
An in-depth Investigation Into the Application of Flash
Memory In a Business Intelligence Database Environment
Cheikh Salmi1,2, Nour El-Houda Senoussi1,2, Djoumana Chaal1 and Mohamed Boudjadi1

1Computer Science Department, M’hamed Bougara University, Boumèrdes, Algeria
2LIMOSE Laboratory

Abstract
Recent developments in solid-state drive (SSD) technology have significantly enhanced the access speed of these storage
devices, surpassing traditional magnetic hard drives by orders of magnitude. This remarkable capability for swift data retrieval
aligns seamlessly with On-Line Analytical Processing (OLAP) techniques, which heavily depend on read speeds rather than
write speeds. In this paper, we analyze the performance of OLAP techniques on an SSD as compared with a normal hard drive
using a trace-based approach. The advantage of this approach is that it (1) allows simulating any HDD, SSD and DBMS (2)
allows the DBMS to treat the SSD as though it was a regular hard drive and (3) allows to observe the differences in execution
times without altering any data structure or algorithms of the target DBMS. Although SSDs do not substantially improve
write speeds, our experiments empirically indicate that their exceptional read speed makes them the prime candidate for data
storage in read-oriented database environment.

Keywords
Data warehouse, flash sim, IO simulation, olap.

1. Introduction
Online Analytical Processing OLAP [1] is a set of tech-
niques that often involves scanning large datasets apply-
ing aggregations at certain granularity levels and writing
summary information back to the database. In addition,
OLAP can also involve the retrieval of specific groups
from a large precomputed repository of data. For an
OLAP user, performance is often the most important
and sought-after quality. Like many other techniques
in database management systems, the effectiveness of
OLAP relies fundamentally on the speed of memory, CPU
capabilities, and hard drive speeds[2]. In nearly all in-
stances, it’s the hard drives that constitute the limiting
factor in terms of performance. In the ever-changing land-
scape of data storage, hard disk drives (HDDs) have long
been the workhorses, serving faithfully as the primary
storage medium for all types of data and applications
and particularly for DBMSs and their operational data
. As data volume grows annually and new data types
(semi-structured, multimedia, graph, etc.) consistently
emerge, the need for cutting-edge technologies capable
of efficiently managing this extensive and diverse data
becomes paramount[3, 4, 5, 6, 7, 8]. Addressing the evolv-
ing challenges posed by the expanding and varied nature

SYSTEM 2025: 11th Sapienza Yearly Symposium of Technology, Engi-
neering and Mathematics. Rome, June 4-6, 2025
$ c.salmi@univ-boumerdes.dz (C. Salmi);
n.senoussi@univ-boumerdes.dz (N. E. Senoussi);
djoumana.chaal@gmail.com (D. Chaal);
boudjadi.mlohammed@gmail.com (M. Boudjadi)
� 0000-0001-7131-6158 (C. Salmi); 0009-0009-4906-9686
(N. E. Senoussi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

of contemporary data mandates a shift beyond the lim-
itations of HDDs. Additionally, as storage technology
advances, it becomes imperative to carefully examine
the limitations of hard drives and, therefore, advocate
for the adoption of new media such as Solid State Drives
(SSDs)[9, 10].

One of the most significant drawbacks of HDDs is
their mechanical nature. Unlike SSDs, which use flash
memory for data storage, HDDs rely on spinning disks
and a moving read/write head. This mechanical structure
introduces latency, leading to slower data access times
and increased susceptibility to wear and tear[11, 12, 13].
The constant movement of parts within an HDD not only
hinders overall performance but also makes them more
prone to failure. Another notable disadvantage is the
fragility of HDDs. The delicate nature of the internal
components means that HDDs are susceptible to damage
from physical shocks and vibrations[14, 15, 16]. This
vulnerability can result in data loss or, in severe cases,
render the entire drive inoperable. In contrast, SSDs,
being devoid of moving parts, are inherently more robust
and better equipped to withstand shocks, making them a
more reliable choice for data storage. Energy efficiency
is also a significant concern when comparing HDDs to
SSDs. HDDs consume more power due to the continuous
spinning of disks and the movement of mechanical parts.
In environments where energy efficiency is a priority,
such as in laptops or data centers, SSDs stand out as
a more energy-efficient alternative. Their lower power
consumption not only contributes to a greener computing
environment but also translates to longer battery life in
portable devices. SSDs are based on flash memory which
is a widely used medium in embedded systems (e.g. PDAs,

92

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:c.salmi@univ-boumerdes.dz
mailto:n.senoussi@univ-boumerdes.dz
mailto:djoumana.chaal@gmail.com
mailto:boudjadi.mlohammed@gmail.com
https://orcid.org/0000-0001-7131-6158
https://orcid.org/0009-0009-4906-9686
https://creativecommons.org/licenses/by/4.0

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

mobile phones, etc.) and promises to replace the magnetic
hard drive for secondary storage system in all IT devices
recent and data centers.

More specifically, the Solid State Drive (SSD) is a data
storage device that uses NAND flash memory and can be
used in the same way as an HDD disk via IDE, SATA or
SCSI interfaces or more recently with NVMe interfaces
that are four times faster than SATA.

OLAP is a technique for multidimensional analysis,
which allows decision-makers to have quick and interac-
tive access to relevant information presented from var-
ious and multiple angles, according to their particular
needs. OLAP is therefore a technique whose function-
alities are used to facilitate multidimensional analysis:
operations that can be carried out on the hypercube to
extract data. Moreover, OLAP processing necessitates
fewer write operations compared to other database ap-
plications like operational OLTP databases (online trans-
action processing) . This characteristic makes OLAP a
suitable candidate for execution on SSD-type media, the
speed of which has consistently improved since their
inception. The aim of this work is to study the suitabil-
ity of flash memories and SSD disks to data warehouse
technology. The paper is organized as follows. In Section
2, we review some related works related to the integra-
tion of flash memory in Database Management Systems
(DBMS). In Section 3 we present the fundamental con-
cepts of flash memory and SSD drive. In section 4 we
present the data warehouses and the OLAP technique
which constitutes the context of our work. In Section 5,
we present our proposal, emphasizing the hybridization
of HDD and SSD media. Section 6 is dedicated to imple-
mentation and experimentation. Within this section, we
introduce the flash memory simulator utilized, provide
details about the environments, and present the results
of all conducted simulations. Section 7 concludes our
paper.

2. Related Work
Ever since the authors of [17] announced that ’tape is
dead, disk is tape, and flash is disk’, there has been a lot
of research that has attempted to study the use of flash
memory in conjunction with databases. Many techniques
have been studied such as query processing [18, 19, 20]
and page layout [21]. intense work has been done to
extend the buffer with flash memory. The work of [22]
propose to use SSDs as an extension to database buffer
pool and exploit them to manage the dirty pages. Before
being evicted from the buffer, the authors propose to first
store the dirty pages on the SSD to avoid the communi-
cation with the HDD[23, 24]. Three eviction strategies
were proposed. Clean-write: never write dirty pages
to SSD, dual-write: write an evicted dirty page to both

HDD and SSD and finally, lazy-cleaning in which dirty
pages are first written to SSD and later copied from the
SSD to HDD (lazy updates). Authors in [25] focused on
flash memory as a write cache for databases stored on
conventional hard disk. In this case, when dirty pages
are evicted from the memory buffer pool, they are first
written on the flash-based-cache and later propagated
to hard disk, applying some replacement strategies to
reduce the amount of data written to flash. The issue
of SDD buffer in the OLTP environment has been ex-
amined in [26], with a significant focus on enhancing
recovery time and ensuring data integrity following a
crash or a routine database restart[27, 28, 29]. Metadata
about the contents of the SSD buffer are stored on the so
called: SSD buffer table. This table can be reconstructed
using transactional log files and is periodically flushed
in an asynchronous mode. A caching algorithm at the
granularity of subtuples is proposed in [30]. The algo-
rithm partitions vertically a database table and then the
subtuples are cached. Updates are gathered and when a
page eviction occurs, subtuples are flushed to flash mem-
ory in the same area (a page or more) which reduces the
amount of data written to flash memory. In the paper [31],
authors introduced a caching system that utilizes flash
memory as an intermediary layer positioned between
the main memory buffer pool and the magnetic disk. A
theoretical cost model and a strategy that decides which
data to be cached were also proposed. Despite their im-
portance in rapid decision-making and their differences
from classical relational databases, data warehouses and
OLAP queries have not been studied much, especially in
the context of recent storage media such as flash memory.
The authors in [32] have proposed an approach whose
principle is to generate small lattices by reducing the re-
dundancy of prefixes and suffixes to manage condensed
cubes. The authors of [5] have conducted an experimen-
tal investigation aimed at enhancing the performance of
OLAP cube processing on SSDs. This study utilized spe-
cific types of storage disks, specifically a Seagate 160 GB
magnetic disk and a Patriote 64 GB Solid State Drive[33].

3. Solid State Drive
A solid-state drive (SSD) is a permanent storage medium
that uses flash memory-based chips for data storage. Un-
like the traditional hard disk drive (HDD), an SSD lacks
moving mechanical parts and consists of an array of flash
memory cells that depend on MOS transistors (Metal Ox-
ide Semiconductor, e.g., USB flash drive). These cells can
trap electrical current to encode the binary digits ’0’ or
’1’. Consequently, this memory type features three pri-
mary input/output operations: read, write, and erase. As
previously mentioned, SSDs offer numerous advantages
over HDDs, including greater efficiency, enhanced relia-

93

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

bility, lower energy consumption, and silent operation.
While their prices have historically been higher, they are
gradually decreasing.

3.1. Flash Memory
There are two types of flash memory (1) NOR flash: this
type of memory allows fast data addressing. Conversely,
write and erase times are long. These memories are used
to store code intended to be executed in place without
copying the code into the main memory (XIP, for Execute
In Place). They are generally used to host the operating
systems (OS) of various embedded systems such as smart-
phones, etc. (2) NAND flash : constitutes the foundation
of most external mass storage devices due to their high
density and affordable price.

