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Abstract
The human brain generates electrical activities measurable through electroencephalography (EEG). These signals are often
contaminated by noise, and so its not easy to do an accurate analysis and interpretation which is essential for clinical
applications such as epilepsy diagnosis, cognitive neuroscience, and brain-computer interfaces. Traditional denoising
techniques frequently fall short in effectively distinguishing between signal and noise, especially when the noise sources
exhibit complex and nonlinear characteristics. This paper explores the application of Generative Adversarial Networks
(GANs) in denoising EEG signals, offering a data-driven approach to learn the complex structures of both clean and noisy
EEG data. We detail the training of a classifier to distinguish between normal and abnormal EEG signals, the development of
an AutoEncoder to compress and reconstruct signals, and the use of a Wasserstein GAN (WGAN) to manipulate abnormal
signals towards normality in the latent space. Our results demonstrate the potential of GAN-based methods in enhancing
EEG signal quality, paving the way for more accurate clinical analyses.
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1. Introduction
The human brain is a complex network of connected
neurons that produces electrical activity; this can be mea-
sured through EEG. Although EEG signals are quite use-
ful to understand brain functioning, they are heavily con-
taminated by numerous sources of noise of very different
kinds: environmental interference, muscle activity, and
electrical artifacts[1]. For instance, myogenic artifacts
are created in muscle movements around the head and
face, while ocular artifacts are generated by eye blinks
and movements. Moreover, brain signals are complex
and non-stationary; this makes the separation of neural
activity from noise a challenging task. Denoising EEG
signals is important because it allows us to better ana-
lyze and interpret signals. This is important in various
settings, such as clinical applications for the diagnosis
of epilepsy, cognitive neuroscience, and brain-computer
interfaces[2, 3].

To meet these challenges, traditional denoising tech-
niques, such as band-pass filtering, independent compo-
nent analysis (ICA) [4, 5, 6], and wavelet transforms and
other domain transforms [7, 2, 8], have been put into
practice. For example, linear filtering methods may re-
move significant portions of the EEG signal along with
the noise, leading to a loss of critical information. There is
an assumption at the root of ICA that the sources are sta-
tistically independent, which might not hold in practical
scenarios. Wavelet transformation does provide a multi-
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resolution approach but can be computation-intensive,
and also this technique cannot deal with noise that is
highly non-stationary in nature. These techniques often
tend to delete the main important features of the origi-
nal EEG signal, especially in cases when noise sources
become complex and nonlinear in nature[9, 10].

In recent years, machine learning techniques like Gen-
erative Adversarial Networks have shown great potential
in denoising EEG signals. GANs were first introduced by
Goodfellow et al. in 2014 [11, 12], where we have two
neural networks, named the generator and the discrimi-
nator. The generator tries to generate data samples that
can come from the real data distribution, and the discrimi-
nator tries to differentiate between the real data examples
and those created by the generator. In the end, the GAN
updates its weights so that the generator can fool the
discriminator. This adversarial training process makes
GANs capable of learning complex structures of the data,
which subsequently becomes useful for problems like
denoising where typical methods fall short.

Traditional GANs have several training problems, such
as mode collapse and instability during training. To han-
dle these problems, (Arjovsky et al. 2017 [13]) intro-
duced Wasserstein Generative Adversarial Networks, or
WGANs[14]. The methodology presented in this paper
is comprised of three principal stages:

1. Classifier Training: Initially, a classifier is devel-
oped to accurately discern between normal and
abnormal EEG signals using the provided dataset.
This classifier forms the basis of our subsequent
denoising process by ensuring the precise identi-
fication of signal types.
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2. AutoEncoder Development: Subsequently, an
AutoEncoder is constructed and trained exclu-
sively on normal EEG data. This network is
tasked with compressing and reconstructing the
EEG signals, thereby establishing a representa-
tive latent space that captures the salient features
of normal brain activity. This latent space serves
as a critical reference for subsequent processing.

