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Abstract
Radiation plays a critical role in modern medical diagnostics and treatments but poses significant risks to healthcare personnel.
Traditional dose estimation methods, primarily based on dosimeters placed on selected body parts, neglect the varying
radiosensitivity of different organs. In this work, we present a system that models effective radiation dose by simulating three-
dimensional (3D) environments including radiation sources, shielding objects, and human models segmented by MeshCNN.
We employed a ray tracing algorithm to simulate radiation behavior, considering both spatial attenuation (via inverse square
law) and material shielding (via the Lambert–Beer law). Our approach allows for detailed analysis of organ-specific exposures
and the impact of environmental shielding. Results demonstrate the feasibility of using 3D simulation and ray tracing to
achieve a more comprehensive and accurate estimation of effective radiation dose in medical environments.
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1. Introduction
Radiation is widely utilized in the medical field for both
diagnostic and therapeutic purposes. Despite its clinical
benefits, radiation exposure poses significant health risks
to medical personnel, especially those working in envi-
ronments where frequent or prolonged exposure occurs.
Effective radiation protection strategies are thus essential
to mitigate these risks.

Radiation can be classified into particle radiation (e.g.,
alpha and beta particles) and electromagnetic radiation
(e.g., gamma rays and X-rays). While alpha and beta par-
ticles have limited penetration abilities, gamma rays and
X-rays can deeply penetrate tissues, potentially damag-
ing sensitive organs. Consequently, understanding the
behavior of radiation in complex environments and its
interaction with the human body is crucial for accurate
risk assessment and protection.

In current practice, radiation exposure is typically mon-
itored using personal dosimeters, devices worn on spe-
cific body parts to record cumulative doses. However,
this method has limitations: it does not account for the
varying radiosensitivity of different organs, the shielding
effects of surrounding objects, or the spatial distribution
of absorbed dose across the body. Moreover, improper
usage, calibration issues, and body self-shielding effects
can lead to inaccurate estimations.

The absorbed dose, expressed in Gray (Gy), measures
the energy deposited per unit mass of tissue but does not
reflect the biological impact of different radiation types.
To account for this, the equivalent dose (measured in
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Sievert, Sv) applies a radiation weighting factor. Further,
the effective dose incorporates tissue weighting factors,
providing a measure of the overall risk by considering
the varying sensitivity of different organs.

Exposure to ionizing radiation carries both determin-
istic and stochastic risks. Deterministic effects, such as
skin burns or cataracts, occur above a threshold dose.
Stochastic effects, including cancer, have no threshold
and their probability increases with dose. The Interna-
tional Commission on Radiological Protection (ICRP) rec-
ommends dose limits to protect workers and the general
public, emphasizing the ALARA (As Low As Reasonably
Achievable) principle.

This work proposes a novel method to estimate the
effective dose absorbed by a human body placed in a radi-
ation environment. We designed and implemented a sim-
ulation framework that combines 3D modeling, human
body segmentation, and ray tracing to simulate radiation
propagation and interaction within complex scenes. Us-
ing this framework, we can analyze radiation exposure
on a per-organ basis, taking into account shielding by
environmental objects and self-shielding by body struc-
tures.

Our methodology provides a step toward more detailed
and realistic radiation exposure assessments, with poten-
tial applications in healthcare facilities and radiological
safety evaluations.

2. Related works
Nowadays, there is a lot of effort on studying how ra-
diation affects patients [1, 2] and many works attempt
to estimate the radiation dose of various medical proce-
dures, such as in [3, 4, 5]. For this type of estimation, most
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of the methods used are based on Monte Carlo (MC) sim-
ulation(s), a method extensively used in medical physics
applications [6, 7, 8, 9] and considered the gold standard
thanks to its capability of calculating statistical behavior.
In addition to radiation dose estimation, MC techniques
are also used for radiotherapy device development [10]
and treatment planning [11, 12, 13].

However, the ability to model full particle transport
yields high computational complexity which makes MC
simulations prohibited for daily clinical practice. To over-
come this problem and achieve a fast dose calculation,
several Deep Learning frameworks have been developed,
e.g. [14, 15, 16].

Although this type of research is interesting, it does
not correspond exactly to the objectives of this work.
Indeed, we are more interested in the estimation of the
effective dose for radiation workers.

The report [17] is better suited for this purpose. How-
ever, due to the insufficient data provided by the coun-
tries, many of the estimated values are subject to a con-
siderable degree of uncertainty.

