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Abstract
Traditional quality control techniques could miss small defects in manufacturing environments, reducing the quality of
the final product. Using the MVTec dataset, a commonly used benchmark in industrial visual inspection, in this study we
investigate two types of autoencoders, denoising autoencoders (DAE) and contractive autoencoders (CAE), to solve the
problem of defect identification in industrial processes. The presence of both textured and non-textured objects allows a
direct comparison between materials with different surface characteristics. The VGG16 and ResNet models pre-trained on
ImageNet are used as encoders. Three variants of DAE and three of CAE are designed and evaluated. Both the loss MSE
(Mean Squared Error) and the SSIM (Structural Similarity Index Measure) are used to compare the reconstruction quality and
the defect detection capability. The results highlight performance differences between DAE and CAE and between different
object categories, providing useful insights into the effectiveness of each approach in different industrial scenarios.
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1. Introduction
Quality control is an essential part of many manufactur-
ing industries. Usually, it is performed manually, but the
problem with manual visual inspection is that there are
possibilities for error and for this reason, vision-based
inspection can be used. The deep neural network has
played an important role in the automation industry. Us-
ing deep neural networks, visual inspection can also be
automated. Many image processing and machine learn-
ing methods have already been used to achieve auto-
mated defect detection in production parts. However,
image processing methods have limitations, as implicit
engineering features are used for the application, which
can be misleading for complex cases. Deep convolutional
networks are a solution for automating quality control in
the manufacturing industry since they have the ability to
obtain the best features from images, but these methods
are limited by data availability. There are two problems
to consider: one is the imbalance of data between nor-
mal and defective images. The other is the annotation of
the data. To overcome this problem, defect detection is
treated as an anomaly detection problem.

Due to the absence of labels in the data, the problem
can be addressed through unsupervised learning, by train-
ing convolutional networks on normal images and testing
them on images containing defects [1, 2, 3, 4, 5]. In this
work, convolutional neural network autoencoders [6, 7]
are used to perform anomaly detection, in particular, the
study focuses on the use of denoising autoencoders and
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contractive autoencoders to improve the effectiveness of
defect detection.

The autoencoder encodes the input into a lower-
dimensional representation known as the latent space,
from which the decoder reconstructs the output. A mod-
ification to the autoencoder called a denoising autoen-
coder stops the network from learning the identity func-
tion. To be more precise, if the autoencoder is too large,
it can just learn the data, resulting in output equiva-
lent to input without doing any beneficial representation
learning or dimensionality reduction. Denoising autoen-
coders address this issue by purposefully introducing
errors, noise, or masking some input values. [8, 9]

A contractive autoencoder is an unsupervised deep
learning method that aids a neural network in encoding
unlabeled training input. In general, autoencoders are
employed to discover a representation, or encoding, for a
set of unlabeled data, typically as the initial step toward
dimensionality reduction or the creation of new data
models. The traditional reconstruction cost function is
enhanced by a penalty term in a contractive autoencoder.
The Frobenius norm of the Jacobian matrix represent-
ing the activations of the encoder with respect to the
input corresponds to this penalty term. This penalty
term causes a localized space contraction, which in turn
produces strong characteristics on the activation layer.
The penalty aids in sculpting a representation that is
more invariant to most directions orthogonal to the man-
ifold while also better capturing the local directions of
variation required by the data, which correspond to a
lower-dimensional non-linear manifold [10].
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2. Related Works
For the anomaly detection SIFT and SURF are used to
extract the features from the images and train the model
on normal image. Features of images can be mislead-
ing sometimes depending upon nature of the applica-
tion. Machine learning algorithms can be used to clas-
sify anomalies from the normal images. A supervised
learning approach is not good for this application, but
semi-supervised and unsupervised models increase per-
formance of model. The supervised and semi-supervised
approaches are compared and the performance of the
semi-supervised model is better than the supervised
approach[11]. In this paper [1] they propose a model
based on point features of the images. A hand-crafted
point feature Harris-Laplace point detector is used in this
study to detect the anomalies. The point feature uses
Harris corner detector and then SIFT key points to ex-
tract the local shape around key points. Different loss
functions are used for the unsupervised deep learning
model. This study shows that for different types of ob-
jects the model performs differently and a specific type
of loss is suitable for a specific application. To identify
and categorize defects of the LED chip, Lin et al.[12] sug-
gested the LEDNet network. Cha et al.[13] suggested
utilizing Faster R-CNN, that showed promising results
also in other applications [14], to identify five distinct
flaws to detect structural damage.