3.2. NAND Flash Memory
Internally, NAND flash memory comprises two primary
components: (1) the flash controller, a hardware compo-
nent responsible for supervising the interface between
the flash device and the host system, as well as handling
received I/O requests; (2) the flash chips, which serve as
the actual data storage units and are interconnected by a
bus. Figure 1 illustrates the architecture of a NAND type
flash memory. In the controller there is an SRAM, used in
particular to store information relating to the flash trans-
lation layer (FTL) whose main role is to maximize the
lifetime of the memory which depends on the number of
write/erase cycles. There are two major classes of NAND
memories: Single Level Cell (SLC) and Multi Level Cell
(MLC). SLC memory cells are capable of storing 1 bit, and
MLCs can store 2 or more (triple, quad LC store three
and four bits per cell respectively) [34, 35]. SLCs have
a lifetime 10 times longer than MLCs [36, 37, 38]. From
a logical point of view, the data is organized in logical
units (LU), erase blocks and pages. The LUs called data
banks are matrices of blocks. Erase blocks are arrays
of pages. Finally, pages represent the smallest address-
able units for read and write commands. A distinction
is made in a page between the area that contains the
data stored on the flash memory (user data) and an Out
Of Band Area (OOB), used to store meta-data on the
page itself and the data contained therein. It should be
noted that the OOB data is used by the FTL for its own
operation[39]. As mentioned before, flash memory sup-
ports three operations: read (read), write (or program),
and erase (data deletion). Reads and writes apply at page
level, erasing applies to an entire block. Similar to other
EEPROM devices, clearing individual bits can only be
achieved by erasing a significant memory block. Con-
sequently, a block can only endure a finite number of
erasures, beyond which its capacity to reliably store data
diminishes[40]. It is important to note that modifying the

Flash C
hips

Parser

Host Interface

SRAM

System Bus

Flash Interface

Flash Bus

Controller

Host

Figure 1: NAND flash memory architecture.

content of a page (update) requires: (1) copy the entire
block that contains the page to a different location (free
block, previously erased), while taking into account the
modifications requested by the write request; (2) invali-
date the old obsolete block to be recycled soon; (3) finally
update the addressing tables to indicate that the new
block contains the latest version of the data. The lifetime
also called endurance (number of write/erase cycles) is
one of the main constraints of flash memories. Currently,
a 100,000 P/E Cycles is reached 1 but the problem of block
wear still remains.

3.3. Flash Translation Layer
A straightforward method to connect flash memory to a
host system is by treating it as a hard disk and assigning
its management to the standard file system. However,
as these file systems are not specifically optimized for
flash memory, one may notice a swift deterioration of
the memory blocks. This problem is compounded by the
erase-before-write constraint mentioned earlier [41]. It is
therefore essential to minimize and distribute block eras-
ing in a way that maximizes the average lifetime of each
cell constituting the flash memory. This is the purpose
of a technique called wear leveling. Wear leveling is inte-
grated, among other features, into flash memory in two
different ways: (1) by using a dedicated file system: Flash
File System (FFS), such as UBIFS (Unsorted Block Images
File System) [42], YAFFS, YAFFS2 (Yet Another Flash File
System) [43], or JFFS (Journaling Flash File System) [44],
etc.; (2) by implementing a translation layer between the
system and the flash memory: the FTL. The main advan-
tage of FTL is that it works with standard file systems.
The FTL roles comprises an address mapping (translate
host system requests to physical addresses), bad block
management, power-off recovery, wear Levelling and a
garbage collection functions [45, 46].

1https://www.apacer.com/en/News/Detail/2022-apacer-3d-slc-lite-
x-en

94

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

3.3.1. Address translation

The FTL’s address translation process is based on map-
ping tables stored in the SRAM. Each entry of the ta-
ble maps a logical address to a unique physical address.
There are mainly three basic address translation schemes,
each has its advantages and drawbacks: page mapping,
block mapping, and hybrid mapping [47, 41, 45]. Page
mapping is an intuitive technique that consists of directly
associating a physical page with each logical page. It re-
quires a large mapping table since an entry is needed for
each page of flash memory. During a write request, if the
page is not empty, the FTL chooses a free physical page,
and updates the mapping table. Upon receipt of an I/O
request from the host system addressing a page, the FTL
first calculates the corresponding logical block number
(LBN) according to the following formulas:

𝐿𝐵𝑁 =
𝐿𝑃𝑁

𝑁𝑃𝑃𝐵
(1)

𝑂𝐹𝐹𝑆𝐸𝑇 = 𝐿𝑃𝑁%𝑁𝑃𝑃𝐵 (2)

The first equation determines the address of the physi-
cal block by dividing the logical page address (LPN) by the
number of pages contained in a block (NPPB). Then, using
the mapping table, the FTL determines the correspond-
ing physical block. The second equation determines the
offset between the first page of the physical block (page
0) and the page addressed for reading or writing. The
disadvantage of block mapping is the generation of extra
operations in case of write requests compared to page
mapping. Indeed, if a write operation requires an update
of only a few pages of the block, the entire block must
be re-mapped to another free physical block. Hybrid-
mapping is an approach designed to overcome the short-
coming of the two previous techniques. Other works
have been based on this method to improve mapping
performance. In their work, J. Kim et al. [48] introduce
a technique that employs a hybrid approach, combining
block-level and page-level (coarse-grain and fine-grain)
methods. This log block scheme optimizes the SRAM map
size and enhances performance for both small and large
write operations. Additionally, C. Park et al. [45] propose
a flexible group mapping method, building upon the pre-
viously presented log block scheme. This method allows
for the configuration of the degree of log block sharing
among different groups [49]. For the sake of space, we
settle for only describing FTLs used in our simulations.
Other works on FTLs can be found in [41, 50, 51, 14].

3.3.2. Flash Memory Simulation

Flash memory-based real disks are considered closed
systems, which means they have limited accessibility to
users. Often, manufacturers do not provide detailed tech-
nical specifications of the disk, making it challenging to

customize or optimize its internal parameters. However,
simulation offers a convenient solution to this limitation
by allowing users to manipulate the internal parameters
of the disk and conduct desired tests effectively. The
common methods are (1) Trace-Based Simulation: it uses
real-world workload traces of read and write operations
to drive the simulation. This method allows a realistic
representation of actual workload behavior, allowing for
accurate evaluation of system performance under real-
world conditions. However, it requires access to high-
quality, representative traces, which might not be readily
available. (2) Analytical Modeling: formulates mathemat-
ical models based on the fundamental characteristics of
flash memory operations and system architecture. It pro-
vides theoretical insights into the system’s behavior and
performance under various scenarios. This method is
fast and computationally efficient but the simplifications
in the model may lead to less accurate results compared
to more complex simulations. (3) Full-System Simulation:
simulates the entire flash memory system, including in-
ternal NAND flash operations, wear leveling, garbage
collection, etc. It allows a comprehensive and accurate
representation of the flash memory system’s behavior, en-
abling detailed analysis and optimization. However, this
method induces high computational overhead and is time-
consuming in addition to the thorough understanding of
flash memory internals for accurate modeling. (3) FPGA-
based Simulation: utilizes Field-Programmable Gate Ar-
rays (FPGAs) to implement flash memory operations
at hardware-level speeds. It allows high performance
and real-time simulation capabilities, enabling hardware-
software co-design and validation. This method requires
FPGA expertise and hardware resources, making it less
accessible to some researchers. (4) Hardware Emulation:
uses specialized hardware (e.g., FPGA-based emulators)
to mimic the behavior of real flash memory. It allows real-
time and cycle-accurate simulation, resulting in detailed
analysis of system behavior and debugging. The main
drawback of this approach is its higher cost and reduced
flexibility compared to software-based simulations.

4. Data Warehouse and OLAP
A data warehouse (DW) is explicitly crafted for ana-
lyzing data, entailing the retrieval of substantial data
quantities to comprehend the relationships and trends
within it. Throughout the remainder of this study, we will
demonstrate through our experiments that data storage
is more efficiently handled by storage medium utilizing
flash memory. In the following section, we present some
data warehouse fundamental concepts.

95

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

4.1. OLAP’s Role in Data Analysis and
Decision-Making

A data warehouse is a database dedicated to online analy-
sis for decision support. OLAP operators allow business
decision makers to extract data cubes corresponding to
analytical contexts [1]. Data cubes are data structures
that allow DW data to be grouped according to several
business functions. Each cube contains the relevant data
for a particular function. Data is consolidated, aggregated
and optimized for fast and efficient analysis. The cube
enables drilling down, slicing, dicing, or pivoting data
to observe it from various perspectives. OLAP cubes are
optimized for read access, generating reports for decision
making is much faster than with transactional systems
(OLTP).

4.1.1. Online Analytical Processing (OLAP)

OLAP is a technology used to organize, analyze, and
process large volumes of multidimensional data. Unlike
Online Transaction Processing (OLTP), which focuses on
managing day-to-day operational data, OLAP deals with
complex queries and data analysis tasks. At the core of
OLAP lies the fundamental concept of conducting multi-
dimensional analysis, empowering users to glean insights
from their data through various viewpoints, commonly
known as "slicing and dicing".

4.1.2. Key Aspects of OLAP

OLAP technology is characterized by: (1) Multidimen-
sional Data Model: OLAP databases use a multidimen-
sional data model, where data is organized into dimen-
sions (e.g., time, product and region) and measures (e.g.,
sales and revenue) (2) Dimension Hierarchies: Each di-
mension typically contains hierarchies, allowing users to
drill down or roll up the data to various levels of granu-
larity (3) Aggregation: OLAP allows for pre-aggregation
of data to accelerate query processing and improve per-
formance.

