the ANN was re-
evaluated.
Based on the plot in Figure 11 The validation ac-
curacy curve, although plateauing after a certain
epoch (around 30), still remains high throughout.
This suggests the model has achieved a good level
of performance on unseen data. Even though it
might not be significantly improving after that
point, it’s maintaining a strong performance over-

Figure 9: Model Plot .

Figure 10: Confusion matrix and Classification report
.

all. From the classification report in Figure 12 we
observe that the Precision is high for both classes,
at 0.94 for class 0 and 0.92 for class 1.Recall (how
many of the actual positive cases did the model
predict correctly) is also high for both classes, at
0.96 for class 0 and 0.88 for class 1. This means
that the model is good at not missing actual pos-
itive cases.finally the Accuracy is 0.94, which is
also high. This means that the model is perform-
ing well overall.

Figure 11: 5-fold cross-validation plot .

Based on the plots in Figure 17, the validation
accuracy (orange curve) reaches a high value of

9
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Figure 12: Confusion matrix and Classification report
.

around 0.93, which is a positive sign. The train-
ing loss and validation loss generally decrease
over time, which is what you expect as the model
learns. which suggests the model is generalizing
well to unseen data. Based on confusion matrix
and classification report the model performs well
in classifying occurrences, as evidenced by its 93%
overall accuracy. It shows good recall (0.94) and
precision (0.95) for class 0, indicating that true
negatives can be identified effectively, however
there are some misclassifications as class 1. Class
1 precision (0.89) and recall (0.92) are marginally
poorer, suggesting that some cases were incor-
rectly classified as class 0. Overall, the model
works well in both classes; however, it could be
even more accurate if it could be optimized to
accurately categorize instances of class 1.

Figure 13: 10-fold cross-validation plot.

CNN model The table 4 summarizes these essential
steps for building a CNN architecture, illustrating how
each component contributes to the construction and
training of the CNN model.

The plot in Figure 15 shows the accuracy of the
model over 100 epochs for both training and validation
datasets.The validation accuracy is consistently higher
than the training accuracy, indicating that the model is

Figure 14: Confusion matrix and Classification report
.

Details
CNN Layers

• Conv2D Layers:

– Layer 1: 64 filters
– Layer 2: 64 filters
– Layer 3: 32 filters

• BatchNormalization: Normalize
activations.

• MaxPooling2D: Reduce spatial di-
mensions.

• Dropout: Apply dropout regular-
ization.

• Flatten Layer: Convert 2D fea-
tures into a 1D vector.

• Dense Layers:

– Layer 1: 256 units
– Layer 2: 128 units
– Output Layer: 2 units for

binary classification

Model Compilation
• Loss Function: Categorical cross-

entropy.
• Optimizer: Adam.

Training Strategies
• Early Stopping: Stop training when

validation loss stops improving.
• Learning Rate Reduction: Reduce

learning rate on validation loss
plateau.

Table 4
Structured CNN Architecture Steps

performing well on unseen data. In the right plot, both
training and validation losses decrease rapidly, indicating
effective learning. The close alignment of training and
validation losses suggests the model generalizes well and
does not suffer from significant overfitting.The confusion
matrix (Figure 16 ) demonstrates that the model has a
large number of right predictions for both the negative
and positive classes, indicating good performance.

10
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Figure 15: CNN plot.

Figure 16: Confusion matrix .

Figure 17: Classification report.

4.2. Monitoring of diabets
4.2.1. Performance criteria

We utilize two standard performance metrics: root-mean-
square error (RMSE) and mean absolute error (MAE). Let
𝑥𝑖 be the actual value, 𝑥̂𝑖 the predicted value, and 𝑛 the
sample size.

Root-Mean-Square Error (RMSE) : RMSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥̂𝑖)2

(12)

Mean Absolute Error (MAE) : MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑥𝑖−𝑥̂𝑖|

(13)
RMSE and MAE values range from 0 to +∞, with im-
proved performance resulting from values closer to 0.

4.2.2. Lstm model

Here in table 5 is a summary of the compilation, training,
and evaluation details for the LSTM model:

Details
Compiling the Model - Optimizer: Adam

- Learning Rate: 0.001
- Loss Function: Mean Squared Error (MSE)

Training the Model - Epochs: 100
- Batch Size: 32
- Callbacks:
- Early Stopping: Monitors validation
loss, patience=10
- Model Checkpoint: Saves best model based
on validation loss to best_model_g.keras

Evaluating the Model - Metrics:
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)

Table 5
Summary of Model Compilation, Training, and Evaluation

based in figure 24 in all studeis the validation loss gen-
erally remains lower than the training loss after the initial
epochs, indicating good generalization performance. The
consistent patterns across different studies suggest ro-
bustness in the model training process.

Based on Table 6 provided for Mean Absolute Error
(mae) and Root Mean Squared Error (rmse) for each study,
here’s a comparison of models performance. Generally,
as more features are added to the model, the MAE tends
to decrease, indicating improved accuracy in predicting
blood glucose levels. Models including sleep quality and
exercise intensity show slightly lower MAE values com-
pared to those with fewer features.

Similarly, RMSE decreases as more features are incor-
porated, suggesting better overall predictive performance.
Models with more features show lower RMSE values, in-
dicating more accurate predictions.