The use of autoencoders for unsupervised anomaly
identification based on reconstruction loss is examined
in [15], highlighting both its strengths and weaknesses.
Using an analogous situation from particle physics, it
demonstrates that the standard autoencoder configura-
tion is not a model independent anomaly tagger. In the
work of Lupo et al. [16] generative models are used to
detect anomalies in texts, exploring approaches ranging
from machine learning to deep learning. Among the ana-
lyzed models, the variational autoencoder is the one with
the most promising performances for this task. Vincent
et al. [17] instead studied denoising autoencoders for the
extraction of robust features from images, demonstrating
that these models are able to improve the representation
of visual features and, consequently, the overall image
quality. Similar architectures have been employed also
in the field of audio processing, for example for the auto-
matic identification of speech disorders, exploiting unla-
beled speech signals [18]. Bionda et al. [19] proposes a
deep convolutional autoencoder to detect the anomalies
in the textured images. MSE, or pixel vise error is not suit-
able for textured images as it only focuses on pixels. So,
SSIM is used as a loss function to improve performance of
the autoencoder. Complex wavelet SSIM performs better
than MSE for the textured images. Based on the applica-
tion loss function plays a great role in generative models
[20]. In this paper [21] they present a novel approach

called PNI that, given neighborhood characteristics and
a multi-layer perceptron network model, computes the
normal distribution using conditional probability. Addi-
tionally, a histogram of typical characteristics is made for
each point to use position information. The suggested
technique uses an extra refining network trained on fabri-
cated anomaly pictures in addition to the anomaly map to
better interpolate and account for the shape and edge of
the input image. Yang et al. [22] presents a novel method
for detecting industrial image anomalies based on a self-
supervised learning and self-attentive graph convolution
(SLSG) network. In SLSG, pseudo-prior knowledge of
anomalies is introduced by simulated abnormal samples,
and the encoder is assisted in learning the embedding
of normal patterns and position connections. Holly et
al. [23] suggests a technique that makes use of a total
reconstruction error and an autoencoder to locate system
problems. In order to pinpoint the source of a problem,
the signals that contribute the most to the overall recon-
struction error are identified by computing the individual
reconstruction error for each sensor signal.

3. Methodology

3.1. Dataset
The dataset used is the MVtec industrial images dataset. It
contains images of many different industrial products. It
is an industrial inspection-focused dataset for evaluating
anomaly detection techniques. Over 5000 high-resolution
images in fifteen different object and texture categories
make up this collection. Each category includes both a
test set of photos with various types of faults and images
without defects as well as a set of training images with
no defects [24].

3.2. Preprocessing
During the training phase, only normal images, free of
defects or anomalies, are used. Images containing defects
of various types, specific to each product, are instead
used in the testing phase. All images provided are high-
resolution RGB images with dimensions of 1024×1024. To
reduce computational complexity, they are downsampled
to 256×256 and normalized by dividing the pixel values
by 255.

