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Abstract
This paper introduces a novel hybrid architecture that integrates Kolmogorov-Arnold Networks (KANs)
with  traditional  convolutional  neural  networks  for  visual  recognition  tasks  in  edge  computing
environments.  KANs  leverage  the  Kolmogorov-Arnold  representation  theorem to  model  multivariate
continuous  functions  through  compositions  of  univariate  functions,  offering  potential  advantages  in
parameter  efficiency  and  representational  capacity.  Our  approach  combines  CNN-based  feature
extraction with KAN-based classification to exploit  the complementary strengths of  both paradigms.
Through extensive experiments on the Visual  Wake Words dataset,  we demonstrate that our hybrid
architecture achieves 82.3% accuracy while maintaining moderate parameter usage (78.5K parameters)
and reasonable inference latency. Unlike conventional approaches that focus on extremely low-resolution
inputs, our model processes 128×128-pixel images, preserving more visual details without compromising
computational efficiency. Comparative analysis reveals that our approach outperforms several specialized
lightweight architectures by 4.7-5.5 percentage points in accuracy while requiring fewer computational
resources than larger models with similar performance. Additionally, we provide insights into optimizing
inference  through  batch processing,  achieving  a  26×  speedup  when  using  batch  size  32.  This  work
expands the design space for efficient neural architectures beyond traditional CNNs and demonstrates
that KAN-based models represent a promising direction for resource-aware visual computing at the edge.
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1. Introduction

Visual recognition tasks on resource-constrained
devices  represent  a  critical  frontier  in  modern
computing.  Smart  cameras,  IoT  sensors,  and edge
devices  increasingly  require  on-device  intelligence
for applications ranging from security monitoring to
industrial  automation.  These  applications  demand
accurate  visual  recognition  while  operating  under
strict  limitations  on  power  consumption,  memory
footprint, and computational capacity.

Convolutional  Neural  Networks  (CNNs)  have
traditionally  dominated  visual  recognition  tasks.
Modern  models  have  progressively  reduced

computational  requirements  through  architectural
innovations.  However,  these  approaches  largely
operate  within  the  conventional  CNN  paradigm.
This  paradigm  relies  on  hierarchical  spatial
convolutions  that  may  not  represent  the  optimal
approach for all visual tasks, particularly those with
well-defined semantic categories.

The  fundamental  challenge  lies  in  balancing
model  accuracy  with  resource  constraints.  Most
existing approaches address this challenge through
one of two strategies. The first strategy focuses on
extreme  model  compression,  often  sacrificing
accuracy  for  minimal  resource  usage.  The  second
strategy employs Neural Architecture Search (NAS)
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to explore variations within the CNN design space.
However,  NAS  primarily  optimizes  within
established  architectural  paradigms  rather  than
exploring fundamentally different approaches.

Kolmogorov-Arnold Networks (KANs) represent
a  novel  architectural  paradigm  based  on  the
Kolmogorov-Arnold  representation  theorem.  This
theorem  states  that  any  multivariate  continuous
function  can  be  represented  as  a  composition  of
continuous  functions  of  a  single  variable  and
addition  operations.  Unlike  CNNs  that  implicitly
learn feature representations, KANs explicitly model
input-output  relationships  through  compositional
function  approximation.  This  approach  offers
potential  advantages  in interpretability,  parameter
efficiency, and generalization capabilities.

In this paper, we introduce a hybrid architecture
that  combines  CNN-based feature  extraction  with
KAN-based  classification  for  visual  recognition
tasks.  Our  approach leverages  the complementary
strengths  of  both  paradigms:  CNNs'  ability  to
extract spatially coherent visual features and KANs'
capacity for efficient functional approximation. We
demonstrate  this  approach  on  the  Visual  Wake
Words dataset,  focusing  on person detection  as  a
representative  task  for  resource-constrained
environments.