4.1.3. Importance in Data Analysis and
Decision-Making

OLAP plays a vital role in data analysis and decision-
making processes for several reasons: (1) Complex Data
Exploration: OLAP enables users to explore complex
datasets efficiently. Decision-makers can quickly access
and analyze large volumes of data from various angles,
enabling better understanding and insight into business
trends and patterns (2) Interactive and Ad-Hoc Analysis:
OLAP systems allow users to perform ad-hoc queries
interactively, providing real-time responses to complex
analytical questions. This flexibility empowers users to

investigate data anomalies and outliers, identify opportu-
nities, and make data-driven decisions promptly (3) Busi-
ness Intelligence and Reporting: OLAP is the foundation
of Business Intelligence (BI) systems, providing essential
tools for reporting, data visualization, and dashboards.
It supports the creation of user-friendly reports and vi-
sualizations, making it easier for non-technical users to
comprehend data and make informed decisions (4) Sup-
port for Decision-Making: OLAP’s ability to present mul-
tidimensional data in a comprehensible format facilitates
better decision-making at all levels of an organization.
Decision-makers can evaluate performance, assess the
impact of strategic decisions, and identify areas for im-
provement (5) Forecasting and Planning: OLAP systems
support data forecasting and predictive analytics. By ana-
lyzing historical data and trends, organizations can make
informed predictions and develop strategic plans for the
future.

4.1.4. Rising Demand for Faster OLAP Data
Processing

The demand for faster data processing in OLAP systems
has grown exponentially due to several factors: (1) Data
Volume and Complexity: With the increasing availability
of big data and the proliferation of data sources, OLAP
systems must handle larger and more complex datasets.
Faster processing is necessary to deliver timely results for
analysis (2) Real-Time Decision-Making: In today’s fast-
paced business environment, real-time decision-making
is crucial. Decision-makers need instant access to up-to-
date data and insights to respond to market changes and
seize opportunities (3) Competitive Advantage: Faster
data processing in OLAP systems provides a competi-
tive edge. Organizations that can analyze data and make
decisions faster can respond promptly to market trends
and gain a competitive advantage (4) User Expectations:
Users, including executives, managers, and analysts, ex-
pect near-instantaneous response times when interacting
with OLAP systems. Slow query response times can lead
to user frustration and hinder productivity and (5) Busi-
ness Complexity: Businesses are becoming more com-
plex, with data-driven strategies playing a significant role.
Faster OLAP processing allows for more sophisticated
data analysis, enabling organizations to uncover deeper
insights. To meet these demands, OLAP systems are
continuously evolving, incorporating technologies like
in-memory computing, columnar databases, and hard-
ware acceleration (e.g., GPUs) to enhance data processing
speed and optimize performance. Faster OLAP systems
are critical for empowering organizations to make in-
formed decisions quickly and stay ahead in today’s data-
driven landscape.

96

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

5. Proposed Approach
In this section, we elaborate on our approach, which cen-
ters on conducting comprehensive tests and evaluations
of a data warehousing and OLAP on various configu-
rations, including Hard Disk Drives (HDD), Solid-State
Drives (SSD), and hybrid configurations combining both
technologies. Our approach aims to assess the perfor-
mance of these storage options in the context of data
warehousing. The motivation comes from the fact that:
(1) HDDs are well-established, cost-effective storage de-
vices known for their large storage capacities. However,
they typically exhibit slower data access and retrieval
times compared to SSDs (2) SSDs are relatively newer
storage technology, renowned for their exceptional speed
and low latency. They excel in rapid data retrieval and
are ideal for high-performance computing tasks and (3)
In addition to individually testing HDDs and SSDs, our
approach extends to exploring hybrid solutions that lever-
age the strengths of both storage technologies. By com-
bining HDDs for bulk storage and SSDs for caching fre-
quently accessed data, we aim to strike a balance between
capacity and performance. This hybrid approach is par-
ticularly interesting in scenarios where cost-effectiveness
and performance optimization are paramount. In the fol-
lowing, we describe the fundamentals of the hybridiza-
tion approach of the two storage media.

5.1. The Concept of Hybridization
Hybrid storage denotes storage solutions that com-
bine solid-state drives (SSDs) and traditional mechan-
ical hard drives, along with main memory (RAM), to
provide an optimal balance between performance and
cost-effectiveness. The basic idea behind hybridization is
to store intermediate results shared by multiple queries
on one of the RAM or SSD storage media. This tech-
nique is particularly suitable for data warehouses and
flash memory systems because decision-making queries
often involve a significant number of common opera-
tions. This phenomenon is known as multi-query opti-
mization [52, 53, 54, 55]. Most of these studies optimize
all queries within the same batch and generate a single
execution plan for all queries. The advantageous inter-
mediate results for the execution of the entire workload
are selected and materialized on the secondary storage
medium, which can be either the HDD, SSD or main
memory. Intermediate query results encompass a series
of materialized views utilized for the advance computa-
tion and storage of condensed aggregate data, such as
the total sales amount. In this context, these materialized
views are often termed "summaries" since they store con-
densed data. Furthermore, they can be used to perform
pre-computations of joins in various sizes, both with and
without aggregation operations. The use of a material-

WorkLoad

MVPP Generation

Heuristic Cost
Based Selection

MV Creation

HDD

SSD

Individual Query
Plans

......

Q1

Qn

Traces

Simulation

Figure 2: Hybrid approach.

ized view serves to eliminate the computational overhead
linked to resource-intensive joins and aggregations for a
wide range of queries.

The challenge in determining which intermediate re-
sults to materialize involves identifying the combination
of node subsets that will be materialized to optimize the
workload execution time. This task involves exploring
a vast search space, encompassing all potential subex-
pressions within the database schema and the workload
over a specific period. This problem has similarities to
the well-known knapsack problem. In our context, the
"knapsack" represents the HDD and SSD storage media,
and the "objects" refer to the nodes to be placed in these
storage media. It is worth noting that the knapsack prob-
lem is recognized as NP-complete [56, 57, 58].

As illustrated in Figure 2, the hybridization solution
involves harvesting the most representative query work-
load through the logs of the Database Management Sys-
tem (DBMS). Subsequently, an execution plan is derived
for each query. The collection of query execution plans is
transformed into a structure called MVPP (Multiple View
Processing Plan) [59], which provides an overarching
plan highlighting query interactions and common nodes
(to be materialized). Due to the extensive search space
for nodes to materialize, a heuristic selection module
is developed to choose the optimal configuration. The
role of the heuristic selection module is to leverage all
candidate execution plans and identify the one with the
optimal cost by utilizing cost models tailored to each
storage medium. For each candidate plan, its execution
cost is computed using the cost model, and the plan with
the minimal cost is chosen to evaluate the current query.
Following this, the selected optimal nodes are created
on the appropriate storage medium. The query work-
load is executed after the materialization of these nodes,
and the execution traces are recorded for playback on

97

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

Q1

lo_orderdate
= d_datekey

count(*)

d_year =
1993

Date

sum(lo_extendedprice

* lo_discount)

lo_discount
between 1 and 3
and lo_quantity <

25

Lineorder

Q2

lo_orderdate
= d_datekey

sum(lo_extendedprice

* lo_discount)

Q3

count(*)

Q4

lo_orderdate
= d_datekey

Part

p_brand =
'MFGR#2221'

lo_partkey
= p_partkey

Supplier

s_region =
'ASIA'

lo_suppkey
= s_suppkey

group by
d_year

order by
d_year

Q5

lo_partkey
= p_partkey

sum(lo_revenue)

Q6 Q7

avg(lo_revenue)

Figure 3: SSB MVPP example.

the simulated storage system. Figure 3 illustrates the
integration of MVPP with the initial seven queries from
the SSB benchmark. Table 1 outlines the nodes suitable
for potential materialization. Each node is characterized
by its frequency, size, and estimated calculation cost, as
determined by the general cost model, regardless of the
storage medium type.

Nodes 1 through 5 depict the full scan of the base tables:
lineorder (L), date (D), customer (C), supplier (S), and part
(P). It’s important to highlight that the calculation cost
of a node encompasses the costs associated with all its
child nodes within the MVPP.

5.2. Formalization of the Hybridization
Problem

The hybridization problem is formalized as follows: (1) In-
puts: (i) a relational data warehouse 𝑅𝐷𝑊 , (ii) A query
workload 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑚}, each query 𝑞𝑖 has an
access frequency 𝑓𝑖, where 1 ≤ 𝑖 ≤ 𝑚. Queries are rep-
resented by an MVPP (Multi-Query View Plan), (iii) A set
of intermediate result nodes 𝑅 = {𝑟𝑛1, 𝑟𝑛2, ..., 𝑟𝑛𝑛}
from the MVPP, candidates for materialization on HDD
or SSD. Each intermediate result can be assigned to at
most one storage media (either HDD or SSD) (2) Con-
straints: HDD size 𝑆ℎ𝑑𝑑, SSD size 𝑆𝑠𝑠𝑑 and (3) Outputs:
an assignment that allows intermediate nodes to be allo-
cated across the two storage media in order to optimize
the overall cost of executing the input query workload.
The objective is to minimize the total execution time by
selecting the most efficient combination of intermediate
result for each storage media.

The primary objective function within the hybridation
problem is to minimize the weighted query processing
cost, as defined by the formula 3.

