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Abstract
Recovering 3D geometry from 2D observations is a fundamental challenge in computer vision, with applications in animation,
virtual reality, and robotics. Recent advances in differentiable rendering have enabled gradient-based optimization of 3D
shapes using only image supervision. In this work, we propose a novel adversarial framework that enhances 3D mesh
deformation by integrating a differentiable renderer into a Generative Adversarial Network (GAN). The generator deforms
an initial mesh and optimizes textures to match 2D supervision from target images, while the discriminator—featuring
dense connections and self-attention—learns to distinguish between real and synthesized renderings. Our method improves
upon baseline differentiable renderers both quantitatively and qualitatively, achieving lower Chamfer distance and higher
Intersection over Union (IoU) across a variety of object categories. The results demonstrate that adversarial training effectively
guides mesh deformation, producing reconstructions that are more accurate and visually consistent with target images.
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1. Introduction
Reconstructing 3D geometry from 2D images is a long-
standing goal in computer vision, with applications in
virtual and augmented reality, medical imaging, robotics,
and digital content creation. Accurate 3D models enable
realistic simulations, enhanced diagnostics, and immer-
sive experiences. However, inferring 3D structure from
limited 2D information remains a fundamentally ill-posed
problem, particularly when dealing with complex shapes,
partial occlusions, or diverse object categories.

Traditional 3D reconstruction methods include point
cloud processing, voxel grids, and mesh-based optimiza-
tion. While effective in constrained settings, these ap-
proaches often struggle with generalization and scala-
bility. Voxel-based methods are limited by memory and
resolution constraints, point cloud methods require dense
input data, and mesh optimization techniques often need
handcrafted objectives and careful initialization. These
limitations are further exacerbated in dynamic or uncon-
strained environments.

Recent advances in deep learning have enabled sig-
nificant progress, particularly with the advent of differ-
entiable rendering. By making the rendering process
differentiable, neural networks can be trained end-to-end
to optimize 3D shape and appearance directly from 2D
images. Frameworks such as Soft Rasterizer [1] and Py-
Torch3D [2] allow backpropagation of image-space losses
to 3D geometry, opening the door to more flexible and
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generalizable reconstruction pipelines.
Despite these advances, current differentiable methods

often produce over-smoothed or inaccurate shapes, par-
ticularly when only limited views are available [3, 4, 5].
To address this, we propose augmenting differentiable
rendering with adversarial supervision. Our method in-
tegrates a Generative Adversarial Network (GAN) [6]
into the mesh deformation pipeline, where the generator
deforms an initial template mesh to match reference im-
ages, and the discriminator learns to distinguish real from
generated renderings. The discriminator architecture in-
cludes dense connections and self-attention to effectively
capture fine-grained spatial features [7, 8, 9, 10].

Our contributions are as follows:

• We introduce an adversarially-guided 3D shape
deformation method that leverages differentiable
rendering and 2D supervision.

• We design a discriminator with dense blocks and
self-attention to improve shape fidelity and detail
preservation.

• We integrate texture optimization and silhouette
supervision to refine appearance and geometry
simultaneously.

• We demonstrate quantitatively and qualitatively
that our approach outperforms baseline differen-
tiable rendering methods across diverse object
categories.

The remainder of the paper is structured as follows.
Section 2 reviews related work in differentiable rendering
and adversarial mesh optimization. Section 3 presents
the architecture and training pipeline. Section 4 describes
the experimental setup and results. Section 6 concludes
with a discussion of limitations and future work.
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2. Related Work
The problem of reconstructing 3D geometry from 2D
observations has been studied extensively, with a range
of techniques proposed over the years. These methods
can be broadly categorized into classical reconstruction
pipelines, deep learning-based approaches, and differen-
tiable rendering frameworks. Recent efforts have also
explored the integration of adversarial training to im-
prove reconstruction fidelity.

2.1. Classical 3D Reconstruction
Traditional methods rely on structured representations
such as point clouds, voxel grids, or explicit meshes. Point
cloud-based methods require dense and accurate data,
which is often impractical to obtain without expensive
scanning equipment. Voxel-based approaches discretize
space into uniform grids [? ], but suffer from memory
and resolution limitations. Mesh-based methods, while
efficient in representing surfaces, often require manual
initialization and lack robustness in unconstrained sce-
narios.

2.2. Learning-Based Mesh Reconstruction
Deep learning has significantly advanced mesh-based
reconstruction. Pixel2Mesh [11] introduced a framework
that deforms an initial ellipsoid mesh using graph convo-
lutional networks guided by 2D image features. It demon-
strated the effectiveness of learning-based deformation
but struggled with fine-grained topology and texture de-
tail. The 3Deformer model [12] further improved mesh
deformation by incorporating image features into a neu-
ral mesh deformation pipeline, achieving high fidelity
in geometry and structure. However, these methods are
still sensitive to initialization and object complexity.

