
Deep Learning Algorithms for Fragmented Solid Objects
Classification
Pasquale Santaniello1, Valerio Ponzi1 and Roberta Avanzato2

1Institute for Systems Analysis and Computer Science, Italian National Research Council, Rome, Italy
2Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy

Abstract
This paper presents a series of experiments conducted on an artificially generated dataset of 3D shapes, specifically focusing
on fragments of larger objects. Developed in collaboration with the Ente Parco Archeologico dei Fori Imperiali, this research
aims to create a system capable of recognizing and classifying objects from their fragments, with a particular emphasis on
ancient artifacts. To achieve this objective, we explore various methods for classifying fragmented objects, identifying the
most effective approach for this specific task. Although there are multiple techniques for 3D shape classification, this study
centers on the PointNet network, which directly processes 3D point cloud data. This method is not only computationally
efficient but also well-suited for handling irregular and unordered data structures, making it particularly advantageous over
traditional techniques. Furthermore, we investigate the impact of data augmentation and noise injection strategies to enhance
the model’s robustness. A comparative analysis with state-of-the-art architectures is also provided. Finally, we present the
trained models developed on our artificial dataset, demonstrating classification performance on par with the best existing
solutions, and highlighting the potential of our approach in the domain of fragmented object recognition.

1. Introduction
Fragmented solid objects are prevalent across various
domains in real-world scenarios, ranging from archae-
ological remains and geological samples to industrial
debris analysis. The task of classifying these fragments,
identifying whether they originate from external surfaces
or internal structures, or associating them with their orig-
inal object classes, is important for applications such as
artifact restoration, digital reconstruction, and quality
control.

Unlike complete 3D models, fragments present partial,
often noisy representations of the original objects. Sur-
face degradation, random break patterns, and loss of sig-
nificant geometric features introduce severe challenges
in analyzing fragmented solids. Furthermore, fragments
may exhibit highly irregular shapes, missing structural
continuity, and limited discriminative features, making
conventional 3D classification techniques inadequate.

In practical applications, especially in cultural her-
itage preservation, the ability to automatically analyze
and classify fragments could significantly accelerate the
processes of cataloging, reassembly, and reconstruction
of historical artifacts. However, building robust models
for fragment classification requires addressing several in-
herent difficulties: the unordered and sparse nature of 3D
data, variations in fragment size and orientation, and the
need for generalization across different fragmentation
patterns.

SYSTEM 2025: 11th Sapienza Yearly Symposium of Technology, Engi-
neering and Mathematics. Rome, June 4-6, 2025
$ ponzi@iasi.cnr.it (V. Ponzi); roberta.avanzato@unict.it
(R. Avanzato)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

This study aims to tackle these challenges by develop-
ing a deep learning-based framework capable of classi-
fying fragments of solid objects based on their geomet-
ric properties. By simulating fragmentation processes
on synthetic objects and introducing variability in frag-
ment shapes and surfaces, we create a controlled yet
challenging environment to evaluate the performance of
learning algorithms. The ultimate goal is to bridge the
gap between synthetic experiments and real-world appli-
cations, providing tools that can assist domain experts
in reconstructing fragmented objects from incomplete
information.

2. Related Works
The classification of 3D shapes has been extensively stud-
ied, leading to the development of several deep learning
architectures designed to process different representa-
tions of three-dimensional data. The most widely ex-
plored approaches include volumetric convolutional neu-
ral networks (volumetric CNNs) [1], multi-view CNNs
[2], spectral CNNs [3], and point-based methods such
as PointNet [4], as well as many other CNN based ap-
proaches [5, 6, 7, 8, 9, 10, 11].

Early attempts at 3D shape classification relied on volu-
metric CNNs, which operate on voxelized representations
of objects [12]. These methods encode a 3D shape as a
binary or real-valued 3D tensor and apply 3D convolu-
tions to extract features. Although effective, volumetric
approaches suffer from high memory consumption and
computational complexity due to the sparsity of voxel
grids, making them impractical for high-resolution mod-
els. More recent refinements, such as Vote3D [13], at-

51

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ponzi@iasi.cnr.it
mailto:roberta.avanzato@unict.it
https://creativecommons.org/licenses/by/4.0


Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

tempt to mitigate these issues by improving the handling
of sparse volumetric data, but overall efficiency remains
a challenge.