Including additional features such as carbs, steps, sleep
quality, and exercise intensity consistently improves pre-
diction accuracy (lower MAE and RMSE). However, the
differences between models with more features compared
to those with fewer are relatively small but generally con-
sistent.
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Figure 18: Study 1 Figure 19: Study 2

Figure 20: Study 3 Figure 21: Study 4

Figure 22: Study 5 Figure 23: Study 6

Figure 24: Training loss and validation loss.

5. Technical Exploration
This section discusses the prototype implementation of
the AI-powered platform for comprehensive diabetes
management, focusing on its architecture, key compo-
nents, and functionalities that are important for ensuring
the platform’s scalability, usability and effectiveness in
real-world clinical settings.

5.1. Software Architecture
The software architecture of the AI-powered diabetes
management platform consists of several key compo-
nents that collaborate to collect, process, store, and an-
alyze data, providing valuable insights and supporting
clinical decisions. The general architecture is illustrated
in Figure 25 and includes the following steps:

Study Factors Analyzed MAE RMSE
study1 glucose level 0.07 0.10
study2 glucose level, carbs 0.0755 0.1019
study3 glucose level, carbs, steps 0.07321 0.10018
study4 glucose level, carbs, qual-

ity of sleep (1 for Poor; 2
for Fair; 3 for Good)

0.07258 0.09957

study5 glucose level, carbs, inten-
sity of exercise (1 to 10,
with 10 the most physi-
cally active)

0.07274 0.09993

study6 glucose level, carbs, qual-
ity of sleep, intensity of ex-
ercise

0.07 0.10

Table 6
Summary of Studies and Evaluation Metrics

Figure 25: Diabetes monitoring management system.

1. Data Collection: Patients manually gather es-
sential health data, such as blood glucose levels,
carbohydrate intake, quality of sleep, and exercise
intensity.

2. User Interaction: Patients use a mobile applica-
tion to enter the collected health data.

3. Data Transfer: The mobile application serves as
the primary interface for patients to input data,
which is then transferred to the web platform
for further processing, storage, and analysis. Pa-
tients can view their health metrics and receive
personalized recommendations..

4. Data Storage: The data storage layer securely
stores all collected data in a database.

5. Data Preparation: The platform formats the
new input data to align with the requirements of
the AI model.

6. Analysis and Prediction: The AI model an-
alyzes the prepared data to generate insights,
which are then presented to users.

7. Informed Decision-Making: The dashboard
provides healthcare providers with detailed
health data and trends for their patients. Doctors
can use the platform to fill out forms for diagno-
sis and monitoring. It also offers AI-generated
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insights to assist with clinical decisions, which
may include changes to prescriptions, lifestyle
advice, or scheduling further appointments

5.2. User Interface Design
The foremost aim of the UI design is to create a clean
and easy-to-use enjoy for users. This method making
the interface simple to navigate, ensuring all functions
are smooth to discover, and displaying data in reality. By
focusing on user-friendly layout, the platform objectives
to improve consumer engagement and satisfaction. The
following figures offer an overview of the platform’s
person interface:

6. Discussion
This study assessed various machine learning methods
for diabetes management. Using 5-fold cross-validation,
the second DNN architecture achieved the highest ac-
curacy of 94%, demonstrating the effectiveness of deep
learning techniques for diabetes prediction. Compared
to our results, other studies have shown lower accuracies
for most algorithms, with their Random Forest model
achieving only 80% accuracy, a notable difference from
our 93%. This discrepancy can be attributed to differences
in feature selection, data preparation, or hyperparameter
optimization methods.

In monitoring results, models incorporating additional
relevant features beyond glucose levels exhibited slightly
better predictive performance in terms of MAE and RMSE.
However, the differences between models were relatively
minor, suggesting diminishing returns as more features
are added.

It is important to consider that differences in datasets
used across studies can significantly impact results. Vari-
ations in data characteristics, such as sample size, de-
mographics, and data quality, may influence machine
learning model performance. While our study shows
promising results, future research should focus on re-
fining models, exploring advanced feature engineering
methodologies, and validating these strategies across di-
verse datasets to ensure robustness and generalizability.
Future work may also involve developing new AI models
for predicting diabetes-related complications and risk as-
sessments and integrating wearable devices for real-time
monitoring to enhance analytics capabilities and improve
prediction accuracy.

7. Conclusion
In summary, this study demonstrates the significant po-
tential of AI-powered platforms in transforming diabetes
management. By leveraging advanced machine learning

and deep learning algorithms, the proposed system ef-
fectively predicts diabetes onset, monitors glucose levels,
and assists healthcare professionals in providing person-
alized care.

The performance evaluation indicates that the DNN
achieved a validation accuracy of 94%, showcasing its
robustness and generalization capabilities. Enhancement
strategies, including increased model complexity and
k-fold cross-validation, further improved the model’s
performance, ensuring minimal overfitting and high pre-
cision. Similarly, the LSTM model demonstrated a strong
ability to predict blood glucose levels, with validation
losses indicating good generalization to unseen data.

Moreover, the inclusion of user-friendly interfaces for
healthcare professionals and patients ensures that the
platform is accessible and practical for everyday use. This
fosters better communication between patients and doc-
tors, streamlining the management of health records,
prescriptions, and medical analyses.

Future work will focus on expanding dataset diversity,
refining AI models, and incorporating real-time patient
feedback to further optimize the platform, ultimately
improving clinical decision-making and personalizing
treatment plans for diabetes care.
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