3. WGAN Training: In the final stage, a Wasser-
stein Generative Adversarial Network (WGAN)
is employed to refine the latent representations
of abnormal signals. The generator within the
WGAN is designed to transform these abnormal
latent representations so that they more closely
resemble those of normal signals, effectively de-
ceiving the discriminator. This transformation
facilitates an improved reconstruction of the orig-
inal signal, ultimately converting unhealthy sig-
nals into representations that are consistent with
healthy EEG characteristics—a process that holds
significant potential for clinical applications.

By leveraging the advanced capabilities of GAN-based
architectures, the proposed approach addresses several
limitations associated with traditional denoising tech-
niques. The integration of classifier training, AutoEn-
coder development, and WGAN-based latent space ma-
nipulation provides a comprehensive and robust solution
for EEG signal denoising. This integrated methodology
not only enhances the quality of EEG signals but also
increases their utility in clinical diagnostics and cogni-
tive neuroscience research, paving the way for the de-
velopment of more effective brain-computer interface
technologies.

2. Related Works
There are several recent studies that deals with denois-
ing EEG signals using various methodologies. Among
these, (Peng Yi et al. 2021 [15]) using transformer, pro-
poses a novel approach integrating non-local and local
self-similarity of EEG signals through a 1-D EEG signal
denoising network with a 2-D transformer.Using self-
similarity characteristics, EEGDnet has a improvements
in removing ocular and muscle artifacts compared to
other state-of-the-art models.

In (Eoin Brophy et al. 2022 [16]), the focus is on utiliz-
ing Generative Adversarial Networks (GANs) to denoise
EEG time series data. We have to deal with artifacts
induced in real-world Brain-Computer Interface (BCI)
applications[17, 18], which degrade performance.Using
GANs the model is able to, given noisy EEG signals trans-
forming it into clean ones,demonstrating promising re-
sults in quantitative metrics such as power spectral den-
sity and signal-to-noise ratio. This study has the capabil-

ity to handle multiple artifcat types, having the potential
of being used in applications in portable EEG devices.

Similarly we have (Yang An et al. 2022 [19]) approach
that proposes a new loss function to retain original infor-
mation and energy in the filtered signals, demonstrating
that the performances are comparable to manual denois-
ing methods while at the same time, we have a significant
reduction of the processing time.In this method, we have
also an incorporation of a new normalization method
ensures stable generation of EEG signals by the GAN
model, allowing for automatic denoising across different
subjects’ data[20].

Another notable contribution in this domain is pre-
sented by (Wang et al. 2022 [21]) in their work titled "An
improved Generative Adversarial Network for Denoising
EEG signals of brain-computer interface systems[22, 23].

The authors propose a novel GAN-based framework
that includes a generator with BiLSTM and LSTM layers
and a discriminator composed of multiple CNN layers.
This architecture aims to address the limitations of pre-
vious models by reducing mode collapse and improving
the convergence stability during training. The study
demonstrates that their improved GAN significantly out-
performs traditional methods and other deep learning
approaches, particularly in scenarios with high noise lev-
els. Their results show enhanced performance in terms of
root mean square error (RMSE) and Pearson correlation
coefficient (CC), making it a robust solution for real-time
EEG denoising in brain-computer interface (BCI) sys-
tems.

The improved GAN framework not only excels in de-
noising accuracy but also enhances the robustness of EEG
signal processing by effectively handling artifacts such as
eye blinks and muscle movements. The authors utilized
the EEGdenoiseNet (Zhang et al. 2022 [24]) dataset to
benchmark their model, which includes a diverse range
of artifact-contaminated EEG signals. The proposed
model’s ability to maintain high performance across vary-
ing signal-to-noise ratios (SNR) underscores its potential
for practical applications in BCI systems, where real-time
processing and reliability are crucial [25, 26].

Moreover, this study show the importance of incorpo-
rating BiLSTM and LSTM layers in the generator network
to capture temporal dependencies in EEG signals. The
discriminator network, consisting of multiple CNN lay-
ers, ensures that the generated clean EEG signals closely
resemble the true signals, thus enhancing the overall
quality of the denoised output.

In addition to the structural improvements, the train-
ing strategy employed by Wang et al. achieves superior
performance. By carefully balancing the learning rates
and optimizing the loss functions for both the generator
and discriminator, the model is able to avoid the common
problems of the GAN, overfitting and non-convergence.