Multi-view CNNs offer a different solution by render-
ing 3D objects into multiple 2D images from various
viewpoints. These images are then processed using stan-
dard 2D convolutional networks, using well-established
techniques from image classification. This approach has
achieved state-of-the-art results in certain benchmarks,
benefiting from the high performance of 2D CNNs. How-
ever, multi view methods introduce a trade-off: while
they capture shape details effectively, they rely on prede-
fined viewpoints, leading to potential information loss
and requiring an extensive number of views to achieve
robust performance.

An alternative approach is provided by spectral CNNs,
which operate directly on 3D meshes by applying the
Fourier transform [14]. This enables classification in the
frequency domain, offering advantages such as spectral
pooling, which efficiently reduces dimensionality while
preserving important structural information. Neverthe-
less, spectral CNNs are primarily designed for manifold-
based representations, making their application to non
isometric shapes more challenging.

A more direct and flexible solution is to learn from
raw 3D point clouds [15], which represent objects as
unordered sets of points in space:

𝑃 = {𝑝𝑖 | 𝑖 = 1, . . . , 𝑛}, 𝑝𝑖 ∈ R3.

Each point 𝑝𝑖 encodes spatial coordinates and, optionally,
additional attributes such as color or surface normals.

PointNet represents a major breakthrough in this field,
as it directly processes point cloud data without the need
for intermediate projections or transformations. It is
designed to be invariant to the ordering of points and ef-
fectively captures both local and global features through
a symmetric function and a max-pooling aggregation
step. Thanks to these properties, PointNet offers a highly
efficient and accurate solution for 3D shape classification
and segmentation, outperforming traditional approaches
in both speed and performance.

Another advantage of PointNet lies in its computa-
tional efficiency. The following table (1) compares the
number of parameters and floating-point operations
(FLOPs) per sample for different architectures:

Architecture Parameters (M) FLOPs/Sample (M)
PointNet 3.5 148
SubVolume 16.6 3633
Multi-View CNN 60.0 62057

Table 1
Comparison of computational efficiency for deep architectures
in 3D shape classification.

From this analysis, it is evident that PointNet offers a

favorable balance between accuracy and efficiency, mak-
ing it a strong candidate for real-time applications and
large-scale 3D data processing. While Multi-View CNNs
remain highly accurate, their computational complexity
and memory requirements limit their practicality. Mean-
while, volumetric and spectral methods struggle with
scalability, particularly for high-resolution models.

PointNet++ [16] extends the original architecture by
incorporating hierarchical feature learning. By apply-
ing PointNet recursively on progressively refined sub-
sets of points, PointNet++ captures local dependencies
while preserving the efficiency and flexibility of the orig-
inal model. This enhancement significantly improves
performance on tasks such as object segmentation and
classification.

Recent works have also explored the flexibility of
graph-based architectures for 3D data, such as Graph
Neural Networks (GNNs) [17, 18].

The next section provides a detailed overview of the
PointNet architecture, discussing its main components
and design principles in the context of fragmented object
classification.

3. PointNet Architecture
Before explaining why PointNet was chosen as the frame-
work for our classification task, it is essential to examine
the properties of point clouds, which differ significantly
from other 3D representations such as voxel grids or
meshes.

A point cloud is defined as an unordered set of 3D
points in R𝑛, where each point is defined by its spatial
coordinates and, in some cases, additional attributes such
as color or surface normals. Unlike structured data for-
mats such as images or voxel grids, point clouds lack an
inherent spatial arrangement, which introduces unique
challenges for deep learning models. One of the most
significant properties of point clouds is their unordered
nature. Since there is no predefined structure, a model
designed to process point clouds must be permutation-
invariant. This means that different orderings of the
same set of points should yield the same result, ensuring
consistency in processing. Another main aspect is the
interplay between local and global dependencies. The
geometric structure of a point cloud is dictated by the
spatial relationships among its points. A well-designed
model must be capable of capturing both fine-grained
local details and broader global structures to accurately
interpret the data. In addition, an effective classification
model must exhibit invariance to rigid transformations
such as rotations and translations. Regardless of how an
object is placed in space, its fundamental characteristics
should remain recognizable, ensuring reliable classifi-
cation across different orientations. These properties

52



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

highlight the complexity of working with point clouds
and the importance of designing specialized deep learn-
ing architectures that can effectively handle their unique
characteristics.

