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Abstract
The concept of similarity plays a fundamental role in many artificial intelligence techniques. The ability to
automatically learn when two instances are similar or different is especially valuable when working with
unstructured datasets such as images, audio, or text. Siamese neural networks enable the automatic learning of a
distance function between pairs of instances by projecting them into a latent embedding space. In this work, we
analyze the the embeddings generated and the distance learned by a Siamese network trained using contrastive
loss to solve various tasks using the MNIST dataset. We also identify some potential problems and propose some
ideas to improve the distance learned by the network that will be researched in future works.
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1. Introduction

The concept of similarity constitutes a fundamental pillar in the development of intelligent systems [1].
Many learning techniques, both supervised and unsupervised, rely on the ability to estimate how similar
two elements are, whether to classify, cluster, recommend, or detect unusual patterns. In particular, in
Case-based Reasoning (CBR) systems, similarity plays a key role both in retrieving past experiences
relevant to the problem at hand and in adapting those experiences to the current context [2].

In tabular datasets where information is represented symbolically, as is common in many classical
machine learning applications, similarity between instances is typically computed by aggregating
the individual similarities between variables. These variable-level similarities are, in turn, computed
according to their nature: categorical or continuous, their scale of representation, or the variable’s role
in the specific context.

Computing similarity between instances becomes significantly more challenging when dealing with
unstructured data, such as images, audio, or text. In such cases, the semantic properties are implicitly
represented in the data, making it difficult to establish a connection between the similarity of individual
features (e.g., the color of a pixel in an image) and the similarity of instances (e.g., when two images
represent the same concept).

It is common to address this using neural networks that, through complex nonlinear transformations,
learn to project the instances into a lower-dimensional latent vector space, generating what are known
as embeddings [3]. These embeddings can be obtained through different approaches. For instance,
autoencoder architectures adopt an unsupervised learning paradigm where the goal is to generate
embeddings that capture patterns sufficient to reconstruct the original instance. In contrast, classifiers
aim to produce embeddings that encode discriminative features relevant for assigning the correct label
to each instance.

Siamese Neural Networks (SNNs) [4] consist of a pair of identical networks that share the same
weights and biases, followed by a distance measurement layer. These twin networks process two
inputs in parallel and generate embeddings that are then compared by computing a distance between
them. When trained with a contrastive loss function, SNNs aim to produce embeddings in which
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instances of the same class are grouped closely together while being separated from those of other
classes. Unlike traditional classification approaches, SNNs can generalize to unseen classes during
training, making them particularly suitable for tasks such as few-shot learning, identity verification,
and duplicate detection.

In this work, we explore the use of Convolutional Siamese Networks to automatically learn a distance
function between images in the context of a classification problem. We then analyze the intra-class and
inter-class similarity, identify prototypical examples for each class, and classify new images efficiently
based on those prototypes. We also investigate to what extend the similarity computed by the network
aligns with our intuition of similarity between images.

The rest of the paper is organized as follows. Section 2 reviews the most relevant works in which this
type of network has been used in case-based reasoning systems. Section 3 presents the dataset used
in the experiments. Section 4 describes the proposed network architecture and the training process.
Section 5 analyzes the clusters created by the network in the latent embedding space and examines the
relationship between the computed distance and the misclassified images. Finally, Section 7 summarizes
the main conclusions of the work and outlines directions for future research.

2. Related work

The literature on Siamese Neural Networks is extensive; in this section, we focus specifically on recent
works that apply SNNs in the context of Case-Based Reasoning systems. These works include both
applications in specific domains and proposals for new architectural approaches.

One of the earliest uses of Siamese networks in a CBR system can be found in [5], which addresses
the task of recognizing physical activities from time series data generated by accelerometers worn by
participants. The results show that the performance of the SNN is comparable to that of a standard
convolutional neural network.

In the domain of textual CBR systems, [6] explores the combination of SNNs and autoencoders
with word embeddings, showing how this approach can enhance textual CBR systems by establishing
stronger relationships across cases and measuring similarities with minimal input from domain experts.

In the context of Process-Oriented Case-Based Reasoning, where cases are typically represented
using semantic graphs to model workflows, [7] proposes the use of Siamese Graph Neural Networks to
approximate the similarity between semantic graphs.