MIN(QPC) =

𝑚∑︁
𝑖=1

𝑓𝑖 * 𝑐𝑜𝑠𝑡(𝑅)
𝑞𝑖 (3)

Where, 𝑐𝑜𝑠𝑡(𝑅)
𝑞𝑖 represents the processing cost associ-

ated with 𝑞𝑖, considering a set of intermediate nodes 𝑅.
The dual problem revolves around maximizing the over-
all execution time gain by optimizing the benefit gained
when particular intermediate nodes are stored on one of
the storage media (HDD or SSD). Formally:

MAX(GN) =

2∑︁
𝑘=1

𝑛∑︁
𝑖=1

(𝐺𝑘
𝑖 * 𝑥𝑘

𝑖) (4)

Subject to the following constraints:⎧⎨⎩
∑︀𝑛

𝑖=1(‖𝑟𝑛𝑖‖ * 𝑥𝑘
𝑖) <= 𝑆𝐶𝑘, 𝑘 = 1...2∑︀2

𝑘=1(𝑥
𝑘
𝑖) <= 1, 𝑖 = 1...𝑛

Where:

(i) 𝐺𝑘
𝑖 represents the cumulative gain when node

𝑟𝑛𝑖 is placed on medium 𝑘. The cumulative gain
𝐺𝑘

𝑖 when node 𝑟𝑛𝑖 is allocated on medium 𝑘 is
computed as follows:

𝐺𝑘
𝑖 =

𝑚∑︁
𝑗=1

(𝑓𝑞𝑗 * 𝐶𝑜𝑠𝑡𝑞𝑗 (𝑟𝑛𝑖))/𝑛𝑞𝑠𝑖

It represents the absolute value of I/O cost that
the workload would accumulate if the node were
stored on either the HDD or SSD, subtracting
the cost incurred when recomputing the node.
Here, 𝑓𝑞𝑗 represents the frequency of query 𝑞𝑗 ,
𝐶𝑜𝑠𝑡𝑞𝑗 (𝑟𝑛𝑖) denotes the execution cost of query
𝑞𝑗 accessing node 𝑟𝑛𝑖, and 𝑛𝑞𝑠𝑖 represents the
total number of queries sharing node 𝑟𝑛𝑖.

98

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

Table 1
SSB potential nodes for materialization

ID Description #Occurence Cost Size(meg)

6 𝜎𝑑𝑦=1993(𝐷) 4 71,95 0,001460
7 𝜎1≤𝑙𝑑≤3 ∧ 𝑙𝑞<25(𝐿) 2 132274,76 4,479846
8 𝜎𝑠𝑟=′𝐴𝑆𝐼𝐴′ (𝑆) 9 58 0,001796
9 𝜎𝑝𝑏=′𝑀𝐹𝐺𝑅#2221′ (𝑃) 7 4338,59 0,000468
10 𝜎𝑠𝑟=′𝐸𝑈𝑅𝑂𝑃𝐸′ (𝑆) 3 58 0,001520
11 𝜎𝑐𝑟=′𝐴𝑆𝐼𝐴′ (𝐶) 3 651,82 0,072612
12 𝜎cn=’UNITED STATES’(𝐶) 4 113520,15 45,01107
13 𝜎sn=’UNITED STATES’(𝑆) 6 58 0,001140
14 𝜎𝑝𝑚𝑔𝑓𝑟=′𝑀𝐹𝐺𝑅#1′∨𝑝𝑚𝑔𝑓𝑟=′𝑀𝐹𝐺𝑅#2′ (𝑃) 4 4632,71 0,513948
15 𝜎𝑑𝑦=1997∨𝑑𝑦=1998(𝐷) 6 78,34 0,004062
16 𝜎𝑠𝑟=′𝐴𝑀𝐸𝑅𝐼𝐶𝐴′ (𝑆) 7 58 0,007560
17 𝜎𝑐𝑟=′𝐴𝑀𝐸𝑅𝐼𝐶𝐴′ (𝐶) 3 650,63 0,023968
18 𝜎1992≤𝑑𝑦∧𝑑𝑦≤1997(𝐷) 7 78,34 0,013152
19 6 ◁▷ 7 2 133192,64 0,456950
20 2 ◁▷ 6 2 164385,27 8,570180
21 2 ◁▷ 9 3 18919,79 0,028096
22 2 ◁▷ 1 4 227969559 51132,57
23 2 ◁▷ 11 3 165012,32 18,15747
24 2 ◁▷ 8 3 164379,63 29,64128
25 2 ◁▷ 12 4 120932,94 1,785442
26 2 ◁▷ 13 2 120157,12 1,615391
27 2 ◁▷ 17 3 165010,39 19,17912
28 2 ◁▷ 5 1 165416,86 204,0501
29 2 ◁▷ 16 3 164378,75 31,75981
30 9 ◁▷ 22 4 20516,89 0,11942
31 8 ◁▷ 30 2 172688,99 43,11459
32 30 ◁▷ 10 2 20097,7 0,009072
33 21 ◁▷ 10 1 19998,54 0,049940
34 23 ◁▷ 8 3 122598,28 3,623424
35 34 ◁▷ 18 3 146912,11 7,457792
36 24 ◁▷ 18 1 20440,12 0,174114
37 25 ◁▷ 13 4 123212,14 0,268184
38 37 ◁▷ 18 3 121370,58 0,102660
39 27 ◁▷ 16 3 1320,3 0,000057
40 39 ◁▷ 15 3 1320,6 0,000059
41 40 ◁▷ 14 3 123749,59 0,114840
42 28 ◁▷ 16 1 168488,65 64,65390
43 45 ◁▷ 15 1 122951,02 7,385620
44 43 ◁▷ 14 1 140176 8,202975
45 15 ◁▷ 29 2 127334,04 3,75540
46 21 ◁▷ 8 1 20119,48 0,07504

(ii) ‖𝑟𝑛𝑖‖ represents the size of node 𝑟𝑛𝑖.
(iii) 𝑆𝐶𝑘 is the storage capacity of storage medium 𝑘

(𝑆ℎ𝑑𝑑 for 𝑘 = 1 and 𝑆𝑠𝑠𝑑 for 𝑘 = 2).
(iv) The decision variable 𝑥𝑘

𝑖 is defined as follows:

𝑥𝑘
𝑖 =

{︃
1 if 𝑟𝑛𝑖 is stored on the storage media𝑆𝑘

0 else

5.3. Resolution Approach
To emphasize the impact of incorporating SSD disks into
an OLAP environment with the integration of material-

ized views, we focus solely on scenarios where the views
are stored on either SSD or HDD media. In general, the
problem of selecting materialized views is classified as an
NP-hard problem, and its resolution typically relies on
heuristic approaches. We utilize the simulated annealing
algorithm [12] for selecting nodes to be materialized on
the SSD disk. The core principle of the simulated anneal-
ing algorithm is derived from simulating the annealing
process employed in the heat treatment of metals. The
key concept is to traverse the solution space by consid-
ering both enhancing and non-enhancing solutions pro-

99

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

1 #nodes
0 1 ... 0 1 1 ... 0

Figure 4: Solution representation.

gressively. This approach prevents the algorithm from
becoming trapped in local optima and facilitates explo-
ration of broader regions within the solution space. Let
𝑓(𝑆) represent the execution time of the workload in
the presence of a subset 𝑆 of intermediate nodes. The
objective is to minimize 𝑓(𝑆) while adhering to the SSD
capacity constraint (see equations 3 and 4). A solution
can be depicted as shown in figure 4. An admissible
solution is one that adheres to the storage constraint.
The solution space comprises a collection of admissible
solutions.

5.3.1. Simulated Annealing Iterative Process

Algorithm 1 Simulated Annealing for Node Selection

Require: Initial solution 𝑆, Initial temperature 𝑇 , 𝛼:
Cooling parameters, 𝐸𝑡ℎ : Energy threshold, 𝑇𝑚𝑖𝑛 :
Temperature minimum threshold,

Ensure: 𝑆 = Optimal sub set of nodes
1: 𝑇 ← 𝑇𝑚𝑎𝑥

2: 𝐸(𝑆)← compute the energy of 𝑆
3: while (𝑇 > 𝑇𝑚𝑖𝑛) and (𝐸 > 𝐸𝑡ℎ) do
4: Generate a neighbor solution 𝑆′ (small change

to the current solution 𝑆)
5: 𝐸(𝑆′)← compute the energy of 𝑆′

6: ∆𝐸 = 𝐸(𝑆′)− 𝐸(𝑆)
7: if ∆𝐸 > 0 then
8: Accept the new solution 𝑆′

9: else
10: Generate a random number 𝑟 between 0 and

1
11: if 𝑟 < 𝑒−

Δ𝐸
𝑇 then

12: Accept the new solution 𝑆′

13: else
14: Reject the new solution 𝑆′

15: end if
16: end if
17: Update temperature: 𝑇 ← 𝑇

𝛼

18: end while
19: Return final solution 𝑆

As illustrated by algorithm 1, during each iteration,
the algorithm generates a set of materialized views by
making incremental adjustments to the existing solution.
Subsequently, it assesses the disparity in energy (or ob-
jective function) between the prevailing solution and the
newly generated solution. If the new solution is better, it
is adopted as the current solution. Conversely, if the new

solution is inferior, it is accepted with a probability that
diminishes over time, contingent upon the energy differ-
ence and the temperature parameter. The temperature
gradually decreases, thereby regulating the likelihood
of embracing suboptimal solutions throughout the pro-
cess. This iterative cycle is repeated until the stopping
criterion is met. For both an optimal final solution and a
reasonable convergence time, the initial solution is not
generated randomly but rather with nodes checking the
following constraint which represents their degree of
eligibility to be materialized:

𝐸(𝑟𝑛) = 𝑓𝑟𝑛 *
𝑐𝑜𝑠𝑡(𝑟𝑛)

‖𝑟𝑛‖ > 𝑡ℎ (5)

This value gives preference to frequent, small nodes with
a significantly high computational cost, ensuring that
their values exceed a specific threshold (th). In creat-
ing a neighboring solution, we assess the impact on the
overall workload execution (fitness function) for each
intermediate node when removed from the current so-
lution. If removing the node enhances the fitness, it is
substituted with a randomly selected node from the pool
of unselected nodes.

6. Implementation and
Experimentation

In our experiments, we relied on the technique of simula-
tion to evaluate the performances of our proposal. This
can be justified by the following three reasons: (1) The
performance evaluation on different real flash memories
and for the same given workload gave different results
[60, 61, 62] (2) The simulation enables precise control
over all physical parameters of the disk, specifically facil-
itating the simulation of multiple FTL and wear leveling
algorithms (3) separately control the IOs generated by
different processes (OS processes and the different pro-
cesses executed by the DBMS). In this work, we used a
modified version of DiskSim and FlashSim and simulator
developed in C language at the University of Michigan,
and Canergy Mellon [63].