2. Related Work

The development of efficient neural architectures
for resource-constrained devices has seen significant
progress  in  recent  years.  Howard  et  al.  [1]
introduced  MobileNets,  which  utilize  depthwise
separable  convolutions  to  create  lightweight  deep
neural  networks.  Their  approach  introduces  two
global hyperparameters that enable effective trade-
offs between latency and accuracy, allowing model
builders to select appropriate configurations based
on application constraints.

Building  on  this  foundation,  Zhang  et  al.  [2]
proposed  ShuffleNet,  which  employs  pointwise
group convolution and channel shuffle operations to
reduce  computational  costs  while  maintaining
accuracy. Ma et al.  [3] later introduced ShuffleNet
V2,  establishing  practical  guidelines  for  efficient
CNN  architecture  design  by  directly  considering
platform characteristics  beyond  just  FLOPs.  Their
work  emphasizes  the  importance  of  evaluating

direct  metrics  like  inference  speed  on  target
platforms.

EfficientNet,  introduced  by  Tan  and  Le  [4],
represents another important advancement through
a  novel  compound  scaling  method.  Rather  than
arbitrarily  scaling  network  dimensions,  they
systematically  balance  network  depth,  width,  and
resolution,  leading  to  more  efficient  models.  This
approach  demonstrates  that  carefully  coordinated
scaling  of  all  dimensions  is  crucial  for  achieving
optimal performance.

The  integration  of  hardware  constraints  into
neural  architecture  design  has  emerged  as  a
promising  approach  for  resource-constrained
deployment.  Tekin  et  al.  [5] provided  a
comprehensive  review  of  on-device  machine
learning  for  IoT  from  an  energy  perspective,
highlighting  the  trade-offs between  computational
capabilities,  energy  consumption,  and  model
performance.  Their  work  emphasizes  the
importance  of  energy-aware  machine  learning
approaches for IoT applications.

Lin  et  al.  [6] introduced  a  computation  and
transmission  adaptive  semantic  communication
system  for  reliability-guarantee  image
reconstruction in IoT environments. Their approach
dynamically  adjusts  computational  and
transmission  loads  while  ensuring  reconstruction
reliability,  demonstrating  superior  compression
ratios compared to traditional methods.

Kolmogorov-Arnold Networks (KANs) represent
a recent paradigm shift in neural  network design.
Liu  et  al.  [7] introduced  KANs  as  promising
alternatives  to  Multi-Layer  Perceptrons  (MLPs).
Unlike  MLPs  with  fixed  activation  functions  on
nodes, KANs feature learnable activation functions
on edges, implemented as splines. This fundamental
change  enables  KANs  to  achieve  comparable  or
superior  accuracy  with  fewer  parameters,  while
offering improved interpretability.

Several  researchers  have begun exploring KAN
applications across diverse domains. Huang et al. [8]
proposed  a  frequency-domain  multi-scale
Kolmogorov-Arnold  representation  attention
network (FMKA-Net)  for  wafer  defect  recognition.
Their approach combines discrete wavelet transform
for  frequency  decomposition  with  a  KAN-based
fusion  feature  attention  module,  achieving  99.03%
accuracy  on  the  Mixed38WM  wafer  dataset  and
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demonstrating robust performance under both noisy
and noise-free conditions.

Jiang et  al.  [9] developed KansNet,  integrating
KAN-based  partial  attention  modules  into
convolutional  neural  networks  for  lung  nodule
detection in CT images. Their model demonstrated
superior  performance  compared  to  alternative
detection algorithms, with a 2.11% improvement in
CPM  scores  and  higher  sensitivity  at  low  false
positive rates. This work highlights KANs' potential
to enhance feature representation for medical image
analysis.

Despite  these  advancements,  significant  gaps
remain in applying KAN architectures to resource-
constrained visual recognition tasks. While previous
work has demonstrated KANs' potential for complex
feature  representation  in  domains  like  medical
imaging  and defect  detection,  their  application  to
lightweight visual recognition tasks—particularly for
edge computing environments—remains unexplored.

