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Abstract
Crop classification is a crucial task in modern agriculture, enabling farmers to optimize crop selection based on specific
soil and climatic conditions, thereby improving yield and resource efficiency. This study presents a comparative analysis
of machine learning techniques for crop classification, utilizing key input features such as soil properties (pH, nitrogen,
phosphorus, potassium) and local weather data. Several machine learning models were evaluated for their performance in
terms of accuracy, precision, sensitivity, and overall robustness. Among the tested models, the Bagging classifier demonstrated
superior performance, achieving an accuracy of 99.77%, making it the most effective approach for the given dataset. The
findings highlight the significant potential of machine learning in transforming agricultural practices, offering a data-driven
pathway for sustainable crop management. The study also identifies future research opportunities, including the integration of
diverse data sources and addressing real-world implementation challenges, to further enhance the applicability and scalability
of these techniques.
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1. Introduction
Agriculture, the cornerstone of countless economies, pro-
vides sustenance, employment, and economic stability to
millions worldwide. Despite its critical importance, the
agricultural sector is under immense pressure due to a
rapidly growing global population, shifting climate pat-
terns, and widespread land degradation [1, 2]. To address
these challenges and ensure food security, the adoption
of smart agricultural technologies has become indispens-
able [3, 4]. Among these technologies, crop classifica-
tion systems have gained prominence for their ability
to provide farmers with data-driven insights that opti-
mize crop yields and profitability. Machine learning (ML)
has emerged as a transformative tool, enabling precise
and actionable recommendations to improve agricultural
outcomes. While a growing body of research explores
the application of ML algorithms for crop classification
and recommendation, identifying the most effective and
adaptable models remains a pivotal research goal [5, 6].

Building on earlier works that leverage deep learn-
ing and machine learning in various domains—including
computer vision [7, 8, 9], robot control [10, 11, 12], and
EEG-based brain activity classification [13, 14, 15]—this
study applies these advanced techniques to address criti-
cal challenges in agricultural productivity. Previous con-
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tributions have demonstrated the effectiveness of ma-
chine learning models in complex environments [16, 17],
as well as in health-related domains, including anxiety
detection through EEG signals [18, 19]. These interdis-
ciplinary efforts highlight the potential of advanced ML
models to deliver accurate, scalable, and context-specific
solutions across various applications.

In the agricultural domain, several studies have high-
lighted the potential of ML in advancing crop classifica-
tion. For instance, one study [20] proposed a system that
leverages ML algorithms to identify the top five crops
suitable for a specific region, using input parameters
such as rainfall, pH, temperature, and humidity. The
system also provided recommendations for optimal NPK
quantities, with Random Forest achieving the highest ac-
curacy of 95.45% after hyperparameter tuning. Another
investigation [21] explored multiple ML models, includ-
ing Logistic Regression, Random Forest, Support Vector
Machines (SVM)[22, 23, 24, 25], and Neural Networks,
for predicting suitable crops in a designated region. The
models, trained on 80% of the dataset and tested on the
remaining 20%, achieved accuracy rates exceeding 97%.
Among these, Neural Networks achieved 98.69% accu-
racy, while Random Forest recorded the best accuracy
of 99.31%. Similarly, a study [26] developed a system
to assist farmers in predicting suitable crops, improving
current crop cultivation, and detecting plant diseases.
The Random Forest algorithm demonstrated an accuracy
of 99%, demonstrating its effectiveness in agricultural
applications. A further investigation [27] employed a
Random Forest classifier to create a predictive system
for determining the most suitable crops for specific lo-
cations. Trained on a dataset featuring 31 crops and
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their distinct attributes, the system achieved an accuracy
of 95%. Another research [28] utilized an SVM-based
approach to classify soils into four fertility categories,
predicting suitable crops and recommending NPK fer-
tilizer proportions for improved yields[29]. Compared
with K-Nearest Neighbors (KNN) and Decision Tree (DT)
algorithms, SVM demonstrated the highest accuracy of
77.85%. Beyond these, an IoT-based architecture [30] in-
tegrated remote sensing data and ML algorithms for crop
forecasting, achieving an accuracy of 98.2% with super-
vised learning techniques. Similarly, an Android-based
application [31] employed Decision Tree classifiers to
assist farmers in crop selection based on soil nutrient
levels, providing high accuracy and efficient predictions.
Another study [32] proposed an ensemble learning-based
crop recommendation system using a voting classifier
to help farmers select optimal crops based on environ-
mental factors. Achieving an accuracy of 99.31%, the
system outperforms earlier methods, providing precise
recommendations and enabling data-driven decisions
to enhance agricultural productivity and sustainability.
In the context of region-specific applications, a smart
agricultural system designed for Algerian farmers [33]
demonstrated the effectiveness of the Multi-Layer Per-
ceptron (MLP) classifier, achieving an accuracy of 91.81%
in crop selection. Furthermore, a comparative study [34]
assessed popular algorithms such as Random Forest, De-
cision Tree, and KNN, concluding that Random Forest
offered superior performance with an accuracy of 99.32%.