6.1. Disk and Flash Simulators
DiskSim and FlashSim are two powerful tools that enable
the creation of simulation environments and facilitate the
evaluation of flash memory performance. The DiskSim
tool serves two primary purposes: first, to gain insights
and conduct in-depth analyses of storage system perfor-
mance, and second, to assess the effectiveness of new
architectural designs [37]. DiskSim operates with two
essential inputs: (1) a configuration file that defines the
system’s structure to be tested. In this file, various essen-
tial components such as buses, controllers, disks, etc., can

100

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

be instantiated. (2) a trace file, representing the simulated
trace that models the requests received by the system,
including reads, writes, and other relevant operations.
The configuration file comprises essential information,
including:

(i) Global: general simulation options are specified
here.

(ii) Stats: this section defines various statistics to be
collected during the simulation.

(iii) Iosim: options related to the input trace file used
in the simulation.

(iv) System Components: the file includes details
about the components to be simulated, such as
Buses, Drivers, Controllers, and Disks, each of
which can have numerous parameters. These
components are instantiated based on provided
settings.

Once the components are instantiated, the configuration
file defines the system’s topology by interconnecting in-
stances of the components to create a coherent system
structure. The trace file contains the sequence of I/O re-
quests that the system will execute during the simulation.
Each log file entry includes the following details:

(i) Device: The device involved in the I/O operation.
(ii) Block: The specific block associated with the re-

quest.
(iii) Size: The size of the I/O request.
(iv) Flags: Additional flags or attributes related to the

request (read/write, etc.).

FlashSim is a flash memory simulator [48] that can be
seamlessly integrated into DiskSim. It emulates the be-
havior of an SSD disk and is implemented in the C pro-
gramming language. One of its key functionalities is to
assess the performance of flash memories with various
Flash Translation Layers (FTLs) implemented. The FTLs
available in FlashSim include pagemap (page mapping),
fast2 [64], and DFTL [51]. Similar to DiskSim, Flash-
Sim has undergone validation by comparing its results
with measurements obtained from real SSD disks [49]. In
FlashSim, flash memory pages are divided into sectors,
typically with four sectors per page. Flash memory is
implemented through a comprehensive set of data struc-
tures and functions that efficiently manage various oper-
ations, including reading and writing individual pages,
erasing blocks, and handling data invalidation for both
pages and blocks. Additionally, the implementation in-
cludes functions to initialize and terminate instances of
the flash memory model. The flash memory is concep-
tually represented as an array of data structures; each
structure is specifically associated with a physical block
of memory. These data structures store essential infor-
mation pertaining to the block, allowing for effective
management and control of the flash memory system.
Each structure contains the following information:

(i) Block erase counter;
(ii) Number of free pages;

(iii) Number of invalid pages;
(iv) Last page listed;

In addition, a table that has a size equivalent to the num-
ber of pages present in the block. For each page within
the block, it provides specific information, correspond-
ing to the out of band area (OOB) of the pages. This
information contains:

(i) A bit to indicate if the page is valid;
(ii) A bit to indicate if the page is free;

(iii) A field (30 bits) containing the logical page num-
ber corresponding to the physical page in which
it is written.

Additionally, many global variables are present contain-
ing various information like memory size and number of
free blocks. In FlashSim, the FTL algorithms facilitate the
computation of various metrics, including response times,
page read and write counts, and block erasure counts,
enabling comprehensive performance evaluation.

6.2. Principle of the simulation
Figure 5 shows how I/O requests are generated from
SQL code and processed by the subsystem simulated by
DiskSim and FlashSim. The simulation of the execution
of a query involves: (1) the execution of the workload at
the DBMS level and the generation of trace files; (2) anal-
ysis of the traces by the DiskSim parser, which sends the
request to the SSD interface (interface between DiskSim
and FlashSim) and which converts requests addressing
sectors into requests addressing pages; (3) Then the FTL
(depending on its type) will perform different tasks to de-
termine the physical address targeted by the request and
send the request to flash memory for execution. We’ve de-
veloped a simulator equipped with both a 64GB flash SSD
and an 80GB HDD. The flash storage is partitioned into
uniform erase blocks, each having a size of 16 KB. Within
each erase block, there are 32 pages used as read/write
units, and each page has a size of 512 bytes.

6.3. Hardware environment and Dataset
Our experiments were carried out using an open-source
operating system and DBMS on a server equipped with
a 2.60GHz CPU and 8GB of RAM. The dataset used was
an expanded version of the TPC-H benchmark database,
generated with a scale factor of 2. The schema comprises
8 tables with a cumulative size of approximately 2 giga-
bytes, hosted on the Oracle DBMS.

101

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

WorkLoad

Text

SGBD

Data
Cubes

Traces

Disksim

Flashsim

Parser

SSD Interface

FTL

Flash
Results

Blktrace

Figure 5: Principle of the simulation.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15Q16Q17Q18Q19Q20Q21Q22

Ac
ce

ss
 P

at
te

rn

Query

Query Access Pattern

RR

Figure 6: TPC-H query pattern.

6.4. Discussion
The characterization of the resultant workload access
patterns from the TPC-H data related the software and
hardware environment described above generated the
patterns depicted in the figure 6; where 𝑅𝑅 denotes
Random read. Even in the presence of indexes, we no-
tice that a good number of query have induced a se-
quential access pattern to the data. These queries are:
𝑄2, 𝑄4, 𝑄6, 𝑄8, 𝑄12, 𝑄16 and 𝑄21. The rationale is
that the data concerned by these queries had a high spa-
tial locality compared to the other data. Most OLAP oper-
ations can be broken down into four main database opera-
tions: Insert, retrieval or table scans, Join, and Group-By.
For example, slicing and dicing require the use of the
Select statement while OLAP cube generation mainly
utilizes both Group-By and Select statements. For each
of these database operations, we have performed experi-
ments based on the TPCH 22 queries. Within a database
management system, the speed of Insert statements rely
heavily on the writing speed of the storage drive and
involve little, if any, read speeds. For this statement, the
simulated SSD should not be able to outperform the ordi-
nary HD as shown in figure 7. In fact, the erase before
write constraint plays a negative role for the write opera-
tion. Indeed, the writing of data strongly depends on (1)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.1 0.5 1 2 3 4 5 6

Ti
m

e(
m

se
c)

Data size (Mo)

TPC-H Data loading Queries Execution Times

HDD
SSD

Figure 7: Data writing on SSD & HDD.

 0

 10

 20

 30

 40

 50

Rand-Write Seq-Write

Ti
m

e(
se

c)

Data size=8 Mo

Cube Computing Execution Times

Pgmp
Fast

DFTL
Bmp

Figure 8: FTL impact on writing data.

the logic of the FTL algorithm (2) the state of the flash
memory (percentage of free, busy and invalid blocks)
and (3) The strategies initiating the garbage collector can
lead to erasure operations that have a harmful impact
on performance. Indeed figure 8 shows the impact of
the type of FTLs on the overall performance of the SSD
disk. It is clear that block mapping type FTL presents
rather poor performance because in the case where the
memory already contains data, each page write triggers
the invalidation of a block and its erasure (according to
the principle used by garbage collector). We also notice
that the sequential write resulting from the groupings of
several insert instructions has greatly improved perfor-
mance because writing several small amounts of data is
the bad use case for flash memory. The second database
operation essential to fast OLAP operations is Select state-
ments or, more simply, the speed at which the drives can
perform a table scan. As depicted in Figure 9, the intro-
duction of the SSD disk has led to a notable enhancement
in the execution time of all queries. In this situation, SSDs
have two main advantages over HDs. First, the lack of a
seek and rotation latency means that SSDs have the same
access speed regardless of where the data is stored. In

102

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ti
m

e(
se

c)

Query

TPC-H Queries Execution Times

HDD
SDD

Figure 9: TPC-H query execution time compared across HDD
and SSD.

most systems, large datasets are not going to be stored in
continuous blocks, and will instead be fragmented across
the drive. As a result, the need to move a mechanical
head around greatly inhibits a HDD.

For the third database operation, OLAP techniques
often use Joins to combine a fact table with smaller di-
mension tables to obtain additional information. Since
most OLAP Joins are between large tables and smaller
tables, we assume that hashes are used to match the rows.
This operation relies on the speed of accessing the tables
and also on the speed at which the rows can be matched.
For our work, we are less concerned with the second
portion because it depends more on CPU speed and al-
gorithm strategy than storage drive. In addition, since
the storage drives are stored in the same computer (the
trace is extracted from the same workload execution),
there should be little difference in matching speed. As a
result, the main difference in Join performance relies on
access speed. Since we know that SSDs have much faster
access speeds than HDs, it can be expected that Joins will
also perform faster on solid state drives than hard drives.
Group-By statements are the final database operation
essential to OLAP techniques. As with Joins, the perfor-
mance of this operation in our situation relies heavily
on access speed. Group-By operations is composed of
reading from a dataset and aggregating the appropriate
results. Again, since we are using the same CPU, the
time to aggregate common rows should be equivalent
between the SSD and HD. Access speed of the data is
again the main cause of the difference in performance
between the two storage devices. In this case, we ex-
pect always that the SSD should greatly outperform HD
when it comes to grouping large datasets. In fact, we
would expect the performance gap to increase as the
size of the data warehouse increases in particular for
queries whose result cardinality depends on the size of
the database. The final approach pertains to multi-query
optimizers that rely on the similarity of a specific set of

queries over a duration. Queries deemed similar share a
substantial number of intermediate results, such as ac-
cessing identical tables, performing joins on the same
columns, or applying filters based on similar predicates.
While the TPCH benchmark facilitated a comprehensive
examination of utilizing databases on SSD, the 22 queries
employed did not sufficiently underscore the aspect of
similarity in the realm of multi-query optimization. To
underscore the utility of employing materialized views
on SSD, we turned to the 30 queries provided by the SSB
benchmark [10]. The Star Schema Benchmark (SSB) was
specifically crafted to evaluate star schema optimization,
aiming to tackle the challenges identified in TPC-H. Its
primary purpose is to evaluate the efficiency of multi-
table JOIN queries within a star schema.
Figure 10 shows the costs calculated by our cost model
for all queries without and with materialization. The
materialized views are those of the best solutions found
by the simulated annealing algorithm. This solution in-
cludes 7 nodes 𝑁1 . . . 𝑁7, where 𝑁𝑖 ∈ {(1 ◁▷ 6), (6 ◁▷
7), (1 ◁▷ 2 ◁▷ 4 ◁▷ 9), (1 ◁▷ 2 ◁▷ 8 ◁▷ 5), (1 ◁▷ 12 ◁▷
13 ◁▷ 18), (1 ◁▷ 3 ◁▷ 13), (1 ◁▷ 3 ◁▷ 14 ◁▷ 15 ◁▷ 16)}
(see table 1 for node definition and property).