Our work bridges this gap by introducing a novel
hybrid  architecture  that  combines  conventional
convolutional  layers  with  Kolmogorov-Arnold
Networks  specifically  designed  for  visual
recognition tasks. Unlike previous approaches that
focus on either extreme minimization of model size
(often  sacrificing  accuracy)  or  high accuracy  with
substantial  computational  requirements,  our
approach seeks a balanced middle ground.

3. Methodology 

We  formulate  visual  recognition  as  a  binary
classification  problem  for  person  detection.  Given
an input image  ,  where ,  ,  and  represent height,
width,  and  number  of  channels  respectively,  our
objective is to learn a function  that minimizes the
binary cross-entropy loss.

where   is  the  ground  truth  label  and   is  the
predicted  probability.  The function   must  balance
classification  accuracy  with  computational
efficiency  and  memory  constraints  to  enable
deployment on resource-limited hardware.

Kolmogorov-Arnold  Networks  are  founded  on
the  Kolmogorov-Arnold  representation  theorem,
which  states  that  any  multivariate  continuous
function  can  be  represented  as  a  composition  of
continuous  functions  of  a  single  variable  and
addition operations. In contrast to traditional neural

networks  with  fixed  activation  functions,  KANs
learn both the weights and the activation functions
themselves.

A KAN layer transforms an input vector  to an
output  vector  .  The  univariate  functions   are
parameterized  using  B-splines  with  learnable
control points.

This  formulation  allows  KANs to  adaptively  learn
complex  functional  mappings  with  fewer
parameters  than  traditional  networks  with  fixed
activation functions.

Our proposed hybrid architecture combines the
strengths  of  CNNs  for  spatial  feature  extraction
with KANs for flexible function approximation. The
architecture consists of three main components:

1. Feature  Extraction  Module:  A  CNN-based
feature extractor that processes the input image
and generates a compact feature representation.
This  module  exploits  convolutional  operations'
inherent  inductive biases  for  processing visual
data,  capturing  spatial  hierarchies  and  local
patterns essential for visual recognition.

2. KAN Processing Module: A series of KAN layers
that  transform  the  extracted  features  using
learnable  univariate  functions.  This  module
leverages  the  flexible  function  approximation
capabilities of KANs to model complex decision
boundaries.

3. Classification  Head:  A  final  mapping  that
transforms  the  KAN output  into a  probability
estimate for binary classification.

The  feature  extraction  module  employs  a
lightweight CNN design with depthwise separable
convolutions to minimize computational costs while
preserving  representational  capacity.  The  KAN
processing module consists of three sequential KAN
layers with hidden dimensions [24, 16, 8]. Each KAN
layer  implements  univariate  functions  using  B-
splines with 5 grid points and degree 3,  balancing
expressiveness  with  parameter  efficiency.  The
control  points  of  these  splines  are  learned during
training,  allowing  the  network  to  adapt  its
activation  functions  to  the  specific  visual
recognition task.

The  classification  head  maps  the  final  KAN
output  to  a  scalar  probability  through  a  linear
transformation followed by a sigmoid activation.
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We train  our  hybrid  CNN-KAN model  on  the
Visual  Wake  Words  dataset,  which  consists  of
images from the COCO dataset relabeled for binary
person  detection.  The  training  procedure
incorporates  several  strategies  to  ensure  efficient
learning and prevent overfitting.

All  input images are resized  to 128×128 pixels,
preserving  more  visual  details  compared  to  the
lower resolutions (50×50 or 64×64) commonly used
in resource-constrained applications. 

4. Results and Analysis

This  section  presents  a  comprehensive
evaluation of our hybrid CNN-KAN architecture for
visual  recognition  tasks.  We  examine  training
dynamics, classification performance, and inference
efficiency to provide a holistic understanding of the
model's  capabilities  in  resource-constrained
environments.