PointNet was chosen for our classification task because
of its ability to directly process raw point-cloud data
while preserving the main properties described above. It
introduces an innovative approach that avoids the com-
putational overhead associated with volumetric and mul-
tiview methods. The network consists of three key com-
ponents: a symmetric function for permutation invari-
ance, a hierarchical feature aggregation mechanism, and
a transformation network for spatial alignment. PointNet
is designed to efficiently process unordered point cloud
data by leveraging a symmetric function that ensures
permutation invariance. Since the order of points in a
point cloud is arbitrary, the network aggregates infor-
mation through a symmetric operation. Specifically, it
approximates a general function 𝑓 defined over a set of
points as:

𝑓({𝑥1, . . . , 𝑥𝑛}) ≈ 𝑔(ℎ(𝑥1), . . . , ℎ(𝑥𝑛)) (1)

where ℎ : R𝑁 → R𝐾 represents a feature transforma-
tion that maps each point to a higher-dimensional space,
while 𝑔 : R𝐾 × · · · × R𝐾 → R is a symmetric func-
tion, typically implemented as a max-pooling operation.
This approach allows the network to extract meaningful
point-wise features before aggregating them into a global
descriptor, preserving permutation invariance.

After extracting point-wise features, a global max-
pooling operation is applied to condense the most rel-
evant information into a fixed-length vector. This step
enables the network to generalize across different point
clouds, making it particularly effective for classification
and segmentation tasks. By focusing on the most salient
features, the model can recognize geometric structures
regardless of the input point order.

To further enhance robustness, PointNet incorporates
a joint alignment mechanism that addresses the challenge
of arbitrary geometric transformations in raw point cloud
data. The network includes a transformation module that
learns an affine transformation matrix and applies it to
align input points, ensuring invariance to translation
and rotation. This alignment improves the consistency
of point cloud representations. To stabilize training, a
regularization term is introduced to enforce the transfor-
mation matrix to be close to an orthogonal matrix:

𝐿reg = ‖𝐼 −𝐴𝐴𝑇 ‖2𝐹 (2)

where 𝐴 is the learned transformation matrix. This
regularization helps maintain transformation stability,
preventing unwanted distortions in aligned point clouds.

Given these properties, PointNet is particularly well
suited for our task of classifying 3D shape fragments. The
next section details the dataset used in our experiments.

4. Dataset
One of the main challenges in this research was the lack
of publicly available datasets for fragmented 3D objects.
To address this, we generated an artificial dataset consist-
ing of 3D objects created using the open-source software
Blender [19]. This dataset was designed to simulate the
problem of classifying object fragments, a key step in
reconstructing partial shapes.

The dataset comprises three main object categories:
spheres, cubes, and icospheres. Each object was sys-
tematically fragmented using a Python script within the
Blender environment. After fragmentation, each piece
was exported in STL format and labeled as either external
or internal. External fragments contain portions of the
object’s outer surface, while internal fragments originate
from the object’s core. To better approximate real-world
conditions, random surface deformations were applied
to external fragments, simulating natural aging effects.
Consequently, internal fragments retained smooth sur-
faces, while external fragments exhibited rough and ir-
regular patterns. Fragmentation was carried out using
two distinct cutting strategies. The first approach, regu-
lar cutting, involved dividing the object at fixed intervals
along the 𝑥, 𝑦, and 𝑧 axes, resulting in uniformly shaped
fragments. The second approach, random cutting, in-
troduced variability in the division intervals, producing
fragments of irregular sizes.

The dataset was structured into three different pro-
ductions. The first production combined both regular
and random cutting methods, yielding a total of 5,461
fragments. Among these, 1,130 were classified as inter-
nal fragments, with 564 originating from regular cuts
and 566 from random cuts. The remaining 4,331 were
labeled as external fragments, consisting of 2,164 gener-
ated through regular cuts and 2,167 through random cuts.
The second production exclusively employed the random
cutting method, generating a total of 7,259 fragments.
Of these, 2,093 were categorized as internal fragments,
while 5,166 were classified as external. Lastly, the Auriga
fragmentation was conducted using a real object, the
Auriga, which was fragmented specifically for testing
purposes. This process produced only nine fragments,
all of which were labeled as external.