2.3. Differentiable Rendering
Differentiable renderers provide a powerful tool for op-
timizing 3D representations directly from image-space
losses. Soft Rasterizer (SoftRas) [1] introduced a proba-
bilistic rendering function that enables gradient-based op-
timization through occlusions and visibility. PyTorch3D
[2] extended this idea into a flexible rendering frame-
work for 3D deep learning. Wen et al. [13] built upon
differentiable rendering to jointly reconstruct shape and
appearance from single-view images using an encoder-
decoder architecture, demonstrating improved color and
surface detail. However, these methods often suffer from
oversmoothing and limited detail recovery, especially
under sparse supervision.

Nicolet et al. [14] proposed improving the stability
of gradient-based optimization in differentiable render-

ing using sparse Cholesky factorization. While effective,
such techniques are computationally intensive and re-
main sensitive to initialization and viewpoint ambiguity.

2.4. Adversarial Training for 3D Shape
Generation

Adversarial learning has recently been applied to 3D
tasks to improve realism and detail preservation. For
instance, GANs have been employed to refine volumet-
ric reconstructions or to hallucinate missing geometry.
However, applying adversarial training in the context of
differentiable mesh deformation remains underexplored.
Our work addresses this gap by introducing a discrimina-
tor tailored to rendered images, combining dense blocks
and self-attention mechanisms to provide fine-grained
feedback to the generator during training.

2.5. Summary
In summary, while differentiable rendering has signifi-
cantly improved 3D reconstruction from 2D supervision,
challenges remain in achieving high-quality, generaliz-
able mesh deformations. Adversarial training offers a
promising solution by encouraging visual realism and
better structural consistency. Our work builds upon this
direction by integrating adversarial loss into a differen-
tiable mesh optimization pipeline, enabling the recon-
struction of more detailed and accurate 3D shapes.

3. Method
We propose an adversarial training pipeline for 3D mesh
deformation, guided by differentiable rendering and 2D
supervision. The system consists of a generator that
deforms a base mesh to match a target image, and a dis-
criminator that evaluates the visual realism of rendered
outputs. The generator is optimized using a combina-
tion of reconstruction and regularization losses, while
the discriminator provides adversarial feedback based on
rendered RGB images and silhouettes.

3.1. Overview
Given a target image of a 3D object, our goal is to deform
a source mesh (initialized as a sphere) and optimize its
texture to match the target. The mesh is rendered from
multiple viewpoints using a differentiable renderer, and
the rendered images are compared to the ground truth
using a composite loss function. The system alternates
between optimizing the generator (mesh and texture)
and training the discriminator to distinguish between
real and synthetic renderings.
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3.2. Data Preparation and Normalization
To ensure generalization across diverse shapes, we con-
struct a dataset using freely available 3D models in the
OBJ format [15]. Each model includes geometry (.obj),
materials (.mtl), and texture maps.

Meshes are normalized by translating them to the ori-
gin and scaling them to fit inside a unit sphere. This en-
sures consistent scale and positioning, which simplifies
optimization and stabilizes training. Meshes are loaded
using PyTorch3D’s load_objs_as_meshes function,
which constructs batched Meshes objects for down-
stream processing.

3.3. Differentiable Rendering Pipeline
We render each mesh from multiple viewpoints using
PyTorch3D [2]. The rendering setup includes:

3.3.1. Camera Configuration

We use multiple perspective cameras placed at
uniformly sampled viewpoints around the ob-
ject. Camera transformations are computed using
look_at_view_transform, and projection is per-
formed using FoVPerspectiveCameras.

3.3.2. Lighting and Shading

Lighting is modeled with a single PointLights source
positioned above and to the side of the object. For RGB
rendering, we employ a SoftPhongShader, which mod-
els ambient, diffuse, and specular reflections. For silhou-
ette rendering, we use a SoftSilhouetteShader with
a thresholded alpha channel to extract binary object con-
tours.

3.3.3. Rasterization Settings

Rasterization is configured with a fixed image resolution
and blur radius. We adjust the number of faces per pixel
to trade off quality and rendering speed.

3.4. Loss Functions
The generator is trained to minimize a composite loss
comprising multiple terms:

• RGB Loss: ℒRGB — L2 loss between rendered and
target RGB images.

• Silhouette Loss: ℒsil — L2 loss between rendered
and target silhouettes.

• Edge Loss: ℒedge — Encourages preservation of
mesh edge lengths to prevent distortion.

• Normal Consistency Loss: ℒnorm — Promotes
smooth surfaces by enforcing normal alignment
between adjacent faces.

• Laplacian Smoothing Loss: ℒlap — Penalizes
large deviations from the mean vertex position.