Indeed, the current trend is to monitor a person’s ex-
posure doses using devices called dosimeters. They rely
on numerous physical effects and can be of several types
[18]. The most significant for our purposes are:

• Personal dosimeters, used to assess the radiation
dose received by an individual who is wearing
the device. These are usually small devices worn
on the body itself, usually on the torso. While
passive dosimeters have traditionally been used,
the trend in radiation protection is increasingly
toward the use of active personal dosimeters [19];

• Area-monitoring dosimeters, used to detect radi-
ations in a selected area.

Although the use of dosimeters in estimation is very
widespread, it leads to some problems. First, surveys have
shown that dosimeters are not always properly used [20]
or well-calibrated [21]. Moreover, even when properly
used, these devices do not cover the entire body and are
therefore subject to phenomena that may reduce their
effectiveness. For example, the estimation provided by
personal dosimeters is subject to the self-shielding effect
of the body, especially when the rays come from behind.
On the other hand, estimation methods based on area
monitoring usually assume that a person remains in place,
which of course is not always the case for people in a
working environment.

Finally, it should be noted that all dosimeters register
cumulative doses, which may correspond to a high expo-
sure over a short period of time or a low exposure over a
longer period of time, but these have different effects on
the body.

3. Segmenting Human Models
with MeshCNN

MeshCNN [22] is a convolutional neural network archi-
tecture specifically designed for analyzing 3D triangu-
lar meshes. Unlike traditional CNNs operating on grid-
structured data, MeshCNN applies convolution and pool-
ing directly to mesh edges, making it particularly suited
for tasks such as segmentation and classification on ir-
regular 3D geometries.

Figure 1: Edge-collapse operation in MeshCNN

Edges are characterized by geometric features includ-
ing the dihedral angle between adjacent faces, internal
face angles, and normalized edge lengths. Mesh convolu-
tions operate on an edge and its neighboring edges across
adjacent triangles, extracting local geometric patterns.
Downsampling is achieved via edge collapse operations,
reducing mesh complexity while preserving important
features. Unpooling layers restore the original resolution
for segmentation tasks, as illustrated in Figure 1.

For our purposes, we leveraged pre-trained weights
made available by the MeshCNN authors, trained on
human body meshes segmented into eight anatomical
regions [23]. The training dataset comprises 370 human
models from the SCAPE [24], FAUST [25], and MIT [26]
datasets, segmented according to the conventions in [27].

Our dataset consisted of two human models — one
male1 and one female2 — processed via Blender3 to match
the required number of edges (approximately 2250) for
MeshCNN input compatibility. The segmentation results
1https://free3d.com/3d-model/base-mesh-ready-to-be-rigged-15483.
html

2https://sketchfab.com/3d-models/
study-human-female-sculpt-854fbf358991477aab518e07556da906

3https://www.blender.org/
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Figure 2: Segmentation obtained with MeshCNN for the two
chosen models

are depicted in Figure 2, with each anatomical region
labeled and color-coded accordingly.

This segmentation enables the calculation of organ-
specific effective doses based on which body parts are
impacted by radiation in the simulation.

4. Creating 3D Scenes
The first step in our system involves constructing realistic
3D scenes that represent potential radiation exposure
environments. For this purpose, we used the trimesh
Python library [28], which provides efficient tools for
manipulating and rendering triangular meshes.

Each scene is composed of three primary elements:

• Radiation Source: Modeled as a point source
with configurable position and emitted intensity.

• Human Model: Selected from the segmented
male or female meshes described previously,
placed at a user-defined location within the scene.

• Environmental Objects: A configurable set of
objects such as pillars, tables, or shields, each
characterized by its position, size, and material
properties (e.g., attenuation coefficients).

Figure 3 shows examples of two constructed scenes. In
the first (a), a single massive pillar stands between the
radiation source and the human figure, while the sec-
ond (b) depicts a more complex setting involving a table
assembled from multiple primitives.

Scene complexity can significantly influence radiation
propagation, with factors such as object shape, size, ma-
terial composition, and spatial arrangement playing key
roles. Therefore, our framework allows flexible scene
generation to evaluate a wide range of shielding scenar-
ios and their effects on radiation dose distribution.

Figure 3: Two scenes built using the trimesh library, including
a radioactive source, a human body and some objects partially
blocking the rays

(a) (b)

In the subsequent simulations, different human po-
sitions and environmental objects were systematically
varied to study their impact on effective dose estimation.

5. Modeling Radiation Exposure
To simulate the propagation of radiation within the con-
structed scenes, we developed a ray tracing algorithm
tailored to radiological modeling. Unlike traditional ray
tracing used in computer graphics for visual rendering,
our method focuses on modeling energy deposition and
attenuation due to interaction with materials.