While these studies highlight the potential of ML for
crop classification, identifying the most effective algo-
rithm remains an open challenge. This study addresses
this gap by performing a comprehensive comparative
analysis of several leading ML algorithms, including
Multi-Layer Perceptron (MLP), Support Vector Machines
(SVM), Decision Trees (DT), Random Forest (RF), K-
Nearest Neighbors (KNN), Naive Bayes (NB), Stacking,
Bagging, XGBoost, and LightGBM. Leveraging a pub-
licly available dataset that incorporates critical soil and
climate attributes, we evaluate these models based on
accuracy, adaptability, and computational efficiency.

2. Materials and Methods

2.1. Dataset Description
This study employed a publicly accessible dataset sourced
from Kaggle [35]. The dataset consists of 2,200 observa-
tions, with each entry corresponding to a specific crop.
It includes 100 data points for each of the 22 crops ana-
lyzed in this study. The dataset provides comprehensive
information on key parameters essential for crop rec-
ommendation, including nitrogen (N), phosphorus (P),
potassium (K), temperature, humidity, pH, and rainfall.

2.2. Data Preprocessing
Data preprocessing is a critical step to prepare the dataset
for machine learning models by ensuring data quality,
compatibility, and consistency. To address missing val-
ues and outliers, we employed median imputation, a ro-
bust method that replaces missing data points with the
median value of the dataset, ensuring the central ten-
dency of the data is preserved. Categorical features, such
as crop types, were encoded using the Label Encoding
technique, which assigns a unique integer to each cate-
gory. This method ensures compatibility with machine
learning algorithms while maintaining computational
efficiency. Furthermore, to address the varying scales
of numerical features that could hinder model perfor-
mance, we standardized the dataset using the MinMax
scaler to normalize values to a consistent range between
0 and 1. These preprocessing steps collectively enhance
data quality, improve model stability, and optimize train-
ing efficiency, ensuring a robust foundation for machine
learning applications.

2.3. Machine Learning Models
To ensure accurate crop classification, this study evalu-
ated a variety of machine learning models, each employ-
ing distinct approaches to analyze and classify data. The
investigated models include:

• Naive Bayes (NB): A probabilistic classifier that
applies Bayes’ theorem to estimate the likelihood
of different crop classes based on feature proba-
bilities [36].

• Support Vector Machines (SVM): A supervised
learning algorithm that identifies an optimal hy-
perplane to separate crop classes within the fea-
ture space [37].

• Random Forests (RF): An ensemble learning
technique that combines multiple decision trees
to enhance classification accuracy and mitigate
overfitting [38].

• K-Nearest Neighbors (KNN): A distance-based
algorithm that classifies data points by comparing
their proximity to the nearest neighbors in the
dataset [39].

• Decision Trees (DT): A tree-structured model
that predicts outcomes by sequentially applying
conditions based on feature values [40].

In addition, ensemble techniques such as Stacking
and Bagging were employed to combine the predictions
of multiple models, improving the overall reliability and
robustness of the classification.