A challenge in this dataset is the imbalance between
external and internal fragments, with external fragments
being significantly more numerous. This imbalance could
negatively impact model training, leading to biased pre-
dictions. To mitigate this, we applied data augmentation
techniques [20, 21], as detailed in the following section.

53



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

Production ID Oversampling Factor Internal Fragments External Fragments Total Fragments
3 2 4331 2260 6591
4 3 4331 3390 7721
5 4 4331 4520 8851
6 1 4331 (1130 + 2093) 7554

Table 2
Overview of final dataset compositions after applying oversampling and noise augmentation strategies.

5. Model
The classification network takes as input a set of 𝑛 points,
applies input and feature transformations, and aggregates
point features through a max-pooling operation. The
final output consists of classification scores over 𝑘 classes.

The architecture includes two transformation net-
works. The first transformation network is a mini-
PointNet that processes the raw point cloud and predicts
a 3 × 3 transformation matrix. It consists of a shared
multilayer perceptron (MLP) applied independently to
each point, with output sizes 64, 128, and 1024. This is
followed by a global max-pooling operation across all
points and two fully connected layers with 512 and 256
units, respectively. The resulting matrix is initialized as
the identity matrix. Except for the final layer, all layers
use ReLU activations and batch normalization.

The second transformation network follows a similar
structure but outputs a 64× 64 transformation matrix,
also initialized as the identity. A regularization term,
weighted by 0.001, is added to the softmax classification
loss to encourage this matrix to remain close to orthogo-
nal.

Following the transformation steps, a global max-
pooling layer aggregates the point-wise features into a
compact global descriptor. This descriptor is then passed
through an MLP consisting of three fully connected lay-
ers with 512, 256, and 2 units, respectively, for binary
classification. In the case of multi-class classification, the
final dense layer is modified to output 3 units instead of
2.

Dropout with a keep ratio of 0.3 is applied after the
second-to-last fully connected layer (dimension 256). An
additional dropout layer was added as it empirically im-
proved model performance.

The network is trained using the Adam optimizer with
an initial learning rate of 0.001, momentum 0.9, and a
batch size of 32.

Several models were developed during the experimen-
tal phase. The main differences between them lie in
the data augmentation techniques applied prior to train-
ing. Regarding binary classification, the best-performing
model is referred to as Model 2 in the results. Model 3,
Model 4, and Model 5 share the same architecture but
were trained on different sample compositions. For the
multi-class classification task, a slightly different model

was used, where only the final MLP layer differs, adapting
the output dimension to the three target classes.

6. Data Augmentation Techniques
To address dataset imbalance and improve model gener-
alization, we applied various data augmentation tech-
niques, including oversampling, noise injection, and
dataset mixing. To enhance the performance of the
model and address the imbalance of the dataset, we im-
plemented several data preprocessing and augmentation
strategies. First, we applied oversampling, replicating
samples from the minority class (internal fragments) to
balance the dataset. We experimented with different
replication factors (𝑘 = 2, 3, 4) to assess their impact
on model performance. Another strategy was random
data shuffling, in which we shuffled the dataset after each
training epoch. This approach minimized the variance of
the batch composition and reduced the risk of overfitting,
improving the generalization of the model.

To further enhance the robustness of the model, we
introduced noise injection, adding small random pertur-
bations to the coordinates of the points. This technique
prevented the model from memorizing exact spatial pat-
terns, thereby improving its ability to generalize to un-
seen data. Lastly, we used dataset mixing, combining
fragments from different dataset productions. This in-
creased data variability and allowed us to test the model’s
ability to adapt to different fragmentation strategies. The
final dataset configurations used in the training are sum-
marized in 2.

Similar strategies to enhance robustness and gener-
alization through data transformation and noise-based
techniques have been successfully applied in other do-
mains, such as EEG signal processing and affective com-
puting, including the use of GAN-based denoising [22],
CycleGAN for cross-domain adaptation [23], and Trans-
former architectures for sentiment classification [24].

