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Abstract
Wearable fitness devices are widely used to monitor physiological signals such as heart rate (BPM) and speed during physical
activity. However, these signals often suffer from noise, technical inaccuracies, and context-dependent variability. In this
study, we investigate unsupervised anomaly detection methods to identify abnormal segments in real-world data collected
from runners using wearable sensors. The dataset includes over 180,000 measurements from 43 running sessions, with speed
and BPM values aligned and preprocessed to build a multivariate time series. We compare four approaches representative
of different anomaly detection paradigms: distance-based (k-Nearest Neighbors), classification-based (One-Class SVM),
probabilistic (Kernel Density Estimation), and sequence-based deep learning (TadGAN). Classical methods operate on point-
wise values and capture global anomalies with high precision, but they fail to detect contextual or collective anomalies.
TadGAN, in contrast, is trained on overlapping sequences and demonstrates the ability to identify local patterns of abnormality
across time. Our results highlight the complementarity of these methods and the importance of modeling temporal structure
when anomalies are subtle or context-dependent. Although TadGAN fails to capture extreme point anomalies, its performance
on sequence-level detection suggests promising directions for future research in health-aware fitness monitoring. All analyses
were conducted without labels, under purely unsupervised conditions.
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1. Introduction
Wearable fitness technologies have become a corner-
stone of modern personal health monitoring, offering
non-invasive and continuous access to physiological and
kinematic data during exercise. Among the most fre-
quently collected variables are heart rate (BPM) and lo-
comotor speed, which are commonly used as indicators
of training intensity, cardiovascular load, and overall
physical condition. These metrics are especially critical
in endurance disciplines such as running, where perfor-
mance, safety, and adaptation must be balanced in real
time.

However, despite their utility, such measurements are
inherently subject to various sources of uncertainty [1, 2].
These include instrumental inaccuracies (e.g., sensor res-
olution, sampling delay), environmental noise (e.g., GPS
instability, skin reflectance), and inter-individual variabil-
ity (e.g., age, fitness level, recovery status). Consequently,
the raw data streams acquired from commercial devices
may contain errors, inconsistencies, or even misleading
information. From a data science perspective, such ir-
regularities can be interpreted as anomalies — values or
patterns that deviate from expected physiological behav-
ior.
Detecting these anomalies is of dual importance. On
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the one hand, it allows for early identification of sensor
malfunctions or transmission artifacts, which can pre-
vent incorrect feedback or unsafe decisions. On the other
hand, it may highlight abnormal physiological events,
such as arrhythmias, overexertion episodes, or disrup-
tions due to illness or fatigue. Therefore, anomaly detec-
tion is not only a technical challenge but also a potential
health safeguard.
In this work, we address the task of unsupervised

anomaly detection applied to a dataset of 43 running
sessions. Each session contains synchronised recordings
of heart rate and speed. The goal is to identify three main
categories of anomalies:

• Point anomalies, which are isolated and extreme
values, such as sharp spikes due to sensor loss or
motion artifacts;

• Contextual anomalies, which occur when a value
is inconsistent with its immediate temporal con-
text (e.g., a sudden drop in BPM during steady
running);

• Collective anomalies, which emerge as entire seg-
ments of behavior deviating from usual multivari-
ate dynamics.

These types are illustrated in Figure 1, adapted from
the survey by Ruff et al. [3].
The practical relevance of such analysis is evident in

many use cases: performance tracking, adaptive train-
ing programs, fatigue detection, and sensor validation.
Furthermore, since the data are unlabeled — no ground
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truth exists for “normal” versus “anomalous” episodes
— only unsupervised learning techniques are applicable.
These include density-based, distance-based, probabilis-
tic, classification-driven, and generative models.

From a physiological standpoint, both BPM and speed
are computed indirectly. Heart rate is commonly esti-
mated through photoplethysmography (PPG) via optical
sensors on the wrist. This technique relies on green LED
light absorption by pulsating blood flow and is known
to be sensitive to placement, motion, and skin charac-
teristics [4, 5]. Speed, on the other hand, is estimated
using GPS signals either via positional differentiation or
Doppler shift. The latter offers greater precision, particu-
larly at high velocities [6], but even then, studies report
a 3–8% error margin depending on device settings and
user motion [7].
Additionally, anomalies may not only stem from the

devices but also from the athlete. For example, during
recovery phases, illness, or unexpected fatigue, the phys-
iological responses may diverge from usual patterns, pro-
ducing authentic yet significant anomalies. Thus, dis-
tinguishing between device-induced and body-induced
anomalies is itself a meaningful analytical question.