For the domain of fault detection and prediction in industrial environments, where numerous sensors
and actuators are involved, [8] proposes an SNN architecture that combines 2D convolutions with graph
convolutions to extract both temporal and spatial features. They also demonstrate that incorporating
expert knowledge can significantly reduce the number of learnable parameters required.

In [9], a more theoretical study is presented, where the authors propose a framework to classify
different similarity learning approaches based on whether the feature extraction and similarity compu-
tation are modeled or learned. They show that using a classifier as the basis for a similarity measure
can achieve results comparable to state-of-the-art methods, and further improvements are possible by
learning the similarity function between embeddings.

In [10], the authors present a novel approach in which they train different class-to-class Siamese
networks to learn the patterns of both similarity and difference between pairs of classes. They then use
these patterns for classification, explanation, and prototypical case identification. Although the results
are promising, the proposed approach requires training a quadratic number of networks with respect to
the number of classes.

Finally, [11] introduces a novel architecture that incorporates self-attention mechanisms into the
traditional Siamese network structure. By weighting the features of the embeddings before computing
the distance, the proposed method improves classification accuracy across several datasets from the
UCI repository.

As we can observe, Siamese networks have been successfully used in various CBR systems to retrieve
similar cases or propose prototypical cases across different domains. However, we believe that a deeper



investigation is needed into the type of distance these networks learn and its characteristics, in order to
better understand how they can be effectively used in this context. In particular, in this work we analyze
the clusters formed by the cases, how prototypical cases can be used to efficiently retrieve similar ones,
and how the distance computed by the network aligns with our intuitive notion of similarity between
cases.

3. MNIST dataset

The MNIST dataset [12] is a very popular benchmark used in machine learning to evaluate image
classification algorithms. It consists of 70,000 grayscale images of handwritten digits ranging from 0
to 9, each normalized and centered in a 28x28 pixel grid. The dataset is divided into 60,000 training
samples and 10,000 test samples and each image is labeled with the corresponding digit class. Figure 2
shows some example images.

Despite its apparent simplicity, achieving near-perfect accuracy on MNIST was once considered a
significant milestone, and the dataset continues to be a valuable resource for educational and bench-
marking purposes. The images of the digits written by different persons, introduces considerable
intra-class variability in terms of handwriting style, stroke thickness, orientation, and alignment. This
variability makes the dataset particularly useful for evaluating a model’s generalization capacity and
robustness to variations in input appearance.

Another reason for choosing this dataset is that it is relatively easy for a human to judge whether the
handwriting of two digits looks more or less similar, and we aim to compare this notion of similarity
to the distance learned by a Siamese neural network. Finally, although the dataset contains many
examples, they are small enough to allow for rapid experimentation.

4. The Convolutional Siamese Network

A typical Siamese neural network [4] consists of two or more identical subnetworks that share the same
weights and map the input instances to fixed-length vectors (embeddings) in a latent space. Then,
the last part of the network compares those vectors using a distance function, such as the Euclidean
distance or the cosine similarity. The normalized distance between the instances is the output of the
network, that can also be fed into additional layers for classification or regression tasks.

Figure 1 shows the network architecture used in this work, which is inspired by the network proposed
in [13]. The network receives two input images of size 28×28 pixels with a single color channel, denoted
as 𝑥1 and 𝑥2, and processes them through a shared encoder 𝑓(·). This encoder module produces two
embeddings, 𝑓(𝑥1) and 𝑓(𝑥2), each represented as a 10-dimensional vector. The network then computes
the Euclidean distance between the vectors and normalizes it using a sigmoid function:

𝐷(𝑓(𝑥1), 𝑓(𝑥2)) = ‖𝑓(𝑥1)− 𝑓(𝑥2)‖2

𝜎(𝑧) =
1

1 + 𝑒−𝑧

𝒩𝜃(𝑥1, 𝑥2) = 𝜎(𝑓(𝑥1), 𝑓(𝑥2))

The network is trained on pairs of instances labeled as similar (same digit) or dissimilar (different
digits), with the objective of minimizing the embedding distance for similar pairs and maximizing it (up
to a margin) for dissimilar ones. We use the contrastive loss [14], defined as:

𝐿 = (1− 𝑦)𝐷2 + 𝑦max(0,𝑚−𝐷)2

where 𝑦 indicates similarity (0 for similar, 1 for dissimilar), 𝐷 is the distance between embeddings,
and 𝑚 is a margin that enforces a minimum separation between dissimilar pairs (𝑚 = 1).