7. Noise Addition and Tolerance
Once we have obtained a very good model for the classi-
fication of the dataset, thanks to data augmentation tech-
niques,we investigated how much noise (points are jitted
on all three axes) could be inserted without changing the

54



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

performance of the network, and also if the procedure
of adding noise increased or decreased the generaliza-
tion capability of the network. This procedure is also
called noise injection. The noise injection method refers
to adding ’noise’ artificially to the ANN input data during
the training process. Jitter is one particular method to im-
plement noise injection. With this method,a noise vector
is added to each training case in between training itera-
tions. This causes the training data to ’jitter’ in the feature
space during training, making it difficult for the ANN
to find a solution that fits precisely the original training
dataset, and thereby reduces the overfitting of the ANN.
We are actually able to inject noise inside the dataset
owing to a random uniform distribution applied on the
training sample,varying the lower and upper bounds of
our distribution to check tolerance and generalization
capabilities. We tried to change different levels of jitter
to actually try to understand when the model would col-
lapse in terms of parameters. We tried ranges of uniform
distribution from (-0.005,+0.005) to (-0.100,+0.100). This
last interval could be considered the breaking point of
performance of our model, as we will show in the results
section. At testing time instead, we did experiments to
check which jitter injection would cause the net to be ca-
pable of better generalizing when classifying a different
dataset. Different noise ranges were tested 3.

Noise Range Change of performances
(-0.005,+0.005) Default case
(-0.010,+0.010) Slow change of performances
(-0.050,+0.050) Slow change of performances
(-0.100,+0.100) High drop of performances

Table 3
Comparison of model complexity and computational cost
(FLOPs per sample) for selected 3D shape classification archi-
tectures.

Then to test what range of noise will increase the gen-
eralization capability of the net, we created a new Dataset,
to obtain a new Dataset that is very different from the
previous one especially considering the minor class (the
Dataset was balanced by adding random fragments).

The noise in the range of (-0.010,+0.010) will make our
model (trained on the first dataset, different from the
new one) achieve the same performances as a classifier
trained directly on the new dataset (see the Result section
for a better explanation). This could probably mean that
this range of noise will not throw down performances
on the dataset while maintaining a good generalization
power on different Datasets. All the results are shown in
the result section with attached confusion matrices.

8. Extension to Multi-Class
Classification

One thing that we noticed during the implementation of
our model,was actually based on how the Dataset was
composed. As we saw in section, the Dataset used for
training and testing the model was obtained by fragment-
ing objects starting from three classes: Sphere, Icosphere
and Cube. Considering the fact that this kind of algo-
rithm could be used in order to actually try to ’recon-
struct’ objects starting from its fragments as final goal,
i.e. a 3D puzzle,we thought that one further step in or-
der to extend the algorithm to this task was to try to
implement a multi-class classification instead of a binary
one, trying to deduce the ’family’ of objects where each
fragment comes from. For doing this we had to slightly
modify first the Dataset composition and related label’s
extraction and then we also modified a bit the model in
order to make it able to predict over the three mentioned
classes,Sphere, Icosphere and Cube.

Before saying how training and test samples are ob-
tained for this classification task, we have to say that
since during our experiments we noticed that the ’inter-
nal’ fragments are very similar between them also across
different starting classes, using also this kind of frag-
ments for the new classification task was too challenging
for our application. That is why we decided to create two
productions of samples made entirely by the ’external’
fragments and use them to train and test the new model.
So what we obtained are two productions: Production
1: made of all the external fragments of the first pro-
duction in Section, obtaining 4331 external fragments.
Production 2: we tried to increase the number of samples
for training, and to do this we added all the ’external’
fragments of the second production in Section obtaining
9497 ’external’ fragments. Labels : Now that we created
a dataset made only of ’external’ fragments, since they
are the most ’discriminative’ ones,we had to label each
of these fragments with the original class where it was
fragmented, and this was easy since in each fragment’s
name exported from Blender, there was the initial object
where it was composed. So we could actually retrieve
labels from the fragment’s name just by processing the
string of the name. The model used for prediction is very
similar to the one described in Section, the only thing that
changes is the actual last dense layer of the MLP since
it has 3 units instead of 2. One possible solution to the
problem, to actually extend the task of classifying frag-
ments of object in the object they were composed, could
actually be to introduce new families of objects that differ
a bit from the other ones, or maybe try to apply some
Data Augmentation making the model able to distinguish
between Sphere and Icosphere during classification.

55



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

9. Results
In this section, we present all the results obtained during
our experiments, providing comparisons and highlight-
ing the most effective techniques for classifying 3D object
fragments. We begin by reporting the accuracy achieved
by our model without any data augmentation, using stan-
dard noise injection. The dataset used for training is Pro-
duction 1, while the test set consists of a random subset
of the training data. As a starting point for our experi-
ments, we compare the performance of models trained
on samples converted using Open3D and Trimesh.