To explore this problem, we test and compare a range
of unsupervised techniques:

• Three classical models on pointwise data:
k-Nearest Neighbors (kNN), One-Class SVM
(OCSVM), and Kernel Density Estimation (KDE);

• A density-based cluster model: DBSCAN;
• A probabilistic generative model: Gaussian Mix-
ture Models (GMM);

• A modern time-series deep learning model:
TadGAN, a GAN-based approach designed to re-
construct temporal patterns.

Each model captures a different perspective on
anomaly structure, from spatial density and decision
boundaries to statistical probability and generative recon-
struction. Furthermore, we compare their outputs under
both static (pointwise) and sequential (time-series) repre-
sentations of the same dataset, to assess the importance
of temporal information in the detection of anomalies in
physiological data.

2. Related Works
Anomaly detection is a classical and widely explored
domain, with roots extending back centuries in statis-
tical analysis and more recently enriched by machine
learning and deep learning approaches. As discussed in
Ruff et al. [3] and Nassif et al. [8], modern anomaly de-
tection techniques can be grouped into several families:
distance-based, probabilistic, classification-based, and
reconstruction-based models. These approaches vary in

Figure 1: Illustration of anomaly types: point, contextual,
and collective [3].

theoretical grounding, computational efficiency, scalabil-
ity, and applicability to temporal or multivariate data.

In a broad review by Nassif et al. [9], which examines
290 research articles published between 2000 and 2020,
the authors classify methods into five main categories:
classification (e.g., SVM, Bayesian networks, decision
trees, neural networks, kNN), clustering (e.g., k-means,
hierarchical clustering), optimization-based approaches,
ensemble techniques, and regression models. Often, mod-
ern systems leverage hybrid combinations of these cate-
gories to enhance robustness.

Ruff et al. [3] emphasize the theoretical motivation for
unsupervised anomaly detection, focusing on the mod-
eling of normality. This perspective leads to a division
of techniques into three primary classes: probabilistic
models, classification-based models, and reconstruction-
based models, with distance-based methods often treated
separately.

Probabilistic models attempt to fit the probability dis-
tribution of normal data and classify low-probability re-
gions as anomalous. Classic approaches use Mahalanobis
distance, Gaussianmixturemodels [10], kernel density es-
timation [11], and histogram estimators [12]. Generative
models such as Variational Autoencoders (VAEs) [13] and
Generative Adversarial Networks (GANs) [14] represent
more recent extensions, though their accuracy often de-
teriorates in high-dimensional spaces unless adequately
trained.
Classification models, on the other hand, explicitly

attempt to separate normal from anomalous samples.
One-Class SVM (OC-SVM) [15], Support Vector Data
Description (SVDD) [16], and their neural extensions
such as Deep SVDD [17] are well-established approaches
in this family.

Reconstruction-based models rely on the premise that
normal samples can be accurately reconstructed by a
learned function, typically involving dimensionality re-
duction and encoding-decoding schemes. Common tech-
niques include PCA [18], autoencoders, and GAN-based
reconstruction [19, 20, 21, 22, 23]. Higher reconstruction

119



Rayappa David Amar Raj et al. CEUR Workshop Proceedings 118–126

errors suggest higher likelihood of anomaly, under the as-
sumption that anomalies are rare and underrepresented
in training data.
Distance-based methods, such as k-Nearest Neigh-

bors (kNN), Local Outlier Factor (LOF), and related al-
gorithms, operate by measuring the relative distance or
density deviation of samples with respect to their neigh-
bors. Goldstein et al. [24] showed that nearest-neighbor
methods tend to outperform clustering-based methods
across diverse benchmark datasets. However, they re-
quire high computational time and may not scale well to
large datasets.
In temporal anomaly detection, time-series models

become essential. Unlike tabular data, time-series re-
tains sequential information, and anomalies may occur
in patterns rather than isolated points. The concept of
contextual and collective anomalies, discussed in Chan-
dola et al. [25] and Al-Qassou et al. [26], becomes central.
A collective anomaly corresponds to a subsequence that,
while locally consistent, is globally deviant.

GAN-based models like TadGAN [27] reconstruct time
series using adversarial training. TadGAN learns to map
time windows to a latent representation, which is then
used for reconstruction. Discrepancies between real and
reconstructed sequences provide an anomaly score. This
method is particularly suitable for multivariate time se-
ries, even with low dimensionality, such as our case of
two correlated variables: heart rate and speed.
It is important to note that for many applications,

ground-truth labels are missing, so unsupervised learn-
ing becomes necessary. Many real-world datasets require
domain expert labeling, which is expensive or infeasible
at scale. Therefore, unsupervised models dominate the
field, often evaluated on synthetic datasets or via indirect
proxy metrics.

Our specific application poses several data quality chal-
lenges. Temporal gaps, disjoint session timestamps, and
asynchronous recording of heart rate and speed introduce
artifacts that could mislead anomaly detection models.
For example, some training sessions show BPM values
while no speed is recorded, indicating different sensor
systems. In other sessions, high BPM spikes do not corre-
spond to any physical acceleration, but rather to recovery
states or sensor noise.