Other interesting works that apply GAN-based mod-
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els for anomaly detection (Zenati et al. 2018 [27]). In
this works, state-of-the-art performances are shown on
image and network intrusion datasets. The approach con-
sists of using a GAN that learns a latent representation
of normal samples in such a way that the GAN is able
to detect anomalies by measuring reconstruction and
discriminator-based loss. High performance is shown on
the MNIST and KDD99 datasets in the method proposed.

The proposed method by (Niu et al. 2020 [28]), is called
LSTM-based VAE-GAN. This solves the inefficiency of
real-time space-to-latent space mapping when doing
anomaly detection. Here we exploit the temporal de-
pendencies that an LSTM Network can capture and the
reconstruction and discrimination abilities of VAE and
GAN respectively.

(Zhang et al. 2023 [29]) is a novel GAN-based model
for unsupervised anomaly detection in multivariate time
series (MTS). In this work, the authors use a self-training
framework wherein they have a teacher model gen-
erating high-quality pseudo-labels iteratively training
a student model. STAD-GAN involves a generator-
discriminator structure with a neural network classifier.
The generator maps the normal data distribution. The
discriminator amplifies the reconstruction error of abnor-
mal data to enhance recognition performance. It means
that the performance of the anomaly classifier will be
improved through self-training by iteratively refining the
dataset[30].

Our approach offers a different contribution. Unlike
existing methodologies that often rely on direct corre-
spondences between healthy and unhealthy signals for
denoising, our study uses a comprehensive data-driven
approach without such direct correspondences, by trans-
forming various types of unhealthy signals into healthy
ones within the same architectural framework.

Many methods proposed in the literature typically ad-
dress only one type of artifact or abnormality, these meth-
ods limits versatility and applicability across different
scenarios and they often require a specialized design or
customization for each specific type of artifact or abnor-
mality, which can be both time-consuming and resource-
intensive.

Specifically, our model is designed to handle poten-
tially a diverse range of signal abnormalities and artifacts,
ensuring that it can be retrained and adapted to improve
any given signal’s quality without the need for significant
modifications.

3. Proposed Model
Our approach to enhance abnormal data consists of three
main phases. The goal of our approach is to transform the
latent representation of an abnormal signal to resemble
those of normal signals. By doing so, the reconstructed

signal from this transformed latent representation will
be an enhanced version of the original abnormal signal.
This enhancement process exploit the combination of
classification, compression, and adversarial training to
improve the quality and normalcy of abnormal data.

3.1. Phase 1: Classifier
In the first step, we train a very simple binary classifier.
The classifier learns the difference between normal and
abnormal data, in fact it’s role is to accurately identify ab-
normal signals, which will later be processed to enhance
their quality.

3.2. Phase 2: AutoEncoder
We now train an AutoEncoder (as shown in Figure 2)
using only the normal data. The job of this AutoEncoder
is to compress and reconstruct each given signal. Once it
learns what the typical data distribution is, the AutoEn-
coder can then be able to reconstruct signals that reflect
normal behavior.

3.3. Phase 3: WGAN
For the final phase, we train a Wasserstein Generative Ad-
versarial Network (WGAN). The Generator in the WGAN
works on the encoded anomalous latent-space represen-
tation in such a way that the latter becomes more like the
latent representations of normal signals, those obtained
by pre-trained AutoEncoders. The Discriminator’s role
is to distinguish between the true normal latent repre-
sentations and the manipulated ones produced by the
Generator. The objective is to train the Generator to pro-
duce enhanced versions of the abnormal signals that fool
the Discriminator into classifying them as normal.

The objective function for Wasserstein Generative Ad-
versarial Networks (WGAN) is given by:

min
𝐺

max
𝐷∈𝒟

Ex∼P𝑟 [𝐷(x)]− Ez∼P𝑧 [𝐷(𝐺(z))] (1)

Here, P𝑟 denotes the real data distribution, P𝑧 denotes
the prior distribution of the input noise z to the Generator
𝐺, and 𝒟 is the set of 1-Lipschitz functions which the
Discriminator 𝐷 is a part of.