5.1. Ray Tracing Methodology
The radiation source emits a large number of rays uni-
formly distributed in space. Each ray propagates until
it either exits the scene or is absorbed by an object. For
each ray, intersections with scene elements are detected
using trimesh ray-mesh intersection routines.

If a ray strikes the human mesh, the intersected tri-
angle is identified, allowing assignment of the absorbed
dose to a specific anatomical region. If a ray encounters
an object, the radiation intensity is attenuated according
to the material properties before continuing propagation.
For simplicity, scattering phenomena were neglected in
this implementation. Figure 4 illustrates an example of
rays propagating through a scene with a human model
and environmental objects.

5.2. Radiation Intensity Attenuation
The radiation energy carried by each ray diminishes due
to two mechanisms:
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Figure 4: Rays created with a ray tracing algorithm. For
demonstration purposes, the rays have been discretized with
less accuracy

5.2.1. Distance Decay

The intensity decreases with the square of the distance
from the source, following the inverse square law:

𝐼 =
𝐼0
𝑟2

where 𝐼0 is the source intensity and 𝑟 is the distance
traveled.

5.2.2. Material Attenuation

When a ray passes through an object, its intensity is
reduced according to the Lambert–Beer law:

𝐼 = 𝐼0 · 𝑒−𝜇𝑥

where 𝜇 is the linear attenuation coefficient of the mate-
rial and 𝑥 is the thickness traversed. Attenuation coef-
ficients were obtained from the NIST database [29] for
relevant materials.

5.3. Calculating the Effective Dose
To compute the effective dose:

1. For each human body part, the energy deposited
by rays intersecting that region is accumulated.

2. The absorbed dose (in Gy) is computed based on
deposited energy and local mass.

3. A radiation weighting factor (𝑤𝑅 = 1) is applied,
appropriate for gamma and X-ray radiation.

Table 1
Tissue weighting factors according to ICRP 103 (ICRP
2007)[30]

Tissue Tissue weighting factor
Bone-marrow (red), colon,

lung, stomach, breast
0.12

Gonads 0.08
Bladder, oesophagus,

liver, thyroid
0.04

Bone surface, brain,
salivary glands, skin

0.01

4. Tissue weighting factors (𝑤𝑇 ) specified by ICRP
103 [31] are used to adjust contributions from
different body regions, reflecting their varying
radiosensitivity (see Table 1).

Table 2
Percentage of red bone-marrow in the segmented parts

Adult >25 years
Head 8%
Torso 82%

Upper Arms 3%
Lower Arms 0%

Hands 0%
Upper Legs 7%
Lower Legs 0%

Feet 0%

Table 3
Percentage of total skeletal mass contributed by segmented
parts

Adult Male Adult Female
Head 14% 16%
Torso 33% 34%

Upper Arms 7% 6%
Lower Arms 5% 4%

Hands 2% 2%
Upper Legs 19% 19%
Lower Legs 14% 13%

Feet 6% 6%

For tissues such as bone marrow, bone surface, and
skin that are distributed across multiple anatomical parts,
weighting adjustments are made based on literature-
reported fractional distributions [32, 30, 33] (see Tables 2,
3, and 4).

Thus, the final effective dose is a weighted sum of
contributions from all body regions, accurately reflecting
both spatial and biological factors influencing radiation
risk.
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Table 4
Percentage of skin surface in the segmented parts

Adult
Head 9%
Torso 32%

Upper Arms 8%
Lower Arms 6%

Hands 5%
Upper Legs 19%
Lower Legs 14%

Feet 7%

6. Results
To validate our system, we designed a series of 3D scenes
involving different human models (male and female),
shielding objects, and materials. Radiation propagation
and effective dose were computed for each configura-
tion, allowing analysis of shielding effectiveness and the
impact of spatial arrangement.

For all experiments, we used three common materials
with known linear attenuation coefficients, summarized
in Table 5.

Table 5
Linear attenuation coefficients for selected materials.

Material Linear Attenuation Coefficient [cm-1]
Plexiglass 0.0436

Particleboard 0.194
Concrete 0.960

6.1. Effect of Different Shielding Materials
We first evaluated the effectiveness of different materials
in shielding radiation. In these experiments, a cubic ob-
ject was placed in front of the torso of the human model.
Figures 5a–f visualize the absorbed dose distribution for
each configuration.

The numerical results, reported in Tables 6, 7, and 8,
show that:

• Plexiglass provides limited shielding, resulting in
high total absorbed doses.