4.1 Training Dynamics and Convergence

Figure  1  illustrates  the  training  progression  of
our hybrid CNN-KAN model over 41 epochs. Both
accuracy  and  loss  curves  demonstrate  stable
optimization  behavior  throughout  the  training
process.  The  validation  accuracy  (cyan  line)
improves  steadily  from  approximately  70%  at
initialization  to  82.32%  at  epoch  41,  where  early
stopping triggered. Concurrently, the validation loss
(orange dashed line) decreases from an initial value
of approximately 0.597 to 0.466.

Figure  1.  Training/Validation  Accuracy  and  Loss
Over Epochs

A  notable  pattern  emerges  in  the  accuracy
curves: the validation accuracy consistently exceeds
the training accuracy across all epochs, with a final
gap of approximately 2.8 percentage points (82.32%
vs. 79.51%). This counterintuitive phenomenon can
be attributed to three factors:

1. Data augmentation (random flips, rotations)
applied exclusively during training, making
the  training  task  inherently  more
challenging

2. Dropout  regularization  (rate  =  0.05)
activated only during training mode

3. Specific  characteristics  of  the  dataset
partition

The  loss  curves  demonstrate  similarly  stable
behavior,  with both  training  and validation  losses
decreasing  monotonically  after  the  initial  epochs.
The  convergence  pattern  exhibits  no  signs  of
overfitting,  as  the  validation  loss  continues  to
decrease alongside the training loss throughout the
entire  training  process.  This  indicates  that  our
regularization  strategy  effectively  prevented  the
model  from  memorizing  the  training  data  while
maintaining its generalization capacity.

4.2 Classification Performance

Our model achieved an overall accuracy of 82.0%
on the Visual Wake Words validation dataset with
4,000  test  samples.  Figure  2  presents  the
classification metrics broken down by class. For the
"no_person"  class,  the  model  demonstrates  high
recall (0.87) with moderate precision (0.79), resulting
in an F1-score of 0.83. Conversely, for the "person"
class, precision (0.86) exceeds recall (0.77), yielding
an F1-score of 0.81.

Figure 2. Classification Metrics per Class

These  metrics  reveal  a  distinct  classification
behavior:  the  model  is  somewhat  conservative  in
classifying  an  image  as  containing  a  person,
requiring  stronger  visual  evidence  to  make  a
positive  detection.  This  behavior  results  in  fewer
false  positives  (13%  of  "no_person"  images
incorrectly  classified  as  containing  people)  at  the
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expense  of  more  false  negatives  (23%  of  "person"
images missed by the model).

The  balanced  performance  across  both  classes
(macro-average precision, recall, and F1-score all at
0.82)  indicates  that  the  model  handles  the  binary
classification task equitably, without significant bias
toward either  class.  This  characteristic  is  valuable
for  real-world  applications  where  both  false
positives and false negatives carry operational costs.

4.3 Inference Efficiency Analysis

Figure  3  presents  a  comprehensive  analysis  of
inference efficiency across various batch sizes and
input  resolutions.  We  evaluated  the  model  using
three  input  resolutions  (96×96,  128×128,  and
224×224 pixels)  and four batch sizes (1,  4,  16,  and
32).  The  logarithmic  scale  reveals  dramatic
improvements in per-image inference time as batch
size increases.

Figure  3.  Per-Image  Inference  Time  vs  Batch Size
(Log Scale)

For our target resolution (128×128), single-image
inference requires 82.11 ms. However, increasing the
batch size to 4 reduces the per-image time to 22.25
ms (3.7× improvement).  Further increases to batch
sizes of 16 and 32 yield per-image times of 6.11 ms
and  3.36  ms,  respectively,  representing  13.4×  and
24.5× improvements over single-image inference.

This  significant  acceleration  with  larger  batch
sizes  demonstrates  the  model's  efficient
parallelization  capabilities,  making  it  particularly
well-suited  for  applications  where  batched
processing is feasible, such as offline video analysis
or multi-camera systems.