In particular, we will enforce the 1-Lipschitz constraint,
a gradient penalty term is added to the loss function. The
modified objective with gradient penalty (WGAN-GP) is:

ℒ = Ex∼P𝑟 [𝐷(x)]− Ez∼P𝑧 [𝐷(𝐺(z))]

+𝜆Ex̂∼Px̂
[︀
(‖∇x̂𝐷(x̂)‖2 − 1)2

]︀
(2)

where Px̂ is the distribution of the interpolated sam-
ples between the real and generated data, and 𝜆 is the
penalty coefficient.
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Figure 1: example of EEG signals taken from the dataset.

4. Implementation
More specifically, our method is developed in three prin-
cipal phases: training of the classifier to differentiate
between normal and abnormal signals, training of the
AutoEncoder signal compression and its reconstruction,
training of Wasserstein Generative Adversarial Network
(WGAN) that transform unhealthy into healthy signals.
Then each phase is described in detail with extensive
descriptions for data preparation, architectural choices,
training processes, and integration steps. Note that in our
experiments, we used Weights & Biases (wandb)—a pop-

ular tool used for tracking machine learning experiments.
It’s a strong platform for logging metrics, visualizing re-
sults, and collaborating on project implementations. In
our implementation, we have integrated wandb to moni-
tor training and the evaluation processes of our models.
In Table 1, we depict the various hyperparameters of the
models.
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Figure 2: Architecture of the AutoeEncoder. Reconstruction
of EEG signal .

Parameter Classifier WGAN Autoenc.
Batch Size 32 128 128
Epochs 1000 1000 1,000

Sequence Length 50 50 50
Hidden Size - 256 256

Discrimin. Size - 256 -
Generator Size - 1,024 -
Learning Rate - 0.0001 -
Learning Rate - 0.0005 -
Learning Rate 0.001 - 0.0005
Critic Iterations - 5 -

Table 1
Training Parameters for Classifier, WGAN, and Autoencoder

4.1. Phase 1: Classifier
4.1.1. Data Preparation

The main dataset (shown in Figure 1) used in our exper-
iments consists of EEG signals recorded under various
conditions. The Healthy dataset consists of over 1,500
one- and two-minute EEG recordings obtained from 109
volunteers. The EEG recordings were collected using a
64-channel setup with the BCI2000 system. Each subject
performed 14 experimental runs, which included:

1. Baseline, eyes open
2. Baseline, eyes closed
3. Task 1: Open and close left or right fist
4. Task 2: Imagine opening and closing left or right

fist
5. Task 3: Open and close both fists or both feet
6. Task 4: Imagine opening and closing both fists or

both feet
7. Task 1 (repeat)
8. Task 2 (repeat)
9. Task 3 (repeat)

10. Task 4 (repeat)
11. Task 1 (repeat)
12. Task 2 (repeat)

13. Task 3 (repeat)
14. Task 4 (repeat)

During these tasks, subjects performed or imagined
performing the movement corresponding to the stimuli
presented on the screen. All these tasks are designed to
evoke different types of motor and imagery behaviors
and have the event type tag-based indicators:

• T0: Rest
• T1: Onset of motion (real or imagined) of the left

fist (Tasks 1 and 2) or both fists (Tasks 3 and 4)
• T2: Onset of motion (real or imagined) of the

right fist (Tasks 1 and 2) or both feet (Tasks 3 and
4)

4.1.2. Unhealthy Dataset

The Unhealthy dataset comprises raw 18-channel EEG
recordings from 7 human participants with orthopedic
impairment during motor imagery (MI) tasks. Due to
component removal, some subjects have slightly fewer
channels (14 or 15) to eliminate noisy channels and im-
prove data quality.

Participants performed a series of MI-related trials
across three sessions, each consisting of 40 trials with
four different MI tasks presented in random order. Each
trial included:

• 3 seconds of fixation cross
• 4 seconds of visual cue
• 3 seconds of letters indicating the ready state
• 5 seconds of imaginary movement

The dataset includes filtered EEG data (8-30 Hz with a
notch filter) and labels for 10 movement types and a rest
state. The corresponding electrode names are provided
in TSV files, ensuring a 1:1 mapping with the CSV data.