The study also explored advanced algorithms, includ-
ing XGBoost and LightGBM, which utilize gradient
boosting frameworks and decision trees for efficient and
accurate classification and regression tasks.
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2.4. Evaluation Metrics
To assess the performance of the employed machine
learning models in crop classification, this study utilized
a range of evaluation metrics: accuracy, recall, precision,
and F1-score. Accuracy measures the overall proportion
of correctly classified crop types. Recall focuses on the
model’s ability to identify true positives, meaning the
proportion of actual positive cases the model correctly
predicted. Precision, on the other hand, evaluates the
model’s ability to avoid false positives, indicating the
proportion of predicted positive cases that were truly
positive. Finally, the F1-score provides a harmonic mean
between precision and recall, offering a balanced view
of model performance. By considering these metrics to-
gether, we gain a comprehensive understanding of the
model’s strengths and weaknesses in classifying crop
types [41, 42].

3. Results and Discussion

3.1. Impact of Data Preprocessing on
Model Performance

This section examines the role of data preprocessing
techniques in enhancing machine learning model perfor-
mance for crop classification. A systematic evaluation
was conducted to determine the impact of various prepro-
cessing steps on commonly used classification models, in-
cluding Random Forest (RF), Decision Tree (DT), Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and
Naive Bayes (NB). The preprocessing methods analyzed
included dataset splitting strategies, feature selection,
data cleaning, and normalization.

3.1.1. Dataset Splitting

Splitting the dataset into training and testing subsets is a
fundamental step in machine learning to evaluate model
generalization. This study assessed two widely adopted
data-splitting ratios:

• 50/50 split: Allocates equal portions of the
dataset for training and testing.

• 80/20 split: Assigns 80% for training and 20% for
testing, ensuring a larger training set.

Table 1 illustrates the performance of each model
across these splits for two feature sets (4 features and
7 features). The results show that the 80/20 split con-
sistently outperformed the 50/50 split, highlighting the
advantage of a larger training set in improving model
learning and accuracy. Furthermore, the inclusion of
additional features (7 features) resulted in notable perfor-
mance improvements across all models.

Table 1
Impact of Dataset Splitting and Feature Count on Accuracy

Classifiers
Splitting
(50:50)

4 features

Splitting
(80:20)

4 features

Splitting
(80:20)

7 features

RF 94.54% 96.13% 99.09%
DT 92.27% 94.72% 98.18%
NB 94.27% 94.31% 99.31%

SVM 68.09% 70.00% 96.59%
KNN 82.45% 87.72% 97.50%

3.1.2. Feature Selection

The study evaluated the impact of feature count on model
accuracy by comparing models trained on two feature
sets:

• 4 features: Temperature, pH, humidity, and rain-
fall.

• 7 features: The above features combined with
nitrogen (N), phosphorus (P), and potassium (K)
levels.

As indicated in Table 1, the inclusion of all seven fea-
tures substantially improved classification accuracy. This
underscores the importance of incorporating relevant fea-
tures to enhance the predictive capabilities of machine
learning models for crop classification tasks.

3.1.3. Data Cleaning

Handling missing values and outliers is crucial to ensure
model reliability. The study compared the performance
of models trained on:

1. Raw data containing missing values and outliers.
2. Data with missing values removed.
3. Data with missing values imputed using the

median.

Table 2
Impact of Missing Values and Outliers Processing Techniques
on Accuracy

Classifiers
Raw
Data

Remove
Missing

Replace
(Median)

RF 94.54% 93.00% 94.72%
DT 92.27% 89.54% 92.27%
NB 94.27% 91.72% 94.27%

SVM 68.09% 61.72% 68.27%
KNN 82.45% 77.45% 82.72%

Table 2 presents the accuracy of each model under
these scenarios. The results reveal that median imputa-
tion generally outperformed other approaches, demon-
strating its effectiveness in preserving the dataset’s in-
tegrity and boosting model performance. Conversely,

45



M’hamed Mancer et al. CEUR Workshop Proceedings 43–50

removing missing values led to reduced accuracy due to
the loss of potentially valuable data.