When using a denoising autoencoder, noise is intro-
duced into the data to artificially corrupt it. Similarly, the
test images are also altered and the result of the model
is compared with the original uncorrupted images. An
example of the images with noise is shown in Figure 1.
For the contractive autoencoder, resized but uncorrupted
images are directly fed as input and the model is trained
to faithfully reproduce the same images as output.
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Figure 1: Preprocessed Images after adding noise

3.3. Model Architecture
The autoencoder model adopted in this work is based on
a structure composed entirely of convolutional layers. Its
architecture can be conceptually divided into three fun-
damental components, namely the encoder, the decoder
and the latent space, often referred to as bottleneck. The
encoder has the task of compressing the data, reducing
the dimensionality of the input image until obtaining a
compact representation in the latent space. This encoded
representation is then transmitted to the decoder, which
has the role of expanding the data again to reconstruct
an image as similar as possible to the initial one.

Four convolutional layers and four max-pooling layers
form the encoder, which gradually reduces the number
of pixels in the image. The type of autoencoder used
determines the structure of the bottleneck. The latent
space in the denoising autoencoder is composed directly
of the final output of the encoder. Instead, the representa-
tion passes through a thick layer that acts as a bottleneck

in the contractive autoencoder. Both architectures use
the same decoder, consisting of four upsampling layers
and five convolutional layers. To restore the output to
its initial size, a final convolutional layer is added. The
complete architectures of the two models are reported in
Figure 2 and Figure 3.

To compare our model we also took into account pre
trained encoders, in particular, the VGG16 model already
trained on the ImageNet dataset. This model includes
sixteen layers in total, thirteen of which are convolu-
tional and three fully connected. In our implementation,
only the convolutional layers were kept, while the fully
connected ones were removed [25]. The ResNet50 model
pre-trained on the ImageNet dataset was also used. Al-
though the encoder architectures are different, in both
cases the decoder was kept unchanged, so as to make the
comparison between the configurations more fair and
meaningful.
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Figure 2: Denoising autoencoder architecture

Figure 3: Contractive autoencoder architecture

3.3.1. Loss Function

For training and testing losses, denoising autoencoder
uses the MSE. On measuring pixel values between two
images, Mean squared error computes the average of the
squared differences between corresponding pixel values.
In the case of a contractive autoencoder, the bottleneck
or the latent dimension of the autoencoder is used to
compute the contractive loss along with MSE. Finally,

the sum of the two losses is calculated. The autoencoder
is trained using contractive loss.

𝑀𝑆𝐸(𝐼,𝐾) =
1

𝑁

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[𝐼(𝑖, 𝑗)−𝐾(𝑖, 𝑗)]2 (1)

Another loss function used for the texture image is the
measure of resemblance between two pictures. SSIM com-
pares the brightness, contrast, and structural elements of
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Table 1
Performance results of denoising autoencoder on MVTec-AD dataset. The ratio of corrected classified normal samples (top
row) and ratio of corrected classified abnormal samples (bottom row) are given. The best results are in bold.

Category DAE(MSE) DAE(SSIM) DAE-VGG16(MSE) DAE-VGG16(SSIM) DAE-ResNet(MSE) DAE-ResNet(SSIM)

Hazelnut 0.73 0.50 0.05 0.10 0.75 0.88
0.86 0.88 1.00 0.98 0.70 0.66

Overall 0.81 0.76 0.64 0.66 0.72 0.74
Bottle 0.35 0.3 0.25 0.1 0.75 0.40

0.97 0.92 1 0.98 0.33 0.56
Overall 0.82 0.77 0.81 0.77 0.43 0.53

Pill 0.42 0.53 0.38 0.35 0.48 0.35
0.88 0.84 0.84 0.94 0.47 0.59

Overall 0.81 0.80 0.78 0.84 0.48 0.55
Screw 0.34 0.49 0.10 0.05 0 0.08

0.83 0.79 0.92 1 0.31 0.44
Overall 0.71 0.72 0.68 0.76 0.23 0.35

Tile 0.94 0.43 0.10 0 0.46 0.27
0.11 0.81 0.98 1 0.38 0.83

Overall 0.34 0.67 0.72 0.72 0.41 0.68

two images to determine how similar they are. It makes
use of statistical metrics including pixel intensity mean,
variance, and covariance. 𝑐1 and 𝑐2 are constants that are
added to prevent denominator instability [26]. It is often
adopted as a loss function for picture-based optimization
tasks, for example, image denoising or super-resolution,
and as a quality metric for image compression or restora-
tion.