Conversion Library Sampling Points Accuracy
Open3D 1024 86.18%
Trimesh 1024 85.00%

Table 4
Baseline PointNet model accuracy using different 3D conver-
sion libraries (Open3D and Trimesh).

As the next step, we compared models trained with
different conversion libraries, varying sampling densities,
and applying oversampling as a data augmentation tech-
nique. The table below summarizes the configurations
and corresponding accuracies achieved on the Produc-
tion 1 dataset. Our goal was to train a competitive model
capable of reaching accuracy levels comparable to more
recent architectures like PointNet++, solely by balancing
the dataset through oversampling.

Conversion Library Sampling Points Oversampling Factor Accuracy
Trimesh 1024 3 89.26%
Trimesh 2048 3 88.74%
Open3D 1024 3 92.22%
Open3D 2048 3 89.90%
Trimesh 1024 2 87.57%
Trimesh 1024 4 83.12%

Table 5
Impact of conversion library, sampling density, and oversam-
pling factor on model performance (Production 1 dataset).

Thanks to these techniques, we obtained a model that
significantly improved its ability to classify fragments, in-
cluding internal ones, compared to the initial production.
Moving forward, we focus on identifying best practices
for preventing overfitting. Before doing so, it is impor-
tant to highlight an interesting observation made during
testing. After training a model with samples converted
using either Trimesh or Open3D, once the model has
converged, the choice of conversion library for the test
set no longer affects performance: both conversion meth-
ods yield identical results at test time. In practice, while
the choice of conversion library can impact the model’s
performance during training, it does not influence the
outcomes during testing.

Now we will consider experiments regarding the noise
injection,in particular we are interested in obtaining the

’break point’ of the net in which the noise is too much
and performances of the net will go down steeply,and
also in retrieving the range of noise that will grow up
generalization performances of our network. We have
to say that all these experiments are performed on the
best performing model discovered until now , the one
that reached 0.9222 of accuracy. In this table we show
the comparison between various range of noise applied
to the best performing model and the ’break point’. In
this case the test set is obtained by a percentage of the
Training set.

Jitter range Accuracy
(-0.005,+0.005) 0.9222
(-0.010,+0.010) 0.8906
(-0.050,+0.050) 0.8964
(-0.100,+0.100) 0.8052

Table 6
Accuracy reached from the model with different jitter levels,
to evidence how much rumor our model can sustain before
breaking down performances

As observed, introducing noise within the range of
(-0.100, +0.100) leads to a significant drop in performance,
which we identify as the "breaking point" for noise in-
jection in our application. Beyond this threshold, the
model’s classification accuracy deteriorates considerably.
The next objective is to determine the optimal level of
noise injection to improve generalization while avoiding
overfitting. To this end, we exploit a different dataset,
referred to as Production Final. Production Final differs
from Production 1 mainly in the composition of internal
fragments, as it aggregates internal samples from both
the first and second productions, resulting in a more bal-
anced dataset. To assess the impact of noise injection,
we first train a new PointNet model from scratch on Pro-
duction Final, treating it as a reference model. We then
evaluate the best-performing model previously obtained
(trained on Production 1) by applying various levels of
noise injection, testing it on a subset of Production Fi-
nal. By carefully analyzing the confusion matrices, we
aim to identify the level of noise that enables the pre-
viously trained model to behave similarly to the new
baseline model trained directly on Production Final. If a
model trained with noise augmentation achieves similar
classification patterns to the baseline, we can reason-
ably conclude that noise injection at that level enhances
the model’s generalization ability. In the following, we
present the accuracy of the model trained from scratch
on Production Final.

Now we test the best performing model (model2),
trained with different levels of jitter, on the same test set
made by Production Final, since we want to see which
model acts more similarly to the Baseline model trained

56



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

Conversion Dataset Accuracy
Open3D Production Final 0.8703
Trimesh Production Final 0.8451

Table 7
Baseline model trained from scratch on a different Dataset,
used to test generalization power

directly on the new Dataset.