The  inference  scaling  patterns  across  different
input resolutions reveal another interesting insight.
At batch size 32, processing 96×96 images requires
3.10 ms per image, 128×128 images require 3.36 ms,
and  224×224  images  require  4.66  ms.  This  near-

linear scaling with input resolution is  noteworthy,
as  theoretical  computational  complexity  increases
quadratically with linear dimension. This efficiency
suggests that the model effectively utilizes hardware
acceleration for convolutional operations.

To normalize comparisons across different input
resolutions,  we calculated the processing time per
pixel:

 96×96 (9,216 pixels): 0.336 ns/pixel;

 128×128 (16,384 pixels): 0.205 ns/pixel;

 224×224 (50,176 pixels): 0.093 ns/pixel.

Counterintuitively, the per-pixel processing time
decreases  with  larger  images,  indicating  superior
hardware utilization for larger tensors. This finding
challenges  conventional  wisdom  in  the  TinyML
community that consistently pushes toward smaller
inputs  for  efficiency.  Our  results  suggest  that
moderately higher resolution inputs may provide a
better accuracy-efficiency trade-off when hardware
acceleration is available.

4.4 Comparative Analysis with State-of-the-Art 
Methods

Table 1.  Comparison of Model Performance and
Efficiency Metrics

KAN
(Ours)

Micro
Flow
[10]

ColabN
AS [11]

MCUN
et [12]

Micro
Nets
[13]

Acc (%) 82 77.6 77.6 87.4 76.8

Model
Size
(KB)

300 20.83 20.83 530.52 273.81

Time
(ms)

3.36 0.432 0.432 2.16 1.15

Input
Size

128×128 50×50 50×50 64×64 50×50

Table  1  compares  our  KAN-based  model  with
state-of-the-art approaches for person detection on
the Visual Wake Words dataset.

Our  KAN-based  architecture  achieves  82.0%
accuracy, which is 4.4 percentage points higher than
MicroFlow  and  ColabNAS  (77.6%),  and  5.2
percentage  points  higher  than  MicroNets  (76.8%).
While MCUNet maintains the highest accuracy at
87.4%, our model achieves competitive performance
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with moderate parameter usage and a significantly
higher input resolution.

A  key  differentiator  of  our  approach  is  the
processing  of  higher-resolution  inputs  (128×128)
compared  to  the  lower  resolutions  used  by
competing  methods  (50×50  or  64×64).  This  higher
resolution  preserves  more  visual  details,  which
benefits detection accuracy, particularly for small or
partially occluded people in images.

When considering the efficiency-accuracy trade-
off, our model occupies a distinctive position in the
design space. It strikes a balance between the ultra-
lightweight  MicroFlow/ColabNAS  models  (which
sacrifice accuracy for minimal resource usage) and
the  higher-accuracy  but  resource-intensive
MCUNet.  This  positioning  makes  our  approach
particularly suitable for the "middle ground" of edge
devices  that  have  moderate  but  not  abundant
computational resources.

5. Discussion

This section explores the broader implications of
our  findings,  examines  the  trade-offs  in  our
approach,  and  identifies  key  insights  for  future
research in efficient neural architectures.

5.1 Resolution-Accuracy Trade-offs

Our  results  highlight  an  important  tension
between input resolution and model complexity that
challenges  conventional  wisdom  in  resource-
constrained  computing.  While  most  TinyML
approaches  prioritize  extremely  low-resolution
inputs  (50×50  or  64×64  pixels)  to  minimize
computational  requirements,  our  experiments
demonstrate  that  moderately  higher  resolutions
(128×128)  can  yield  substantial  accuracy
improvements  with  manageable  computational
overhead.

This finding suggests that the field may benefit
from reconsidering the default bias toward minimal
input size.  For  visual recognition tasks where fine
details matter—such as distinguishing people from
visually  similar  objects  or  detecting  partially
occluded  subjects—preserving  more  visual
information  through  higher  resolution  can  be
critical  for  accuracy.  Our  hybrid  CNN-KAN
architecture demonstrates that with efficient design
choices, these higher resolutions remain viable even
under resource constraints.