Note that we have healthy and unhealthy signals, and
no correspondences between them ( so given an un-
healthy signal, we don’t have the corresponding healthy
one) .

4.1.3. Supplementary Dataset

After training the classifier for WGAN, we tested it using
the Epilepsy2 dataset, which contains single-channel EEG
measurements from 500 subjects. [31]

Each subject’s brain activity was recorded for 23.6 sec-
onds, resulting in a comprehensive collection of EEG
data. To facilitate detailed analysis and model training,
the dataset was divided and shuffled into 11,500 samples,
each representing a 1-second segment of EEG data sam-
pled at 178 Hz. This shuffling mitigates sample-subject
association and ensures a robust evaluation environment.

The dataset is divided into three groups: 60 samples for
training, 20 samples for validation, and 11,420 samples
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for the test. The validation set was appended directly to
the end of the training file to allow easier reproducibility
in case a validation set is required. The small size of
the training set will actually assist in testing the transfer
learning capabilities, and the test set retains the original
distribution for a fair evaluation.

The dataset contains five unique classification labels
related to different conditions or measurement locations:

1. Eyes open
2. Eyes closed
3. EEG measured in a healthy brain region
4. EEG measured in the region of a tumor
5. Subject experiencing a seizure episode

Our classifier achieved an impressive accuracy of 95%
on this dataset, demonstrating its effectiveness in dis-
tinguishing between seizure and non-seizure states. For
reference, the Mini Rocket classifier, a well-known model
in the field, achieves a test accuracy of 96.25%, highlight-
ing the competitive performance of our approach.

The actual classifier, autoencoder and wgan they will
be trained using the main dataset.

4.1.4. Classifier Architecture

We implemented a binary classifier using a neural net-
work architecture. The classifier consists of multiple fully
connected (dense) layers, each followed by a Rectified
Linear Unit (ReLU) activation function, and a final Sig-
moid activation function to output the probability of the
signal being abnormal. The detailed architecture is as
follows:

• Input Layer: Accepts the preprocessed EEG sig-
nal.

• Hidden Layers:

– First layer: 512 neurons, ReLU activation.
– Second layer: 256 neurons, ReLU activa-

tion.
– Third layer: 64 neurons, ReLU activation.

• Output Layer: 1 neuron, Sigmoid activation.

This architecture was chosen for its balance between
complexity and performance that allows the model to
classify effectively between unhealthy and healthy signal.

4.1.5. Training the Classifier

The classifier was trained using the Adam optimizer with
a binary cross-entropy loss function. The training process
involved multiple epochs, where the model parameters
were updated iteratively to minimize the loss function.
During training, the following steps were performed:

• Forward Pass: The input data was passed
through the network to obtain the output proba-
bilities.

• Loss Calculation: The binary cross-entropy loss
between the predicted probabilities and the true
labels was calculated.

• Backward Pass: Gradients were computed using
backpropagation, and the network weights were
updated using the Adam optimization algorithm.

The training loss is described in Figure 4 and its corre-
spondig loss of evaluation dataset Figure 3

Figure 3: Classifier eval loss while training

Figure 4: Classifier loss while training

4.2. Phase 2: AutoEncoder
4.2.1. AutoEncoder Architecture

The AutoEncoder was designed to compress and recon-
struct the EEG signals. The AutoEncoder consists of two
main parts: the encoder and the decoder. The encoder
reduces the dimensionality of the input data to a latent
space, capturing the essential features, while the decoder
reconstructs the data back to its original form from this
compressed representation.

• Encoder:

– First layer: 128 neurons, ReLU activation.
– Second layer: 64 neurons, ReLU activation.
– Third layer: 32 neurons (latent space),

ReLU activation.
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Figure 5: WGAN in the inference stage, the latent space of the generator output will be converted by the decoder of the
AutoEncoder (previously trained) to the corresponding Healthy signal.