Jitter range TestSet Accuracy
(-0.005,+0.005) Production Final 0.8400
(-0.010,+0.010) Production Final 0.8412
(-0.050,+0.050) Production Final 0.8392
(-0.100,+0.100) Production Final 0.7723

Table 8
Accuracy of the best performing model (model2) obtained on
the new Dataset(the one tested with the Baseline model) with
different jitter levels, trying to evidence which jitter level will
make our model work as a Baseline model trained directly on
that Dataset(that here we are using for testing),as to obtain
some generalization performance parameter

We observe that the best-performing model, trained
with a jitter range of (-0.010, +0.010), is able to classify
samples from the new dataset almost as effectively as a
model trained directly on it. Considering that the main
difference between the two datasets lies in the internal
fragments — which, according to the confusion matrices,
are classified similarly by both models. We can conclude
that injecting noise within this range slightly reduces
performance on the original dataset, but enhances the
model’s generalization capabilities. Regarding the binary
classification task (internal vs external fragments), the
final evaluation concerns the predictions made by the
best-performing model on the fragments of a real object
(Auriga), as introduced in Section 2.

Auriga’s fragment Label Prediction
Fragment n.1 External External
Fragment n.2 External External
Fragment n.3 External External
Fragment n.4 External External
Fragment n.5 External External
Fragment n.6 External External
Fragment n.7 External External
Fragment n.8 External/Internal External
Fragment n.9 External External

Table 9
Predictions on real object’s fragments, real objects are all la-
beled as external, except for the n.8 which seems to be ’hybrid’,
so predictions are correct

Last results to show are about the extension to Multi-
class classification. As we said, we are using a new dataset

and a slightly modified model . We first show results of
the model trained on the external fragments contained
in the First Production, without Data augmentation tech-
niques, using the Trimesh library for conversion.

Conversion Sampling number Accuracy
Trimesh 2048 0.6701
Trimesh 1024 0.6756
Open3D 1024 0.6785

Table 10
Classification accuracy reached by models trained for multi-
class classification

Problems with this kind of classification can be easily
exploited by visualizing the confusion matrix:

Cube Sphere IcoSphere
Cube 0.94 0.06 0.00

Sphere 0.00 0.99 0.01
Icosphere 0.00 0.98 0.02

Table 11
Confusion Matrix of the Model used for multi-class classifica-
tion

We can see how the Cube class classification works
well, while all the samples of Icosphere are classified as
Sphere.

10. Conclusion
In this work, we presented a series of experiments fo-
cused on the classification of 3D object fragments using
deep learning techniques. Starting from an artificially
generated dataset of fragmented shapes, we evaluated
the impact of different preprocessing methods, data aug-
mentation strategies, and model configurations. Our ex-
periments demonstrated that simple oversampling tech-
niques, combined with the use of Open3D for point cloud
generation and an appropriate sampling density, allowed
us to improve the classification performance of the base-
line PointNet architecture, reaching an accuracy compa-
rable to more advanced models such as PointNet++. We
also investigated the role of noise injection as a means to
enhance model generalization. Our results suggest that
controlled noise injection, particularly in the range of
(-0.010, +0.010), enables the model to better adapt to new
datasets without severely impacting performance on the
original data.

Declaration on Generative AI
During the preparation of this work, the authors used
ChatGPT, Grammarly in order to: Grammar and spelling

57



Pasquale Santaniello et al. CEUR Workshop Proceedings 51–58

check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.

References
[1] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, L. J.

Guibas, Volumetric and multi-view cnns for object
classification on 3d data, in: Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2016, pp. 5648–5656.

[2] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller,
Multi-view convolutional neural networks for 3d
shape recognition, in: Proceedings of the IEEE
international conference on computer vision, 2015,
pp. 945–953.

[3] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spec-
tral networks and locally connected networks on
graphs, arXiv preprint arXiv:1312.6203 (2013).

[4] C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep
learning on point sets for 3d classification and seg-
mentation, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017,
pp. 652–660.

[5] R. Avanzato, F. Beritelli, M. Russo, S. Russo, M. Vac-
caro, Yolov3-based mask and face recognition al-
gorithm for individual protection applications, in:
CEUR Workshop Proceedings, volume 2768, 2020,
p. 41 – 45.

[6] F. Fiani, V. Ponzi, S. Russo, Keeping eyes on the
road: Understanding driver attention and its role
in safe driving, in: CEUR Workshop Proceedings,
volume 3695, 2023, p. 85 – 95.