• Adversarial Loss: ℒadv — Binary cross-entropy
loss from the discriminator, encouraging realism
in rendered outputs.

The total generator loss is defined as:

ℒ𝐺 = 𝜆RGBℒRGB + 𝜆silℒsil + 𝜆edgeℒedge+

+𝜆normℒnorm + 𝜆lapℒlap + 𝜆advℒadv

where the weights 𝜆𝑖 are empirically set (see Section 4).

3.5. Adversarial Discriminator
The discriminator is a CNN designed to assess the realism
of rendered RGB images. It integrates dense connections
and self-attention to better capture spatial patterns and
long-range dependencies.

3.5.1. Architecture

The network consists of an initial convolutional block
followed by two dense blocks with growth rate 32 and
intermediate channels of 64 and 192, respectively. Each
dense block is followed by a self-attention layer with
scaled dot-product attention. A final convolutional layer
reduces the feature map to a scalar output passed through
a sigmoid activation function. Spectral normalization is
applied to all convolutional layers to stabilize adversarial
training.

3.6. Training Procedure
Training proceeds in alternating steps:

1. Generator step: A batch of viewpoints is sam-
pled. The generator deforms the mesh and opti-
mizes texture to minimize the total loss ℒ𝐺.

2. Discriminator step: The discriminator receives
real target images and generated renderings. It is
trained using binary cross-entropy to maximize
classification accuracy.

The generator is optimized using stochastic gradient
descent with momentum, while the discriminator uses
the Adam optimizer. Training is performed for a fixed
number of iterations, with periodic visualizations to track
progress.

3.7. Implementation Details
Our implementation uses PyTorch and PyTorch3D, with
training conducted on Google Colab using an NVIDIA
GPU runtime. All meshes are batched for efficient parallel
processing. Code modules are structured for data loading,
rendering, loss computation, and model optimization.
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4. Experiments
We evaluate our method on a diverse set of 3D objects
and compare it against a baseline differentiable rendering
pipeline using PyTorch3D. Both quantitative metrics and
qualitative visualizations are used to assess reconstruc-
tion accuracy, mesh quality, and generalization capability.

4.1. Experimental Setup
Due to restricted access to the ShapeNet dataset, we con-
structed a custom dataset using freely available 3D mod-
els in OBJ format [15]. Each model includes geometry,
material, and texture information. All meshes were nor-
malized to fit inside a unit sphere to ensure consistency
across objects.

We evaluate five object categories: cow, humanoid, fish,
sword, and hand. Each object is rendered from multiple
viewpoints to simulate realistic 2D supervision.

Training was conducted on Google Colab using an
NVIDIA GPU runtime. The generator was optimized
with SGD (learning rate = 1.0, momentum = 0.9), while
the discriminator was trained with the Adam optimizer
(lr = 0.0002, 𝛽1 = 0.5, 𝛽2 = 0.999).

4.2. Evaluation Metrics
We use the following metrics to assess performance:

• Reconstruction Loss: The total loss defined in
Section 3, combining RGB, silhouette, and regu-
larization terms.

• Chamfer Distance: Measures point-wise simi-
larity between predicted and target meshes.

• Intersection over Union (IoU): Measures volu-
metric overlap between the generated and ground
truth meshes.

• Visual Quality: Qualitative comparisons of
mesh renderings across viewpoints.

Unless otherwise noted, all reported values correspond
to 2000 training iterations. Extended results for 10000
iterations are provided in the appendix.

4.3. Quantitative Results
Table 1 reports the reconstruction losses after 2000 itera-
tions. Our method achieves comparable or better perfor-
mance than PyTorch3D across all object categories.

Chamfer distances are shown in Table 2. Our model
achieves lower or comparable distances, with significant
improvement for the hand object, which contains fine
structural features.

Table 3 presents IoU values. Our method improves
upon the baseline in four out of five cases, especially for
humanoid and hand, indicating better volumetric overlap
and shape coverage.

Table 1
Total reconstruction loss (2000 iterations). Lower is better.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.0250 0.0143 0.0102 0.0105 0.0235
Ours 0.0250 0.0163 0.0125 0.0096 0.0189

Table 2
Chamfer Distance (2000 iterations). Lower is better.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.00222 0.00095 0.00046 0.00028 0.00157
Ours 0.00221 0.00091 0.00046 0.00028 0.00102

Table 3
Intersection over Union (2000 iterations). Higher is better.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.9720 0.8652 0.9566 0.6184 0.8490
Ours 0.9762 0.9184 0.9290 0.6347 0.9417

4.4. Qualitative Results
Figure 1 illustrates side-by-side renderings of the de-
formed meshes from PyTorch3D and our method, com-
pared to the target image. Our model more accurately
captures subtle features, such as the curvature of the
horns and positioning of the ears.