• Latent Space: Represents the compressed form
of the input data.

• Decoder:

– First layer: 64 neurons, ReLU activation.
– Second layer: 128 neurons, ReLU activa-

tion.
– Output layer: Same size as input, linear

activation.

This architecture allows the AutoEncoder to learn
a compressed representation of normal EEG signals,
needed for the training of WGAN.

Figure 6: AutoEncoder loss while training

4.2.2. Training the AutoEncoder

The AutoEncoder was trained using the mean squared
error (MSE) loss function, which measures the difference
between the input and the reconstructed output. The
training involved the following steps:

• Forward Pass: The normal EEG signals were
passed through the encoder to obtain the latent
representation, and then through the decoder to
reconstruct the signals.

• Loss Calculation: The MSE loss was computed
between the original and reconstructed signals.

• Backward Pass: Gradients were computed, and
the network weights were updated using the
Adam optimizer.

The training was done over several epochs while check-
ing the performance of the model on the validation set in

terms of the reconstruction error. The objective was to
minimize the reconstruction error, which should allow
the AutoEncoder to reconstruct normal EEG signals. The
training loss is described in Figure 6

4.3. Phase 3: WGAN
4.3.1. WGAN Architecture

The WGAN consists of a generator and a discriminator.
The generator aims to transform the encoded latent space
of abnormal signals to resemble the latent space of normal
signals, while the discriminator evaluates the authentic-
ity of the generated signals. The detailed architectures
are as follows:

• Generator:

– First layer: 64 neurons, ReLU activation.
– Second layer: 128 neurons, ReLU activa-

tion.
– Output layer: Same size as latent space,

linear activation.

• Discriminator:

– First layer: 128 neurons, ReLU activation.
– Second layer: 64 neurons, ReLU activation.
– Output layer: 1 neuron, Sigmoid activa-

tion.

4.3.2. Training the WGAN

In order to provide stable training dynamics and avoid
problems like mode collapse, training of the WGAN was
performed with Wasserstein loss and gradient penalty
(WGAN-GP). The training process involved alternating
between optimizing the discriminator and the generator.
The following steps were performed during training:

• Discriminator Training:

– Real latent representations (from the en-
coder) and fake latent representations
(from the generator) were fed into the dis-
criminator.

– The discriminator’s loss was calculated
based on its ability to discern real from
fake representations.
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– Gradients were computed, and the discrim-
inator’s weights were updated.

• Generator Training:

– The generator produced fake latent repre-
sentations from abnormal signals.

– These representations were fed into the
discriminator.

– The generator’s loss was calculated based
on its ability to fool the discriminator.

– Gradients were computed, and the genera-
tor’s weights were updated.

The discriminator was trained more frequently than
the generator to maintain a balance between the two
networks. Thanks to this adversarial training process, the
generator learned how to convert signals from unhealthy
to healthy. The training loss is described in Figure 7

Figure 7: WGAN loss while training

4.4. Integration and Testing
After training each component, we integrated the models
(shown in Figure 8) to form a cohesive system. So, each
sub-model work will be:

• Classification: The classifier identified abnor-
mal signals from the EEG data.

• Encoding: The identified abnormal signals were
encoded into latent representations using the au-
toencoder’s encoder.

• Transformation: The WGAN generator trans-
formed these latent representations to match the
distribution of normal latent representations.

• Reconstruction: The autoencoder’s decoder
reconstructed the enhanced signals from these
transformed latent representations.

At inference time (shown in Figure 5) the output of
the generator will be the input of the decoder to have
the corresponding Healthy signal. The combined system
was additionally analyzed with other performance mea-
surements such as: accuracy, RMSE, MPC. mean entropy.
Additionally, qualitative assessments of the reconstructed

signals were performed to make sure that we remove ab-
normalities but also preserve essential features of the
EEG signals.

With this method, we will effectively enhance the qual-
ity of EEG signals and transform unhealthy signals to
healthy ones. The deployment of our model provides a
scalable solution for EEG signal denoising applicable in
many clinical and research applications.