The  near-linear  scaling  of  inference  time  with
quadratic increases in pixel count further challenges
the assumption that smaller inputs are always more
efficient.  Modern  hardware  accelerators  often
achieve  better  utilization  with  larger  tensor
operations,  sometimes  offsetting  the  theoretical
computational increase of higher-resolution inputs.

5.2 Architectural Efficiency of KANs

The  effectiveness  of  KAN  components  in  our
model (containing 44% of total parameters) suggests
that  Kolmogorov-Arnold  Networks  offer  distinct
advantages  for  resource-constrained  visual
recognition. Unlike traditional neural networks with
fixed activation functions, KANs learn both weights
and  activation  functions  as  splines,  potentially
achieving more complex functional mappings with
fewer parameters.

This  architectural  efficiency  may  explain  why
our  hybrid  architecture  achieves  better  accuracy
than  some  specialized  lightweight  models  despite
having  a  moderate  parameter  count.  The  KAN
component's  ability  to  adaptively  model  complex
decision boundaries appears particularly suited for
the  final  classification  stages,  complementing  the
spatial  feature  extraction  capabilities  of  the  CNN
component.

The  balanced  parameter  distribution  between
CNN and KAN components (56% vs. 44%) indicates
that  both  architectural  paradigms  contribute
substantially  to  overall  performance.  This  hybrid
approach  represents  a  promising  direction  for
neural  architecture  design  that  leverages  the
complementary strengths of different computational
paradigms.

5.3 Batch Processing Implications

The  dramatic  inference  speedup  achieved
through  batch  processing  (up  to  24.5×)  has
significant implications for deployment strategies in
edge  computing  scenarios.  While  many  resource-
constrained  applications  assume  single-image
processing, our results demonstrate that substantial
efficiency gains  are possible  when multiple  inputs
can be processed together.

This  finding  suggests  that  system  designers
should  consider  architectures  that  allow for  input
buffering and batch processing when possible, even
in seemingly real-time applications. For example, a
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smart camera system might buffer frames briefly to
enable  batch  processing,  achieving  much  higher
throughput than frame-by-frame analysis.

The diminishing returns observed at larger batch
sizes  (16  vs.  32)  provide  practical  guidance  for
implementation.  In  many  cases,  moderate  batch
sizes (e.g., 16) may offer an optimal balance between
latency  and  throughput,  capturing  most  of  the
efficiency  benefits  without  requiring  excessive
buffering.

5.6 Limitations and Considerations

Despite the promising results, several limitations
should be acknowledged:

 Single-task evaluation: Our analysis focuses
specifically on person detection within the
Visual  Wake  Words  dataset.  The
generalizability  of  our  findings  to  other
visual tasks requires further investigation.

 Batch  processing  requirement:  The
competitive  inference  time  of  our  model  is
achieved at larger batch sizes, which may not
be  feasible  for  all  deployment  scenarios,
particularly  those  requiring  immediate
processing of individual images.

 Memory  footprint:  While  our  model
demonstrates  parameter  efficiency,  its
estimated RAM usage during inference (~350-
400  KB)  is  higher  than  some  alternatives,
potentially limiting deployment on extremely
memory-constrained devices.

 Precision-recall  trade-off:  The  model's
tendency  toward  higher  precision  at  the
expense  of  recall  for  person  detection  may
not  be  optimal  for  all  applications,
particularly  those  where  missing  positive
cases carries high costs.

These  limitations  notwithstanding,  our  results
demonstrate  that  KAN-based  architectures
represent a promising direction for efficient visual
recognition  tasks,  particularly  when  moderate
computational resources are available and accuracy
is  prioritized  over  extreme minimization  of  model
size.