Figure 11 depicts the overall performance of the simu-
lated workload of SSB using materialized views on dif-
ferent SSDs configurations. Considering that the SSB
workload encompasses a significant volume of physical-
level reads characterized by a random pattern, all con-
figurations of simulated SSDs produced superior results
compared to the HDD, even when materialized views
were considered. Nevertheless, the variations observed
in the performance of each disk type (FTL) are predomi-
nantly dictated by the expenses associated with garbage
collection and address translation operations.

In Figure 12, although FAST demonstrates commend-
able performance, it falls short of achieving the perfor-
mance level of page-level FTL. This shortfall is attributed
to the impact of update operations in the TPC-H work-
load, influencing overall performance due to merge op-
erations in FAST. Additionally, the incurred extra data
read cost in log blocks contributes to the degradation of
its read performance. DFTL operates on a two-tier page-
level mapping. However, when the workload lacks high
temporal locality, it becomes susceptible to additional ad-
dress translation overhead. This inherent characteristic
is the primary reason why DFTL does not showcase a
relatively robust random read performance comparable
to the ideal scenario of the page mapping scheme.

We applied the materialized view schemas provided
by the simulated annealing algorithm in Oracle 21c, em-
ploying both real HDD and SSD disks. Figures 13 and 14
depict the execution times for each query and the dura-
tions required to materialize the selected nodes on each
storage medium, respectively. Based on Figure 13, we
can infer the following: (1) Oracle DBMS consistently

103

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

 0

 20000

 40000

 60000

 80000

 100000

 120000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

Q
ue

ry
 c

os
t

(u
ni

t)

Without MV
With Mv

Query execution cost (according to cost model)
Before and after materialization

Figure 10: Query execution cost determined by the optimal pattern identified through the simulated annealing algorithm.

 0

 100000

 200000

 300000

 400000

 500000

 600000

HDD SSD MVHDD MvSSDPM MvSSDBFTL MvSSDDFTL MvSSDFAST

M
illis

ec
on

ds

537683

73072

27489
1669 2589 2756 3025

HDD alone
SSD alone (pgmap)

Mv On HDD
Mv on SSD with Page Map FTL
Mv on SSD with Block Map FTL

Mv on SSD with DFTL
Mv on SSD with FAST FTL

Figure 11: SSB workload execution using materialized views.

selects materialized views as the optimal plan for exe-
cuting queries, and (2) the query execution times using
materialized views on SSD are consistently superior to
those on HDD. This is attributed to the fact that these
times are primarily influenced by IO costs rather than
CPU costs. Upon analyzing the response times provided
by both the disk and flash memory simulators, it becomes
evident that they are considerably higher compared to
the times observed in actual deployment on a real SSD
disk (as depicted in figures 11 and 13). This difference
can be attributed to the incorporation of recent high-
performance techniques, such as caching and parallelism,
in real SSD disks. Figure 14 indicates that, for a 1GB data
warehouse, the average materialization time for an inter-
mediate node is around ten seconds. Nevertheless, this
time significantly increases as we scale up. In a scenario
with offline environment with predetermined workloads,
this isn’t a concern, as it’s feasible to materialize nodes
during periods of low user system usage. However, in a
dynamic environment with frequently changing query
workload patterns, it is advisable to employ SSD as a

second-level cache and implement more sophisticated
cache management techniques.

 0

 50

 100

 150

 200

 250

 300

 350

Read Erase

Re
ad

 o
ve

rh
ea

d/
#

 e
ra

se
 B

lo
ck

s
(n

or
m

al
ize

d)

Page-Map
Fast

DFTL

Figure 12: Garbage Collection Overhead for Various SSDs
using TPC-H.

104

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

T
im

e
(m

s)

Only SSD
Only HDD

MVs on HDD
MVs on SSD

Validation on Oracle 21c
 using real disks HDD and SSD

Figure 13: Execution time on oracle 21c.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N1 N2 N3 N4 N5 N6 N7

T
im

e
(m

s)

MVs on HDD
MVs on SSD

Time taken to materialize nodes on
 SSD and HDD

Figure 14: Materialization time of shared nodes.

7. Conclusion
In this paper, we showed that the SSD is able to perform
at or above that of the HD for all experiments with the
exception of Insert. The SSD had better performance
for all other primitive database operations, such as Se-
lects, Joins, and Group-By statements, that were vital
to fast OLAP processing. We have also shown that the
hybridization of HDD and SSD media using techniques
offered by modern DBMSs such as materialized views
can enormously contribute to the optimization of the
overall operation of the storage system. In the end, we
believe that it is indeed feasible to perform OLAP opera-
tions on a solid state drive as compared with a traditional
magnetic drive. A significant amount of work remains
to improve the understanding of the SSD utilisation in
data warehouse and OLAP environments.

We expect in future work: to study and understand
the patterns of sequentially and randomly distributed
writes and the behaviour of different FTLs in their man-
agement. In this work, we used mostly the simulator
with its default options. We plan to implement more

advanced FTLs of different types and garbage collectors
to better control what happens inside an SSD disk to bet-
ter address current shortcomings, particularly those of
writing. Furthermore, we consider it essential to enhance
the comprehensiveness of our experimental analysis by
incorporating different DBMSs to validate our findings
and gain insights into broader trends. Ultimately, we aim
to implement optimization techniques tailored for flash
memory within the DBMS, including strategies such as
partitioning, indexing, and caching.

Declaration on Generative AI
The authors have not employed any Generative AI tools.

References
[1] W. H. Inmon, Building the Data Warehouse, 4 ed.,

Wiley, Indianapolis, IN, 2005.
[2] C.-H. Wu, T.-W. Kuo, L. P. Chang, An efficient

b-tree layer implementation for flash-memory stor-
age systems, ACM Trans. Embed. Comput. Syst. 6
(2007) 19–es. URL: https://doi.org/10.1145/1275986.
1275991. doi:doi:10.1145/1275986.1275991.

[3] I. E. Tibermacine, A. Tibermacine, W. Guettala,
C. Napoli, S. Russo, Enhancing sentiment anal-
ysis on seed-iv dataset with vision transformers: A
comparative study, in: Proceedings of the 2023 11th
international conference on information technol-
ogy: IoT and smart city, 2023, pp. 238–246.

[4] N. Brandizzi, V. Bianco, G. Castro, S. Russo, A. Wa-
jda, Automatic rgb inference based on facial emo-
tion recognition, in: CEUR Workshop Proceedings,
volume 3092, 2021, p. 66 – 74.

105

https://doi.org/10.1145/1275986.1275991
https://doi.org/10.1145/1275986.1275991
https://doi.org/10.1145/1275986.1275991

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

[5] Z. Chen, C. Ordonez, Optimizing olap cube pro-
cessing on solid state drives, in: Proceedings
of the Sixteenth International Workshop on Data
Warehousing and OLAP, DOLAP ’13, Associa-
tion for Computing Machinery, New York, NY,
USA, 2013, p. 79–84. URL: https://doi.org/10.1145/
2513190.2513197. doi:doi:10.1145/2513190.2513197.

[6] A. Alfarano, G. De Magistris, L. Mongelli, S. Russo,
J. Starczewski, C. Napoli, A novel convmixer trans-
former based architecture for violent behavior de-
tection, in: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume
14126 LNAI, 2023, p. 3 – 16. doi:doi:10.1007/978-3-
031-42508-0_1.

[7] G. Capizzi, C. Napoli, S. Russo, M. Woźniak, Lessen-
ing stress and anxiety-related behaviors by means
of ai-driven drones for aromatherapy, in: CEUR
Workshop Proceedings, volume 2594, 2020, p. 7 –
12.

[8] N. Brandizzi, S. Russo, G. Galati, C. Napoli, Address-
ing vehicle sharing through behavioral analysis: A
solution to user clustering using recency-frequency-
monetary and vehicle relocation based on neigh-
borhood splits, Information (Switzerland) 13 (2022).
doi:doi:10.3390/info13110511.

[9] I. Naidji, A. Tibermacine, W. Guettala, I. E. Tiber-
macine, et al., Semi-mind controlled robots based
on reinforcement learning for indoor application.,
in: ICYRIME, 2023, pp. 51–59.

[10] P. E. O’Neil, E. J. O’Neil, X. Chen, The star schema
benchmark (SSB), 2009.

[11] C. Napoli, V. Ponzi, A. Puglisi, S. Russo, I. Tiber-
macine, et al., Exploiting robots as healthcare re-
sources for epidemics management and support
caregivers, in: CEUR Workshop Proceedings, vol-
ume 3686, CEUR-WS, 2024, pp. 1–10.

[12] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimiza-
tion by simulated annealing, Science 220 (1983)
671–680. URL: http://www.jstor.org/stable/1690046.
doi:doi:10.1126/science.220.4598.671.

[13] N. Brandizzi, A. Fanti, R. Gallotta, S. Russo, L. Iocchi,
D. Nardi, C. Napoli, Unsupervised pose estimation
by means of an innovative vision transformer, in:
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 13589
LNAI, 2023, p. 3 – 20. doi:doi:10.1007/978-3-031-
23480-4_1.