3.1.4. Data Normalization

Data normalization aligns features to a consistent scale,
mitigating issues caused by varying feature magnitudes.
The impact of normalization on model performance is
detailed in Table 3. Most models, particularly SVM and
KNN, exhibited significant accuracy improvements post-
normalization, with SVM achieving a notable 20.54%
increase. However, tree-based models like DT and RF
showed minimal improvements, reflecting their inherent
insensitivity to feature scaling.

Table 3
Impact of Data Normalization on Accuracy

Classifiers No Norm Norm
Accuracy

Improvement

RF 94.54% 95.18% 0.64%
DT 92.27% 92.81% 0.54%
NB 94.27% 94.27% 0.00%

SVM 68.09% 88.63% 20.54%
KNN 82.45% 88.36% 5.91%

3.1.5. Key Insights from Preprocessing Techniques

Figure 5 highlight the impact of various preprocessing
steps on the accuracy of the model, demonstrating that
an 80/20 data split consistently outperformed the 50/50
split by providing a larger training set, particularly for
smaller datasets. Normalization significantly improved
performance for models sensitive to feature scaling, such
as SVM and KNN, but had minimal impact on tree-based
models. The inclusion of seven features instead of four
led to better classification accuracy, emphasizing the im-
portance of selecting relevant variables. Additionally,
median imputation was shown to be the most effective
approach for handling missing values, maintaining the
integrity and precision of the data set compared to data
removal, which led to a performance drop.

3.2. Model Evaluation and Analysis
This section evaluates the performance of various ma-
chine learning algorithms applied to the crop classifica-
tion task, with an emphasis on analyzing their results
before and after hyperparameter tuning. The objective
is to identify the optimal model configurations and as-
sess the impact of preprocessing and tuning on model
performance.

The dataset was split into 80% training and 20% test-
ing, with model performance measured using standard
metrics such as Accuracy, Precision, Recall, and F1-score.

Figure 1: Improvement in Accuracy for Different Preprocess-
ing Steps.

Figure 2: Testing and Training Accuracy of Models (Before
Hyperparameter Tuning).

3.2.1. Evaluation Before Hyperparameter Tuning

Initial evaluations focused on assessing the baseline per-
formance of each algorithm without hyperparameter
tuning. Table 4 summarizes the results, showcasing the
strengths and weaknesses of the models in their default
configurations.

Stacking emerged as the best-performing model with
a testing accuracy of 99.54% and perfect scores across
all other evaluation metrics. Naive Bayes (NB) followed
closely with a testing accuracy of 99.31%, demonstrating
strong potential for crop classification. Random Forest
(RF) achieved 99.09% testing accuracy, further highlight-
ing the reliability of ensemble methods. Other models,
including SVM, KNN, and Decision Trees, performed well
but did not surpass these top-performing algorithms.

Figure 2 visually compares the testing and training
accuracies, reinforcing these observations. The initial
evaluation underscores the inherent strengths of each
model and sets a benchmark for further improvement
through hyperparameter tuning.
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Table 4
Performance Evaluation of Machine Learning Models Before Hyperparameter Tuning

Evaluation Criteria SVM KNN NB DT RF Stacking Bagging XGB LGB

Training accuracy (%) 98.18 98.75 99.6 100 100 100 100 100 100
Testing accuracy (%) 97.95 97.72 99.31 98.18 99.09 99.54 98.63 98.18 98.86
Precision (%) 98 98 99 98 99 100 98 98 99
Recall (%) 98 98 99 98 99 100 98 98 99
F1 Score (%) 98 98 99 98 99 100 98 98 99

Table 5
Hyperparameter Selection for Each Model

Classifier Hyperparameter

SVM C = 1000, Gamma = 0.1, kernel = ’rbf’
KNN Leaf_size = 1, P = 1, N_neighbors = 9, Weights = ’distance’, Algorithm = ’brute’, Metric = ’Minkowski’
NB Var_smoothing = 1e-09

DT
Criterion = ’gini’, Max_depth = None, Min_samples_leaf = 1, Min_samples_split = 10,

Splitter = ’best’

RF
Criterion = ’entropy’, Max_depth = None, Max_features = auto, Min_samples_leaf = 1,

Min_samples_split = 5, N_estimators = 50
Stacking final_estimator = LogisticRegression(C=1.0)