[7] G. Capizzi, G. L. Sciuto, P. Monforte, C. Napoli,
Cascade feed forward neural network-based model
for air pollutants evaluation of single monitoring
stations in urban areas, International Journal of
Electronics and Telecommunications 61 (2015) 327
– 332. doi:10.1515/eletel-2015-0042.

[8] N. Brandizzi, V. Bianco, G. Castro, S. Russo, A. Wa-
jda, Automatic rgb inference based on facial emo-
tion recognition, in: CEUR Workshop Proceedings,
volume 3092, 2021, p. 66 – 74.

[9] E. Iacobelli, S. Russo, C. Napoli, A machine learning
based real-time application for engagement detec-
tion, in: CEUR Workshop Proceedings, volume
3695, 2023, p. 75 – 84.

[10] V. Ponzi, S. Russo, A. Wajda, C. Napoli, A com-
parative study of machine learning approaches for
autism detection in children from imaging data, in:
CEUR Workshop Proceedings, volume 3398, 2022,
p. 9 – 15.

[11] G. Lo Sciuto, G. Capizzi, R. Shikler, C. Napoli, Or-

ganic solar cells defects classification by using a
new feature extraction algorithm and an ebnn with
an innovative pruning algorithm, International
Journal of Intelligent Systems 36 (2021) 2443 – 2464.
doi:10.1002/int.22386.

[12] A. S. Gezawa, Z. A. Bello, Q. Wang, L. Yunqi, A
voxelized point clouds representation for object
classification and segmentation on 3d data, The
Journal of Supercomputing 78 (2022) 1479–1500.

[13] D. Z. Wang, I. Posner, Voting for voting in online
point cloud object detection., in: Robotics: science
and systems, volume 1, Rome, Italy, 2015, pp. 10–15.

[14] R. N. Bracewell, The fourier transform, Scientific
American 260 (1989) 86–95.

[15] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, M. Ben-
namoun, Deep learning for 3d point clouds: A
survey, IEEE transactions on pattern analysis and
machine intelligence 43 (2020) 4338–4364.

[16] C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++:
Deep hierarchical feature learning on point sets in
a metric space, Advances in neural information
processing systems 30 (2017).

[17] V. Ponzi, C. Napoli, Graph neural networks: Archi-
tectures, applications, and future directions, IEEE
Access (2025).

[18] V. Ponzi, L. Comito, C. Napoli, Pnmlr: Enhancing
route recommendations with personalized prefer-
ences using graph attention networks, IEEE Access
(2025).

[19] L. Flavell, Beginning blender: open source 3d mod-
eling, animation, and game design, Apress, 2011.

[20] C. Shorten, T. M. Khoshgoftaar, A survey on image
data augmentation for deep learning, Journal of big
data 6 (2019) 1–48.

[21] D. A. Van Dyk, X.-L. Meng, The art of data augmen-
tation, Journal of Computational and Graphical
Statistics 10 (2001) 1–50.

[22] I. E. TIBERMACINE, S. Russo, F. Citeroni,
G. Mancini, A. Rabehi, A. H. Alharbi, E.-S. M. El-
kenawy, C. Napoli, Adversarial denoising of eeg
signals: A comparative analysis of standard gan
and wgan-gp approaches, Frontiers in Human Neu-
roscience 19 (2025) 1583342.

[23] S. Russo, S. Ahmed, I. E. Tibermacine, C. Napoli, En-
hancing eeg signal reconstruction in cross-domain
adaptation using cyclegan, in: 2024 International
Conference on Telecommunications and Intelligent
Systems (ICTIS), IEEE, 2024, pp. 1–8.

[24] I. E. Tibermacine, A. Tibermacine, W. Guettala,
C. Napoli, S. Russo, Enhancing sentiment anal-
ysis on seed-iv dataset with vision transformers: A
comparative study, in: Proceedings of the 2023 11th
international conference on information technol-
ogy: IoT and smart city, 2023, pp. 238–246.

58

http://dx.doi.org/10.1515/eletel-2015-0042
http://dx.doi.org/10.1002/int.22386

	1 Introduction
	2 Related Works
	3 PointNet Architecture
	4 Dataset
	5 Model
	6 Data Augmentation Techniques
	7 Noise Addition and Tolerance
	8 Extension to Multi-Class Classification
	9 Results
	10 Conclusion