[14] T.-S. Chung, H.-S. Park, Staff: A flash
driver algorithm minimizing block erasures,
Journal of Systems Architecture 53 (2007)
889–901. URL: https://www.sciencedirect.
com/science/article/pii/S1383762107000458.
doi:doi:https://doi.org/10.1016/j.sysarc.2007.02.005.

[15] A. Tibermacine, D. Akrour, R. Khamar, I. E. Tiber-
macine, A. Rabehi, Comparative analysis of svm
and cnn classifiers for eeg signal classification in
response to different auditory stimuli, in: 2024
International Conference on Telecommunications
and Intelligent Systems (ICTIS), IEEE, 2024, pp. 1–8.

[16] B. Nail, B. Djaidir, I. E. Tibermacine, C. Napoli,
N. Haidour, R. Abdelaziz, Gas turbine vibration
monitoring based on real data and neuro-fuzzy sys-
tem, Diagnostyka 25 (2024).

[17] J. Gray, Tape is dead, disk is tape, flash is disk, ram
locality is king, http://research.microsoft.com/enus/
um/people/gray/talks/Flash_is_Good.ppt, 2006).

[18] D. Tsirogiannis, S. Harizopoulos, M. A. Shah,
J. L. Wiener, G. Graefe, Query processing tech-
niques for solid state drives, in: Proceedings of
the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, Associa-
tion for Computing Machinery, New York, NY,
USA, 2009, p. 59–72. URL: https://doi.org/10.1145/
1559845.1559854. doi:doi:10.1145/1559845.1559854.

[19] J. Do, J. M. Patel, Join processing for flash ssds:
remembering past lessons, in: Proceedings of the
Fifth International Workshop on Data Management
on New Hardware, 2009, pp. 1–8.

[20] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, D. J.
DeWitt, Query processing on smart ssds: Oppor-
tunities and challenges, in: Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, Association for
Computing Machinery, New York, NY, USA, 2013,
p. 1221–1230. URL: https://doi.org/10.1145/2463676.
2465295. doi:doi:10.1145/2463676.2465295.

[21] S.-W. Lee, B. Moon, Design of flash-based dbms:
An in-page logging approach, in: Proceedings
of the 2007 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’07, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2007, p. 55–66. URL: https://doi.org/10.1145/
1247480.1247488. doi:doi:10.1145/1247480.1247488.

[22] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt,
J. F. Naughton, A. Halverson, Turbocharging
dbms buffer pool using ssds, in: Proceedings
of the 2011 ACM SIGMOD International Con-
ference on Management of data, SIGMOD ’11,
ACM, New York, NY, USA, 2011, pp. 1113–1124.
URL: http://doi.acm.org/10.1145/1989323.1989442.
doi:doi:10.1145/1989323.1989442.

[23] B. Nail, M. A. Atoussi, S. Saadi, I. E. Tibermacine,
C. Napoli, Real-time synchronisation of multiple
fractional-order chaotic systems: an application
study in secure communication, Fractal and Frac-
tional 8 (2024) 104.

[24] S. Bouchelaghem, I. E. Tibermacine, M. Balsi, M. Mo-
roni, C. Napoli, Cross-domain machine learning

106

https://doi.org/10.1145/2513190.2513197
https://doi.org/10.1145/2513190.2513197
https://doi.org/10.1145/2513190.2513197
https://doi.org/10.1007/978-3-031-42508-0_1
https://doi.org/10.1007/978-3-031-42508-0_1
https://doi.org/10.3390/info13110511
http://www.jstor.org/stable/1690046
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-031-23480-4_1
https://doi.org/10.1007/978-3-031-23480-4_1
https://www.sciencedirect.com/science/article/pii/S1383762107000458
https://www.sciencedirect.com/science/article/pii/S1383762107000458
https://doi.org/https://doi.org/10.1016/j.sysarc.2007.02.005
http://research.microsoft.com/enus/um/people/gray/talks/ Flash_is_Good.ppt
http://research.microsoft.com/enus/um/people/gray/talks/ Flash_is_Good.ppt
https://doi.org/10.1145/1559845.1559854
https://doi.org/10.1145/1559845.1559854
https://doi.org/10.1145/1559845.1559854
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/1247480.1247488
https://doi.org/10.1145/1247480.1247488
https://doi.org/10.1145/1247480.1247488
http://doi.acm.org/10.1145/1989323.1989442
https://doi.org/10.1145/1989323.1989442

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

approaches using hyperspectral imaging for plas-
tics litter detection, in: 2024 IEEE Mediterranean
and Middle-East Geoscience and Remote Sensing
Symposium (M2GARSS), IEEE, 2024, pp. 36–40.

[25] Y. Ou, T. Härder, Improving database performance
using a flash-based write cache, in: Proceedings
of the 17th international conference on Database
Systems for Advanced Applications, DASFAA’12,
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 2–13.
URL: http://dx.doi.org/10.1007/978-3-642-29023-7_
2. doi:doi:10.1007/978-3-642-29023-7_2.

[26] D. J. DeWitt, J. Do, J. M. Patel, D. Zhang, Fast
peak-to-peak behavior with ssd buffer pool, in: Pro-
ceedings of the 2013 IEEE International Conference
on Data Engineering (ICDE 2013), ICDE ’13, IEEE
Computer Society, Washington, DC, USA, 2013,
pp. 1129–1140. URL: http://dx.doi.org/10.1109/ICDE.
2013.6544903. doi:doi:10.1109/ICDE.2013.6544903.

[27] N. Boutarfaia, S. Russo, A. Tibermacine, I. E. Tiber-
macine, Deep learning for eeg-based motor imagery
classification: Towards enhanced human-machine
interaction and assistive robotics, in: CEUR Work-
shop Proceedings, volume 3695, 2023, p. 68 – 74.

[28] A. Tibermacine, I. E. Tibermacine, M. Zouai,
A. Rabehi, Eeg classification using contrastive learn-
ing and riemannian tangent space representations,
in: 2024 International Conference on Telecommuni-
cations and Intelligent Systems (ICTIS), IEEE, 2024,
pp. 1–7.

[29] A. Tibermacine, N. Djedi, Neat neural networks to
control and simulate virtual creature’s locomotion,
in: 2014 International Conference on Multimedia
Computing and Systems (ICMCS), IEEE, 2014, pp.
9–14.

[30] Z. He, P. Veeraraghavan, Fine-grained updates in
database management systems for flash memory,
Inf. Sci. 179 (2009) 3162–3181.

[31] C. Salmi, A. Nacef, L. Bellatreche, J. Boukhobza,
What can emerging hardware do for your dbms
buffer?, in: Proceedings of the 17th Inter-
national Workshop on Data Warehousing and
OLAP, DOLAP ’14, Association for Comput-
ing Machinery, New York, NY, USA, 2014,
p. 91–94. URL: https://doi.org/10.1145/2666158.
2666181. doi:doi:10.1145/2666158.2666181.

[32] Y. Sismanis, A. Deligiannakis, N. Roussopoulos,
Y. Kotidis, Dwarf: Shrinking the petacube, in: Pro-
ceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02,
Association for Computing Machinery, New York,
NY, USA, 2002, p. 464–475. URL: https://doi.org/10.
1145/564691.564745. doi:doi:10.1145/564691.564745.

[33] A. Tibermacine, S. M. Amine, An end-to-end train-
able capsule network for image-based character
recognition and its application to video subtitle

recognition., ICTACT Journal on Image & Video
Processing 11 (2021).

[34] F. Chen, D. A. Koufaty, X. Zhang, Un-
derstanding intrinsic characteristics and sys-
tem implications of flash memory based solid
state drives, SIGMETRICS Perform. Eval. Rev.
37 (2009) 181–192. URL: https://doi.org/10.1145/
2492101.1555371. doi:doi:10.1145/2492101.1555371.

[35] S. eddine Boukredine, E. Mehallel, A. Boualleg,
O. Baitiche, A. Rabehi, M. Guermoui, A. Douara, I. E.
Tibermacine, Enhanced performance of microstrip
antenna arrays through concave modifications and
cut-corner techniques, ITEGAM-JETIA 11 (2025)
65–71.

[36] S. Russo, I. E. Tibermacine, A. Tibermacine,
D. Chebana, A. Nahili, J. Starczewscki, C. Napoli,
Analyzing eeg patterns in young adults exposed to
different acrophobia levels: a vr study, Frontiers in
Human Neuroscience 18 (2024) 1348154.

[37] Y. Lim, J. Lee, C. Campes, E. Seo, Parity-stream sep-
aration and slc/mlc convertible programming for
lifespan and performance improvement of ssd raids,
in: Proceedings of the 9th USENIX Conference on
Hot Topics in Storage and File Systems, HotStor-
age’17, USENIX Association, USA, 2017, p. 21.

[38] B. Ladjal, I. E. Tibermacine, M. Bechouat, M. Se-
draoui, C. Napoli, A. Rabehi, D. Lalmi, Hybrid mod-
els for direct normal irradiance forecasting: A case
study of ghardaia zone (algeria), Natural Hazards
120 (2024) 14703–14725.

[39] A. TIBERMACINE, W. GUETTALA, I. E. TIBERMA-
CINE, Efficient one-stage deep learning for text
detection in scene images., Electrotehnica, Elec-
tronica, Automatica 72 (2024).

[40] S. Russo, S. Ahmed, I. E. Tibermacine, C. Napoli, En-
hancing eeg signal reconstruction in cross-domain
adaptation using cyclegan, in: 2024 International
Conference on Telecommunications and Intelligent
Systems (ICTIS), IEEE, 2024, pp. 1–8.

[41] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-
W. Lee, H.-J. Song, A survey of flash transla-
tion layer, J. Syst. Archit. 55 (2009) 332–343.
URL: https://doi.org/10.1016/j.sysarc.2009.03.005.
doi:doi:10.1016/j.sysarc.2009.03.005.