• Particleboard achieves moderate reduction in ab-
sorbed dose.

• Concrete demonstrates superior shielding, reduc-
ing the absorbed dose to approximately one-third
of that without any shielding.

In all cases, unprotected regions such as the head and
arms still absorb considerable radiation, highlighting the
importance of whole-body analysis.

Figure 5: Visualization of absorbed dose for different shielding
materials. Redder areas indicate higher radiation exposure.

(a) Plexiglass (female) (b) Plexiglass (male)

(c) Particleboard (female) (d) Particleboard (male)

(e) Concrete (female) (f) Concrete (male)

Table 6
Effective dose (mSv) with Plexiglass shielding.

Body Part Male Female
Head 0.385 0.344
Torso 6.778 6.265

Upper Arms 0.014 0.012
Lower Arms 0.005 0.002

Hands 0.001 0.001
Upper Legs 0.131 0.146
Lower Legs 0.022 0.018

Feet 0.004 0.003
Total 7.344 6.796

6.2. Self-Shielding and Body Orientation
Effects

Next, we investigated how body orientation relative
to the radiation source affects exposure through self-
shielding mechanisms. In one configuration, the human
model faced the source directly; in the other, it was turned
sideways.

Figures 6a–d depict the absorbed dose distributions for
these two configurations. Numerical results are shown
in Tables 9 and 10.

As expected, the torso absorbed the highest dose when
facing the source. In the side-facing configuration, to-
tal absorbed dose was reduced by approximately 50%,
demonstrating the significant protective effect of body
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Table 7
Effective dose (mSv) with Particleboard shielding.

Body Part Male Female
Head 0.385 0.344
Torso 2.940 2.496

Upper Arms 0.008 0.003
Lower Arms 0.005 0.002

Hands 0.001 0.001
Upper Legs 0.088 0.095
Lower Legs 0.022 0.018

Feet 0.004 0.003
Total 3.456 2.965

Table 8
Effective dose (mSv) with Concrete shielding.

Body Part Male Female
Head 0.385 0.344
Torso 2.224 1.967

Upper Arms 0.006 0.0008
Lower Arms 0.005 0.001

Hands 0.001 0.0009
Upper Legs 0.078 0.085
Lower Legs 0.022 0.018

Feet 0.004 0.003
Total 2.728 2.423

positioning.

Table 9
Total effective dose (mSv) for male model under different ori-
entations.

Orientation Front-facing Side-facing
Total Dose 22.026 mSv 10.851 mSv

Table 10
Total effective dose (mSv) for female model under different
orientations.

Orientation Front-facing Side-facing
Total Dose 22.372 mSv 12.228 mSv

Figure 6: Effect of body orientation on radiation absorption.

(a) Male (front-facing) (b) Male (side-facing)

(c) Female (front-facing) (d) Female (side-facing)

6.3. Shielding by Complex Objects
Finally, we evaluated scenarios involving more complex
shielding, such as a dining table modeled using multiple
primitives. Figure 7 illustrates this setup.

The results (Table 11) demonstrate how lower limbs
and parts of the torso were partially shielded, signifi-
cantly altering the absorbed dose distribution compared
to the unshielded case.

Figure 7: Example of complex shielding scenario with a dining
table.

Table 11
Effective dose (mSv) in the dining table scenario.

Body Part Male Female
Total Dose 21.970 mSv 22.322 mSv
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7. Conclusion and Future Work
In this work, we developed a system for estimating ef-
fective radiation dose absorbed by a human body placed
within a 3D environment containing a radioactive source
and various shielding objects. By integrating ray tracing
techniques with 3D modeling and human body segmen-
tation via MeshCNN, our method allows for spatially
resolved and organ-specific dose calculations, taking into
account both distance-based attenuation and material-
dependent shielding effects.

Experimental results demonstrate the ability of the
system to capture important phenomena such as self-
shielding, differential material absorption, and the influ-
ence of complex object geometries on dose distribution.
Comparative analyses across different shielding materi-
als and body orientations underline the importance of
detailed scene modeling for accurate radiation protection
assessments. Overall, this work represents a step toward
more comprehensive, flexible, and accurate tools for ra-
diation exposure assessment, with potential applications
in healthcare worker protection, medical imaging facility
design, and radiological emergency response planning.

Declaration on Generative AI
During the preparation of this work, the authors
used ChatGPT, Grammarly in order to: Grammar and
spelling check, Paraphrase and reword. After using this
tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the publication’s
content.
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