𝑆𝑆𝐼𝑀(𝐼,𝐾) =
(2𝜇𝐼𝜇𝐾 + 𝑐1)(2𝜎𝐼𝐾 + 𝑐2)

(𝜇2
𝐼 + 𝜇2

𝐾 + 𝑐1)(𝜎2
𝐼 + 𝜎2

𝐾 + 𝑐2)
(2)

3.3.2. Training and Optimization

To train the denoising autoencoder, input images are ar-
tificially corrupted with noise, while the corresponding
clean images are used as targets. The model is optimized
using Adam optimizer, with a learning rate of 0.0001 and
a batch size of 32. The contractive autoencoder is trained
with Adam as well, but its loss function includes a reg-
ularization term on the encoder’s Jacobian in addition
to the reconstruction loss. Both loss functions are ap-
plied to each sample type, in order to analyze the model
performance in different scenarios.

As for the pretrained encoders, the VGG16 and
ResNet50 architectures have been considered, both opti-
mized with the same decoder used in the other models.
In the case of VGG16, the last three fully connected lay-
ers are removed, keeping the five convolutional blocks
that are subsequently trained together with the decoder.
After the encoder, a dense layer is inserted to act as a
bottleneck. As for ResNet50, the last layer is removed
and all the other layers are fine-tuned with the decoder.

In both cases, training is aimed at minimizing the loss
function.

3.3.3. Thresholding and classification

For anomaly detection using autoencoders, a threshold
based on the reconstruction error is adopted to distin-
guish between normal images and images containing
defects. The error is calculated by comparing each recon-
structed image with the corresponding original image,
using MSE or SSIM depending on the type of sample.

The threshold is determined starting from the training
images, which are all free of anomalies. For each of them,
the reconstruction error is calculated, after which the
threshold is obtained as the average of the errors obtained.
Once established, this threshold allows to classify the test
images, those with an error lower than the threshold are
considered normal, while those with an error higher than
the threshold are classified as anomalous.

To evaluate the effectiveness of the classification pro-
cess, the accuracy and the F1 score are used. Even if in
the test dataset there are different types of anomalies, in
this study they are treated as belonging to a single class.

4. Results and Analysis
The model was evaluated on the hazelnut, pill, bottle,
screw and tile categories of the MVTec dataset. The pill
and tile classes represent textured samples, while the
others have smooth surfaces. Both autoencoders, DAE
and CAE, were trained using the two loss functions, MSE
and SSIM, and tested on all categories. The results for
DAE are reported in Table 1.
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Table 2
Performance results of contractive autoencoder on MVTec-AD dataset. The ratio of corrected classified normal samples (top
row) and ratio of corrected classified abnormal samples (bottom row) are given. The best results are in bold.

Category CAE(MSE) CAE(SSIM) CAE-VGG16(MSE) CAE-VGG16(SSIM) CAE-ResNet(MSE) CAE-ResNet(SSIM)