One example is the session on 10/02, where a runner re-
sumed activity after a one-month break. While the speed
returned to prior levels, BPM values were significantly
elevated. Although physiologically plausible, a model
not incorporating temporal and contextual information
might flag this as an error.
Thus, several methods were examined prior to imple-

mentation: - Statistical rules, such as the 3-sigma Gaus-
sian rule. - Exploratory data techniques, such as box
plots and rank analysis. - Density-based clustering, e.g.,
DBSCAN. - Ensemble frameworks like PyOD.

In conclusion, anomaly detection in physiological and
kinetic data remains a complex, interdisciplinary task.
The selected methods must balance sensitivity to real
anomalies with robustness to noise. Given the nature of
our dataset—low-dimensional, sequential, and partially
corrupted—we selected kNN, KDE, OC-SVM for point-
wise analysis, and TadGAN for sequential modeling. This
hybrid approach aims to leverage both statistical preci-
sion and temporal coherence.

3. Dataset
Our dataset comprises 43 running sessions, for a total of
180,876 measurements, split into 137,515 training sam-
ples and 43,263 for testing. The data includes heart rate
(beats per minute, BPM) and speed values, recorded asyn-
chronously by different sensors and later aligned over
a unified timestamp index. BPM files consist of three
columns: “value”, “data”, and “startTime”. Speed files
contain four columns: “data”, “startTime”, “delta_T”, and
“value”. After excluding infinite values (replaced using
large constants derived from the median) and applying
linear interpolation to handle missing values, both sig-
nals were resampled and aggregated.

Overall, the BPM dataset contains 36,857 valid samples,
while the speed dataset contains 61,748. Because the two
series have different lengths and inconsistent temporal
sampling (e.g., 99.2% of speed delta_T values are 2 or 3
seconds, but some anomalous values exist), a matching
step was required. To fuse the datasets, we took the BPM
timestamps as reference and aggregated the speed values
over those intervals using a mean operation. This re-
sulted in the loss of approximately 21% of BPM rows due
to misalignment or missing speed data at corresponding
timestamps. The final aligned dataset consisted of 29,147
samples.
An exploratory data analysis was conducted on both

signals. The BPM values appeared within plausible phys-
iological ranges (60–200 bpm), whereas speed values
exhibited substantial variability. Outliers were initially
visualized using boxplots (Figure 4), but not removed
to preserve diversity and noise for anomaly detection.
Speed inconsistencies and their dependence on delta_T
were analyzed (Figure 3).

Principal Component Analysis (PCA) was employed to
inspect the structure of the dataset and observe potential
separability among patterns or noise (Figure 5). It also
allowed us to monitor the effects of outlier cleaning, as
shown in Figure 8.
Finally, to prepare the dataset for modeling using

GANs, we applied a sliding window approach with a
window length of 100 and a step size of 5. This generated
overlappingmultivariate sequences from the final dataset,
each containing normalized BPM and speed. These se-
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Figure 2: View on BPM.

Figure 3: Repartition of the speed value depending on delta_T.

Figure 4: Outliers of speed

quences were used to train TadGAN.

4. Dataset
Our dataset comprises 43 running sessions, for a total of
180,876 measurements, split into 137,515 training sam-
ples and 43,263 for testing. The data includes heart rate
(beats per minute, BPM) and speed values, recorded asyn-
chronously by different sensors and later aligned over
a unified timestamp index. BPM files consist of three
columns: “value”, “data”, and “startTime”. Speed files

Figure 5: PCA pair plot.

Figure 6: Silhouette score vs minPoints with error bars.

contain four columns: “data”, “startTime”, “delta_T”, and
“value”. After excluding infinite values (replaced using
large constants derived from the median) and applying
linear interpolation to handle missing values, both sig-
nals were resampled and aggregated.

Overall, the BPM dataset contains 36,857 valid samples,
while the speed dataset contains 61,748. Because the two
series have different lengths and inconsistent temporal
sampling (e.g., 99.2% of speed delta_T values are 2 or 3
seconds, but some anomalous values exist), a matching
step was required. To fuse the datasets, we took the BPM
timestamps as reference and aggregated the speed values
over those intervals using a mean operation. This re-
sulted in the loss of approximately 21% of BPM rows due
to misalignment or missing speed data at corresponding
timestamps. The final aligned dataset consisted of 29,147
samples.
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Figure 7: Trade-off between execution time and silhouette
approximation.

Figure 8: PCA plot after data cleaning.

An exploratory data analysis was conducted on both
signals. The BPM values appeared within plausible phys-
iological ranges (60–200 bpm), whereas speed values
exhibited substantial variability. Outliers were initially
visualized using boxplots (Figure 4), but not removed
to preserve diversity and noise for anomaly detection.
Speed inconsistencies and their dependence on delta_T
were analyzed (Figure 3).