6. Conclusion and Future Work

This paper has introduced a novel hybrid CNN-
KAN architecture for visual  recognition tasks  that
achieves  competitive  accuracy  with  moderate
parameter  usage.  Through  extensive
experimentation on the Visual Wake Words dataset,
we  have  demonstrated  that  integrating
Kolmogorov-Arnold  Networks  with  convolutional
feature  extraction  creates  an  effective  balance
between  computational  efficiency  and  detection
performance.

Our key contributions include:

 Architectural  innovation  beyond  traditional
CNNs:  We have  shown that  KANs,  despite
their recent introduction to the deep learning
community,  can  effectively  complement
CNNs in visual  recognition tasks.  The KAN
component,  constituting  44%  of  model
parameters,  enables  explicit  functional
approximation that appears particularly well-
suited  for  classification  based  on  high-level
visual features.

 Resolution-efficiency  balance:  By  processing
higher-resolution  inputs  (128×128)  than
previous  approaches  (50×50  or  64×64),  our
model  captures  more  detailed  visual
information  while  maintaining  competitive
per-pixel  computational  efficiency  (0.205
ns/pixel).  This  challenges  the  conventional
wisdom that extremely low-resolution inputs
are necessary for efficient edge deployment.

 Competitive  accuracy-parameter  tradeoff:
Our  model  achieves  82.0%  accuracy  with
78,544  parameters  (300  KB),  outperforming
several  specialized  lightweight  architectures
with similar or larger resource requirements.
While  not  achieving  the  state-of-the-art
accuracy  of  MCUNet  (87.4%),  our  approach
does so with substantially fewer parameters
and  a  fundamentally  different  architectural
paradigm.

 Batch  processing  optimization:  We
demonstrated  that  significant  inference
speedups  (24.5×  reduction  in  per-image
processing  time)  can  be  achieved  through
batch processing,  highlighting  an  important
deployment  consideration  for  practical
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applications  where  latency  constraints  are
more flexible.

Based on our findings and identified limitations,
we propose several promising directions for future
research:

 KAN  architecture  optimization:  Exploring
alternative  KAN  configurations,  including
grid  point  distribution,  spline  degrees,  and
hidden  dimension  allocations,  could  yield
improved parameter efficiency and accuracy.
The  relative  novelty  of  KANs  suggests
substantial room for architectural refinement.

 Quantization and compression: Applying post-
training  quantization  and  weight  pruning
techniques to our hybrid model could further
reduce  memory  footprint  and  improve
inference  efficiency.  The  spline-based
univariate functions in KANs may offer unique
opportunities  for  specialized  compression
approaches.

 Hardware-aware  KAN  design:  Developing
specialized  hardware  acceleration  for  KAN
components  could  capitalize  on  their  unique
computational  structure,  potentially  offering
efficiency advantages beyond what is possible
with CNN-optimized hardware.

 Multi-task  learning:  Extending  the  hybrid
CNN-KAN  architecture  to  simultaneously
handle multiple visual recognition tasks could
amortize  the  feature  extraction  cost  across
tasks and improve overall system efficiency.

 Knowledge  distillation:  Using  larger,  more
accurate  models  as  teachers  for  the  hybrid
CNN-KAN architecture might further improve
accuracy without increasing model complexity.

In conclusion, our hybrid CNN-KAN architecture
represents  a  novel  approach  to  efficient  visual
recognition  that  challenges  conventional
architectural  paradigms.  By  demonstrating
competitive performance on a standard benchmark
while processing higher-resolution inputs, our work
opens new possibilities for efficient neural network
design  that  extends  beyond  the  traditional  CNN
framework.  As  edge  computing  applications
continue  to  demand  more  intelligent  visual
processing  within  strict  resource  constraints,
architectural innovations like our hybrid CNN-KAN
approach will play an increasingly important role in

bridging the gap between computational limitations
and recognition performance.
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During the preparation of this work, the authors
used  AI  tools  in  order  for  spelling  check  and
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takes  full  responsibility  for  the  publication’s
content. 
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