Hazelnut 0.65 0.68 0.825 0.70 0.275 0.675
0.87 0.73 0.67 0.71 0.89 0.69

Overall 0.79 0.71 0.73 0.71 0.66 0.68
Bottle 0.25 0.30 0.15 0.35 0.30 0.40

0.92 0.97 0.98 0.98 0.84 0.79
Overall 0.76 0.81 0.78 0.83 0.71 0.70

Pill 0.50 0.58 0.73 0.50 0.50 0.65
0.77 0.83 0.83 0.86 0.73 0.63

Overall 0.73 0.79 0.77 0.80 0.69 0.63
Screw 0.93 0.70 0.05 0.61 0.66 0.51

0.61 0.63 0.87 0.68 0.64 0.58
Overall 0.69 0.65 0.66 0.66 0.64 0.56

Tile 0.97 0.64 0.94 0 0.77 0.94
0.11 0.62 0.26 1 0.52 0.13

Overall 0.35 0.62 0.45 0.72 0.58 0.36

For the hazelnut and bottle classes, the classic DAE
with MSE loss achieved the best performance. In the
case of the screw class, the use of SSIM led to a higher
accuracy, probably due to the geometric complexity of
the spirals. For textured samples such as pill and tile,
the DAE with SSIM consistently provided better results.
The VGG16 encoder, despite slightly increasing overall
accuracy, reduced the ability to detect normal images,
whereas the classical DAE with SSIM maintained a better
balance between normal and defective cases.

The performance of the contractive autoencoder is re-
ported in Table 2. For the hazelnut and screw classes,
classical CAE with MSE performed best. For the bottle
class, CAE with VGG16 encoder and loss SSIM showed
the highest performance. For textured samples, using
SSIM also proved more effective. In particular, for the
pill class, CAE with VGG16 achieved the best results. For
the tile class, classical CAE showed solid performance,
while CAE with VGG16 and loss MSE achieved the high-
est absolute accuracy, but failed to properly distinguish
normal images.

DAE proved to be more effective in most cases, its
performance drops with ResNet encoders, while CAE
maintains more consistency across classes. The latter
is more stable on textured samples, but less accurate in
reconstructing details.

5. Conclusion
This study has shown that autoencoders are a valid and
promising solution for unsupervised anomaly detection
in industrial image data. In particular, the denoising au-
toencoder (DAE) achieved consistently better results than

the contractive autoencoder (CAE) across most object
categories. This confirms that the introduction of noise
during training encourages more robust feature learn-
ing and improves the generalization ability of the model
when tested on unseen defective images.

The experiments demonstrated that the Structural Sim-
ilarity Index Measure (SSIM) is more effective than Mean
Squared Error (MSE) when dealing with textured surfaces.
SSIM is sensitive to structural deformations, brightness,
and contrast, and is therefore better suited for materials
where texture plays a key role in defect identification.
On smooth objects, instead, MSE remains competitive
and sometimes preferable.

One important finding is that using pre-trained en-
coders such as VGG16 or ResNet50 does not always im-
prove results. While VGG16 provided a slight improve-
ment in some categories, it sometimes reduced the correct
classification of normal samples. ResNet, in particular,
underperformed in most configurations, possibly due to
its architectural complexity and its limited adaptability to
small or subtle defect patterns after fine-tuning. This in-
dicates that a careful balance must be found between the
use of pre-trained knowledge and the specific needs of
anomaly detection tasks, where fine-grained pixel-level
reconstruction is crucial.

From a methodological perspective, the combination of
classical convolutional autoencoders with loss functions
adapted to the type of image (MSE for regular shapes,
SSIM for textures) provides a strong and flexible frame-
work. Moreover, the use of a thresholding strategy based
on reconstruction errors proved simple yet effective in
binary classification between normal and defective cases.

Despite the relatively small size of the training data
used, the models were able to achieve good classification
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performance, confirming the potential of unsupervised
learning techniques in real-world industrial inspection
scenarios. These methods avoid the need for large labeled
datasets and are capable of identifying a wide range of
defects without explicit annotation.

For future work, it would be beneficial to explore the
integration of attention mechanisms or generative adver-
sarial networks (GANs) to enhance reconstruction qual-
ity and reduce false positives. Furthermore, expanding
the set of evaluated loss functions to include perceptual
losses or multi-scale SSIM might improve results on more
complex textures. Finally, applying these models in real-
time settings, with hardware constraints and on-the-fly
decision-making, remains a key area for further develop-
ment and practical validation in industrial contexts.
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ChatGPT, Grammarly in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/ser-
vice, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s
content.
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