5. Results
The evaluation of our model’s performance included sev-
eral key metrics: Root Mean Square Error (RMSE) calcu-
lated in the latent space, Pearson correlation, classifier
accuracy, and entropy changes of the samples after ma-
nipulation. The results are summarized in Table 2.

Table 2
Performance Evaluation Metrics

Metric Value
RMSE in Latent Space (GAN) 0.004166
Mean Pearson Correlation (GAN) -0.116
Classifier Accuracy (Healthy Samples) 0.9047
Samples with Increased Mean Entropy 585
Samples with Decreased Mean Entropy 1728

The RMSE in the latent space for GAN architecture
is very low (0.004166), meaning that the signals recon-
structed with the use of GAN are close to the expected
latent representations. This further means that the RMSE
value is quite low and close to zero, thus suggesting the
fact that GAN can successfully capture the structure of
signals.

The mean Pearson correlation for the GAN is -0.116,
which indicates a slight negative correlation between the
generated signals and the true signals. While it is not a
strong negative correlation, it still denotes that there is
more room of improvements for the model to generate
signals that closely resemble the true signal patterns.

The classifier, which identify the healthy samples for
the unhealthy one, achieved an accuracy of 0.9047. This
high accuracy shows that the classifier is effective in
differentiating between the EEG recordings of normal
and abnormal cases, giving a good basis for further pro-
cessing by the GAN. In an entropy perspective, after
manipulation was performed on the 2334 samples, 585
samples showed increased mean entropy while 1728 sam-
ples showed decreased mean entropy. Entropy represents
a measure of randomness or disorder in the signals. If the
entropy has increased, this can be taken as an indication
that the signals grew to be more complex, possibly indi-
cating the introduction of noise or artifacts. On the other
hand, a decrease in entropy means a decrease in signal
complexity, which may be explained by effective signal
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Figure 8: WGAN architecture. Unhealthy signal EEG to Healthy one.

denoising and enhancement by the GAN. In Figure 9, is
shown an example of transforming an unhealthy signal
to healthy one, its clear that probably by adding to the
loss also a constraint to the amplitude, we will obtain a
better signal.

Figure 9: Example of denoising an unhealthy signal

These results show promise for enhancing abnormal
EEG signals using a GAN-based approach. Particularly
encouraging is the very low RMSE and high classifier
accuracy, while the entropy results provide further in-
sight into the nature of signal transformations. Further
improvements in the model could potentially address the
negative correlation and refine the signal manipulation
process to achieve even better outcomes.

6. Conclusions and Future Works
This study has presented a novel framework for enhanc-
ing abnormal EEG signals using a GAN-based approach

that synergistically integrates a classifier, an AutoEn-
coder, and a WGAN. Using the unique capabilities of
each component, the proposed method effectively distin-
guishes between normal and abnormal signals, learns a
compact latent representation of healthy EEG patterns,
and transforms noisy or abnormal latent representations
towards normality. The experimental results, charac-
terized by a low RMSE in the latent space and robust
classifier performance, underscore the potential of the
framework to achieve meaningful denoising while pre-
serving critical signal features.

Our integrated approach addresses several of the lim-
itations inherent in traditional signal processing tech-
niques, offering a data-driven alternative that accommo-
dates the complex, non-stationary, and nonlinear nature
of EEG noise. Despite demonstrating promising results,
particularly in terms of classifier accuracy and latent
space convergence, the study also reveals areas where
further refinement is warranted, such as improving the
Pearson correlation between reconstructed and true sig-
nals and optimizing entropy measures in the enhanced
output.

Future work should explore the scalability of the frame-
work across broader and more diverse datasets, includ-
ing multi-channel recordings and clinical datasets en-
compassing a wider range of neurological conditions.
Moreover, the real-time implementation of the denoising
framework could significantly enhance its applicability
in BCI systems. Integrative research efforts that com-
bine EEG with other neuroimaging modalities, such as
fMRI or MEG, may further enrich the diagnostic preci-
sion and clinical relevance of the proposed methodology.
In general, the promising results of this study pave the
way for advanced EEG signal processing paradigms, of-
fering valuable insights into both cognitive neuroscience
research and practical clinical diagnostics.
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