Principal Component Analysis (PCA) was employed to
inspect the structure of the dataset and observe potential
separability among patterns or noise (Figure 5). It also
allowed us to monitor the effects of outlier cleaning, as
shown in Figure 8).

Figure 9: Silhouette score and estimated time.

Table 1
Data set description

Train Test Total

# runs 34 9 43
# points 137515 43263 180876

# inf speed points 1 1 2
# inf bpm points 0 0 0

# NaN speed points 3218 101 3319
# NaN bpm points 108993 35026 144019

Finally, to prepare the dataset for modeling using
GANs, we applied a sliding window approach with a
window length of 100 and a step size of 5. This generated
overlappingmultivariate sequences from the final dataset,
each containing normalized BPM and speed. These se-
quences were used to train TadGAN.

5. Results and Discussion
Since no ground-truth labels are available in the dataset,
the evaluation of the anomaly detection methods was
carried out through qualitative visual inspection of the
results. In Table 2, we provide a structured comparison
of anomaly scores and detection outputs from all tested
methods. Each method produces scores on different nu-
merical scales; therefore, a MinMaxScaler was applied to
normalize scores in the [0, 1] interval, enabling a direct
comparison.

In the first row of Table 2, we observe the distribution
of the normalized anomaly scores for each method, with
the red horizontal line indicating the 99.9th percentile.
This threshold was then employed to classify outliers.
The second row shows the test dataset over time, where
speed and BPM are plotted with marked anomalies based
on the threshold. The third row presents a scatter plot
of BPM vs speed, where colors reflect the anomaly score,
helping to distinguish point and group anomalies. Fi-
nally, the fourth row illustrates one representative test
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Figure 10: Silhouette score and number of Noisy points across
100 values of eps for each minPts in [2, 8].

session in time-series format, comparing raw signals and
detected anomalies.
K-Nearest Neighbors (KNN) and One-Class SVM

(OCSVM) showed good capability to highlight global
point anomalies but failed to capture more subtle tempo-
ral patterns or contextual outliers. Their scores remained
mostly stable across time, and rapid local variations in
BPM or speed were not reflected in the outputs. As a
result, the methods could only detect extreme values that
deviate globally from the norm.

The Kernel Density Estimator (KDE), instead, demon-
strated higher sensitivity to group anomalies and moder-
ately abnormal sequences. It successfully identified both
global point outliers and sustained deviations in BPM
or speed. However, due to its lack of temporal context

Figure 11: BIC vs number of components.

Figure 12: PCA pair plot with cluster labelling.

Figure 13: Number of outliers according to a tolerance level.

integration, it missed several subtle dips and transient
events that would qualify as contextual anomalies.
TadGAN, a generative model trained over temporal

windows, exhibited a distinct behavior. The anomaly
score was highly sensitive to the shape and structure of
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Figure 14: Before (left) and After (right) preprocessing

the sequence, favoring low variation (plateau) segments.
As a result, sudden changes or transitions received lower
scores, which contrasts with expectations. This behav-
ior likely stems from the reconstruction-based scoring
mechanism and the use of overlapping sliding windows.
Post-processing of overlapping scores into a single per-
point score may have diluted signal peaks. Further inves-
tigation is needed to refine this post-processing, possibly
by reducing the sliding window step size or aggregating
scores using weighted schemes.
In conclusion, point-wise methods (KNN, OCSVM,

KDE) are appropriate for detecting global anomalies and
extreme values. Temporal methods like TadGAN are
more suitable for discovering contextually anomalous
patterns, although they require more careful calibra-
tion. The integration of hybrid methods or ensembles
could offer a more balanced performance across different
anomaly types.

6. Conclusion
In this study, we analyzed runner data including heart
rate (BPM) and speed, with the objective of identify-
ing anomalous patterns that could indicate sensor faults,
physiological irregularities, or performance deviations.
We evaluated four unsupervised methods: KNN, OCSVM,
KDE, and TadGAN. The first three operate on individual
datapoints, while TadGAN uses sliding temporal win-
dows.
The results showed that point-wise methods excel at

detecting isolated outliers but are limited in capturing
sequential patterns. In contrast, TadGAN was more sen-
sitive to contextual anomalies and group deviations over
time but struggled with extreme values. Its limitations
are likely tied to the aggregation of reconstruction errors
across windows.

Future work should investigate improvements in GAN-
based models by tuning window size, overlap, and scor-
ing methods. Moreover, the integration of contextual
metadata or ensemble learning approaches may enhance
robustness. Overall, temporal models show promising
potential for enhancing anomaly detection in physiologi-
cal monitoring during exercise.
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