[42] A. Hunter, A brief introduction to the design
of ubifs, http://www.linux-mtd.infradead.org/doc/
ubifs_whitepaper.pdf, 2008).

[43] Y. Editor, Yaffs overview, https://yaffs.net/
yaffs-overview, 2022).

[44] D. Woodhouse, Jffs: The journalling flash file sys-
tem, in: Ottawa linux symposium, volume 2001,
Citeseer, 2001.

[45] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho,
J.-S. Kim, A reconfigurable ftl (flash trans-
lation layer) architecture for nand flash-based

107

http://dx.doi.org/10.1007/978-3-642-29023-7_2
http://dx.doi.org/10.1007/978-3-642-29023-7_2
https://doi.org/10.1007/978-3-642-29023-7_2
http://dx.doi.org/10.1109/ICDE.2013.6544903
http://dx.doi.org/10.1109/ICDE.2013.6544903
https://doi.org/10.1109/ICDE.2013.6544903
https://doi.org/10.1145/2666158.2666181
https://doi.org/10.1145/2666158.2666181
https://doi.org/10.1145/2666158.2666181
https://doi.org/10.1145/564691.564745
https://doi.org/10.1145/564691.564745
https://doi.org/10.1145/564691.564745
https://doi.org/10.1145/2492101.1555371
https://doi.org/10.1145/2492101.1555371
https://doi.org/10.1145/2492101.1555371
https://doi.org/10.1016/j.sysarc.2009.03.005
https://doi.org/10.1016/j.sysarc.2009.03.005
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
https://yaffs.net/yaffs-overview
https://yaffs.net/yaffs-overview

Cheikh Salmi et al. CEUR Workshop Proceedings 92–108

applications, ACM Trans. Embed. Comput.
Syst. 7 (2008). URL: https://doi.org/10.1145/1376804.
1376806. doi:doi:10.1145/1376804.1376806.

[46] M.-L. Chiang, C.-L. Cheng, C.-H. Wu, A new ftl-
based flash memory management scheme with fast
cleaning mechanism, in: 2008 international con-
ference on embedded software and systems, IEEE,
2008, pp. 205–214.

[47] E. Gal, S. Toledo, Algorithms and data struc-
tures for flash memories, ACM Comput. Surv.
37 (2005) 138–163. URL: https://doi.org/10.1145/
1089733.1089735. doi:doi:10.1145/1089733.1089735.

[48] J. Kim, J. M. Kim, S. Noh, S. L. Min, Y. Cho,
A space-efficient flash translation layer for
compactflash systems, IEEE Transactions
on Consumer Electronics 48 (2002) 366–375.
doi:doi:10.1109/TCE.2002.1010143.

[49] Y. Kim, B. Tauras, A. Gupta, B. Urgaonkar, Flash-
Sim: A simulator for NAND flash-based solid-state
drives, in: 2009 First International Conference on
Advances in System Simulation, IEEE, 2009, pp. 125–
131. URL: https://doi.org/10.1109%2Fsimul.2009.17.
doi:doi:10.1109/simul.2009.17.

[50] D. Park, B. K. Debnath, D. H.-C. Du, Cftl: A con-
vertible flash translation layer with consideration of
data access patterns, Minneapolis, MN: University
of Minnesota (2009).

[51] A. Gupta, Y. Kim, B. Urgaonkar, Dftl: A
flash translation layer employing demand-
based selective caching of page-level address
mappings, SIGPLAN Not. 44 (2009) 229–240.
URL: https://doi.org/10.1145/1508284.1508271.
doi:doi:10.1145/1508284.1508271.

[52] T. K. Sellis, Intelligent caching and indexing
techniques for relational database systems, Inf.
Syst. 13 (1988) 175–185. URL: http://dx.doi.org/10.
1016/0306-4379(88)90014-2. doi:doi:10.1016/0306-
4379(88)90014-2.

[53] C.-M. Chen, N. Roussopoulos, The implementation
and performance evaluation of the adms query opti-
mizer: Integrating query result caching and match-
ing, in: M. Jarke, J. A. B. Jr., K. G. Jeffery (Eds.),
Advances in Database Technology - EDBT’94. 4th
International Conference on Extending Database
Technology, Cambridge, United Kingdom, March
28-31, 1994, Proceedings, volume 779 of Lecture
Notes in Computer Science, Springer, 1994, pp. 323–
336.

[54] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe, Efficient
and extensible algorithms for multi query optimiza-
tion, in: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’00, ACM, New York, NY, USA, 2000, pp.
249–260. URL: http://doi.acm.org/10.1145/342009.
335419. doi:doi:10.1145/342009.335419.

[55] Y. Kotidis, N. Roussopoulos, Dynamat: A dynamic
view management system for data warehouses, in:
Proceedings of the 1999 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’99, ACM, New York, NY, USA, 1999, pp. 371–
382. URL: http://doi.acm.org/10.1145/304182.304215.
doi:doi:10.1145/304182.304215.

[56] M. R. Garey, D. S. Johnson, Computers and
Intractability; A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York,
NY, USA, 1990.

[57] D. Pisinger, Where are the hard knapsack prob-
lems?, Comput. Oper. Res. 32 (2005) 2271–
2284. URL: http://dx.doi.org/10.1016/j.cor.2004.03.
002. doi:doi:10.1016/j.cor.2004.03.002.

[58] D. S. Hirschberg, C. K. Wong, A polynomial-
time algorithm for the knapsack problem with
two variables, J. ACM 23 (1976) 147–154.
URL: http://doi.acm.org/10.1145/321921.321936.
doi:doi:10.1145/321921.321936.

[59] J. Yang, K. Karlapalem, Q. Li, A framework for
designing materialized views in data warehousing
environment, in: Proceedings of the 17th Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS ’97), ICDCS ’97, IEEE Computer Soci-
ety, USA, 1997, p. 458.

[60] L. Bouganim, B. Jonsson, P. Bonnet, uflip: Under-
standing flash IO patterns, in: Fourth Biennial
Conference on Innovative Data Systems Research,
CIDR 2009, Asilomar, CA, USA, January 4-7, 2009,
Online Proceedings, 2009. URL: http://www-db.cs.
wisc.edu/cidr/cidr2009/Paper_102.pdf.

[61] D. Ajwani, I. Malinger, U. Meyer, S. Toledo, Charac-
terizing the performance of flash memory storage
devices and its impact on algorithm design, in: Pro-
ceedings of the 7th International Conference on Ex-
perimental Algorithms, WEA’08, Springer-Verlag,
Berlin, Heidelberg, 2008, p. 208–219.

[62] P. G. Harrison, N. M. Patel, S. Zertal, Re-
sponse time distribution of flash memory
accesses, Performance Evaluation 67 (2010)
248–259. URL: https://www.sciencedirect.
com/science/article/pii/S0166531609001412.
doi:doi:https://doi.org/10.1016/j.peva.2009.10.003,
performance Evaluation Methodologies and Tools:
Selected Papers from VALUETOOLS 2008.

[63] G. R. Ganger, B. L. Worthington, Y. N. Patt, The
disksim simulation environment – version 1.0 ref-
erence manual, 1998.

[64] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, H.-J. Song, A log buffer-based flash trans-
lation layer using fully-associative sector trans-
lation, ACM Trans. Embed. Comput. Syst. 6
(2007) 18–es. URL: https://doi.org/10.1145/1275986.
1275990. doi:doi:10.1145/1275986.1275990.

108

https://doi.org/10.1145/1376804.1376806
https://doi.org/10.1145/1376804.1376806
https://doi.org/10.1145/1376804.1376806
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1109/TCE.2002.1010143
https://doi.org/10.1109%2Fsimul.2009.17
https://doi.org/10.1109/simul.2009.17
https://doi.org/10.1145/1508284.1508271
https://doi.org/10.1145/1508284.1508271
http://dx.doi.org/10.1016/0306-4379(88)90014-2
http://dx.doi.org/10.1016/0306-4379(88)90014-2
https://doi.org/10.1016/0306-4379(88)90014-2
https://doi.org/10.1016/0306-4379(88)90014-2
http://doi.acm.org/10.1145/342009.335419
http://doi.acm.org/10.1145/342009.335419
https://doi.org/10.1145/342009.335419
http://doi.acm.org/10.1145/304182.304215
https://doi.org/10.1145/304182.304215
http://dx.doi.org/10.1016/j.cor.2004.03.002
http://dx.doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
http://doi.acm.org/10.1145/321921.321936
https://doi.org/10.1145/321921.321936
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_102.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_102.pdf
https://www.sciencedirect.com/science/article/pii/S0166531609001412
https://www.sciencedirect.com/science/article/pii/S0166531609001412
https://doi.org/https://doi.org/10.1016/j.peva.2009.10.003
https://doi.org/10.1145/1275986.1275990
https://doi.org/10.1145/1275986.1275990
https://doi.org/10.1145/1275986.1275990

	1 Introduction
	2 Related Work
	3 Solid State Drive
	3.1 Flash Memory
	3.2 NAND Flash Memory
	3.3 Flash Translation Layer
	3.3.1 Address translation
	3.3.2 Flash Memory Simulation

	4 Data Warehouse and OLAP
	4.1 OLAP's Role in Data Analysis and Decision-Making
	4.1.1 Online Analytical Processing (OLAP)
	4.1.2 Key Aspects of OLAP
	4.1.3 Importance in Data Analysis and Decision-Making
	4.1.4 Rising Demand for Faster OLAP Data Processing

	5 Proposed Approach
	5.1 The Concept of Hybridization
	5.2 Formalization of the Hybridization Problem
	5.3 Resolution Approach
	5.3.1 Simulated Annealing Iterative Process

	6 Implementation and Experimentation
	6.1 Disk and Flash Simulators
	6.2 Principle of the simulation
	6.3 Hardware environment and Dataset
	6.4 Discussion

	7 Conclusion