Figure 1: Visual comparison (left to right): PyTorch3D, our
method, target image.

In Figure 2, we observe that PyTorch3D fails to accu-
rately reconstruct the finger geometry of the hand object,
while our model preserves the detailed articulation more
effectively.

4.5. Extended Training Analysis
Training the models for 10000 iterations improves both
reconstruction loss and geometric fidelity. Full tables and
visualizations are provided in Appendix A. Notably, our
method consistently outperforms the baseline in Chamfer
distance and IoU with longer training, especially for high-
frequency shapes such as hand and sword.
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Table 4
Total reconstruction loss after 10,000 iterations.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.0226 0.0134 0.0102 0.0107 0.0211
Ours 0.0214 0.0125 0.0104 0.0106 0.0189

Figure 2: PyTorch3D-rendered hand showing deformation
artifacts in the fingers.

Figure 3: Training loss evolution for the cow object over 2000
iterations.

5. Extended Results
This appendix presents additional experimental results
obtained by training the models for 10,000 iterations,
along with loss progression plots and extended visual
comparisons for both training durations.

5.1. Training Loss Evolution
Figure 3 illustrates the training loss components over
2000 iterations for the cow object. This plot is represen-
tative of the convergence behavior observed across all
categories.

5.2. Quantitative Results at 10,000
Iterations

Tables 4, 5, and 6 present total loss, Chamfer distance,
and IoU, respectively, after 10,000 training iterations. Our

Figure 4: Qualitative comparison of reconstructions after
2000 iterations. Left: PyTorch3D, Center: our method, Right:
target image.

model shows continued improvement with more training,
especially for high-detail categories like hand and sword.

5.3. Qualitative Comparisons
Figures 4 and 5 show side-by-side comparisons of mesh
reconstructions after 2000 and 10,000 iterations, respec-
tively. Each row includes results from PyTorch3D (left),
our method (center), and the target image (right).

As shown, our method consistently produces more
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Figure 5: Qualitative comparison of reconstructions after 10,000 iterations. Left: PyTorch3D, Center: our method, Right: target
image.
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Table 5
Chamfer Distance after 10,000 iterations. Lower is better.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.00221 0.00084 0.00044 0.00028 0.00130
Ours 0.00220 0.00075 0.00045 0.00028 0.00095

Table 6
Intersection over Union after 10,000 iterations. Higher is better.

Model Cow Humanoid Fish Sword Hand

PyTorch3D 0.9735 0.8941 0.9343 0.6262 0.8885
Ours 0.9884 0.9230 0.9322 0.6779 0.9600

accurate deformations, especially in object regions with
complex structure or fine detail (e.g., hand, sword). These
improvements validate the benefit of adversarial super-
vision for guiding mesh optimization under weak 2D
supervision. Compared to the baseline, which often fails
to preserve sharp boundaries or introduces artifacts in
regions with occlusion or high curvature, our approach
maintains geometric consistency and enhances fidelity
to the silhouette and inner contours observed in the tar-
get images. Notably, at 10,000 iterations, the refinement
introduced by our method leads to significant alignment
not only in the external silhouette but also in internal
features such as joint articulation and surface topology,
confirming the progressive advantage of adversarial cues
over traditional loss-only optimization strategies.

Furthermore, the visual quality improvements ob-
served in later iterations indicate that the adversarial
discriminator plays a crucial role in discouraging un-
realistic deformations and encouraging plausible mesh
structures even when direct pixel supervision is limited.
This qualitative evidence complements the quantitative
results reported in Section ??, and supports the hypothe-
sis that leveraging learned priors from adversarial train-
ing leads to more robust and semantically coherent re-
constructions, particularly when only sparse or partial
supervision is available.

6. Conclusion
We presented an adversarial framework for 3D shape
deformation guided by differentiable rendering and 2D
image supervision. By integrating a mesh generator
with a self-attention-based discriminator, our method
improves the visual quality and geometric accuracy of
reconstructed 3D meshes from sparse image inputs.

Our results demonstrate that adversarial training can
enhance mesh fidelity over standard differentiable ren-
dering pipelines. Quantitatively, our method achieves
lower Chamfer distances and higher Intersection over

Union scores across multiple object categories. Qualita-
tively, it produces more realistic deformations, especially
in regions with fine-grained geometry such as limbs or
object extremities.

This approach contributes to the broader goal of build-
ing generalizable, high-fidelity 3D reconstruction sys-
tems that operate under weak supervision. Our design
remains simple and modular, leveraging widely available
toolkits such as PyTorch3D and standard GAN compo-
nents.

Future work will explore extending this framework to
dynamic or articulated objects, learning category-specific
priors, and incorporating temporal consistency for video-
based shape reconstruction. Additionally, improving tex-
ture fidelity and integrating semantic segmentation into
the adversarial loss are promising directions.
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