Bagging
base_estimator = model_rf, bootstrap = False, max_features = 0.75, max_samples = 1.0,

n_estimators = 20
XGB colsample_bytree = 0.5, learning_rate = 0.01, max_depth = 5, n_estimators = 1000, subsample = 1.0

LightGB learning_rate = 0.1, max_depth = 3, n_estimators = 500, num_leaves = 31, subsample = 0.5

3.3. Hyperparameter Tuning and
Performance Improvement

Hyperparameter tuning was conducted using a grid
search to optimize model parameters systematically. Ta-
ble 5 lists the selected hyperparameters for each model,
which were fine-tuned to enhance performance.

Following hyperparameter tuning, we re-evaluated the
performance of each model on the test set. Table 6 sum-
marizes the obtained results. The impact of hyperparam-
eter tuning is evident across all models, with significant
improvements observed in testing accuracy, precision,
recall, and F1-score.

The results are impressive. Across all evaluation met-
rics, we observed significant gains in performance for
each model (Figures 3 & 4). Notably, the Bagging en-
semble classifier emerged as the champion, achieving a
remarkable testing accuracy of 99.77%. This indicates
that the Bagging ensemble, by combining multiple deci-
sion trees with optimized hyperparameters, effectively
learned complex patterns within the crop data and deliv-
ered outstanding classification accuracy.

Following Bagging closely were Random Forest (RF)
and Stacking, both reaching an accuracy of 99.54%. This
highlights the effectiveness of ensemble methods and
combining multiple models for crop classification tasks.

It’s also worth noting the consistent performance of
Naive Bayes (NB) and XGBoost (XGB). These models

Figure 3: Testing Accuracy of Models (Hyperparameter Tun-
ing).

maintained a high accuracy of 99.31% while achieving
perfect scores (100%) for Precision, Recall, and F1-score.
This suggests their exceptional ability to correctly iden-
tify both positive and negative instances (specific crop
types) within the data.

The positive impact of hyperparameter tuning is evi-
dent across all models (Figure 5). For instance, SVM saw
a significant accuracy improvement of 1.14%, reaching
99.09%. Similarly, the Decision Tree (DT) benefitted from
tuning, with its accuracy increasing by 0.23% to 98.41%.
These improvements showcase the power of hyperpa-
rameter optimization in unlocking the full potential of
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Table 6
Performance Evaluation of Machine Learning Models using Hyperparameter Tuning

Evaluation Criteria SVM KNN NB DT RF Stacking Bagging XGB LGB

Training accuracy (%) 99.2 100 99.6 100 100 100 100 100 100
Testing accuracy (%) 99.09 98.41 99.31 98.41 99.54 99.54 99.77 99.31 98.86

Precision (%) 99 99 99 98 100 100 100 99 99
Recall (%) 99 98 99 98 100 100 100 99 99

F1 score (%) 99 98 99 98 100 100 100 99 99
Accuracy improvement 1.14 0.69 0 0.23 0.45 0 1.14 1.13 0

Figure 4: Precision, Recall, and F1 Score of Models (Hyperpa-
rameter Tuning).

Figure 5: Accuracy Improvement by Model (Hyperparameter
Tuning).

each model for crop classification.
Hyperparameter tuning unlocked the full potential of

the models, with ensemble methods such as Bagging and
Random Forest emerging as the most reliable classifiers
for crop identification. These findings provide a robust
foundation for deploying machine learning in agricul-
tural applications.

4. Conclusion
The research presented here compared various machine
learning algorithms for crop classification. Notably, Bag-

ging classifiers emerged as the frontrunner, achieving
an impressive testing accuracy of 99.77%. This supe-
rior performance, coupled with high precision and recall,
translates to the potential for significant advancements
in several key areas: Agricultural Productivity, Resource
Optimization, and Sustainable Food Systems.

Building upon this foundation, future research should
explore integrating additional data sources, such as satel-
lite imagery or real-time sensor data from fields. Addi-
tionally, investigating real-world implementation chal-
lenges to ensure accessibility and adoption by farmers
will be crucial in realizing the transformative potential
of this technology.
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