This way, the Siamese network learns a mapping from inputs to an embedding space, where similar
instances are close together and dissimilar ones are far apart according to a chosen distance metric.



Figure 1: Architecture of the Convolutional Siamese Network and each of its subnetworks.

Class Train Test

Mean Std Mean Std

0 0.02 0.11 0.02 0.08
1 0.02 0.11 0.02 0.10
2 0.07 0.19 0.06 0.18
3 0.14 0.28 0.12 0.25
4 0.05 0.15 0.05 0.15
5 0.06 0.16 0.06 0.18
6 0.02 0.10 0.04 0.15
7 0.04 0.14 0.05 0.15
8 0.07 0.17 0.07 0.17
9 0.06 0.17 0.06 0.19

Table 1
Mean distance of each train image to similarity scores for each class (alternative configuration).

The network was created using Keras over JAX and, although the architecture has several layers,
most of them are convolutions, so the resulting network is very small and only has 7,470 trainable
parameters. It was trained on 200,000 random pairs of images using the RMSprop optimizer for 5 epochs
and 10,000 random pairs of images for validation. The complete training process took less than 3
minutes on a nvidia RTX 4070 with 12 GB. We obtained an accuracy score of 0.9876 on the test dataset,
which means it can determine whether two images represent the same digit 98.76% of the time.

5. Clusters and similarity

Once the network has been trained, we can study the clustering of images by category performed
by the network’s encoder module. For example, we can compute the embedding corresponding to a
prototypical image of each class by calculating the average embedding of the images belonging to each
class in the training set.



Figure 2: Sample images from the MNIST dataset. The first column shows the train image closest to the centroid
of each class (a prototype) and the following columns show the train images closest to the quintiles when they
are ordered according to their distance to the centroid.

𝑝𝑖 =
1

𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑓(𝑥𝑗)

where 𝑛𝑖 is the number of images belonging to class 𝑖.
It is interesting to note that these prototypical embeddings do not correspond to any image from the

training set, and we cannot reconstruct their associated images because the network does not have a
decoder module. However, we can compute the closest images to each of them, which are shown in
the first column of Figure 2. We can observe that, they correspond to clearly distinguishable digits,
although they do not always represent the most standard handwriting of each digit.

Although we cannot exactly visualize the images associated with these centroids, we can use them
to compute distances using the network’s distance module. In this way, Figure 3 shows the distances
between the centroids of each cluster. The minimum distance between two centroids from different
classes is 0.998, which indicates that the network has successfully separated the different classes.
However, the distance between centroids does not seem to be related to the notion of similarity between
digits. For example, intuitively, we would say that the handwriting of a 1 is closer to a 7 than to a 5, but
this is not reflected in the learned distance.

On the other hand, Table 1 shows the average distances of each image to the centroid of its class. We
can observe that the digit 3 exhibits the highest variability, and that the values in both the training and



Figure 3: Distance matrix between the centroids of each class.

test sets are similar. Based on this, we conclude that the clusters are fairly compact and well separated
from each other. We can confirm our intuition in Figure 4, which shows a projection of the embeddings
onto the plane using the TSNE algorithm.

Finally, Figure 2 also shows different training images from each cluster, ordered by their distance
to the centroid. The first column displays the image closest to the centroid (the most prototypical
image of the class), and the following five columns show the images in each of the quintiles. In general,
the distance to the centroid does not appear to have a clear relationship with the notion of difference
between handwriting variations within the same digit.

We can conclude that the internal representation of the images learned by the network effectively
clusters the digits. However, the resulting image-to-image distance does not appear to support an
intuitive ordering based on the visual similarity of the handwritten digit shapes—neither within the
same class nor across different classes.

6. Classification based on the nearest centroid

One of the common uses of Siamese networks is to retrieve the nearest neighbors to classify new
instances. This approach has a computational cost that is linear with respect to the number of instances
in the training set. However, since the clusters generated by the network are compact and well separated,
we can also compute distances to their centroids, thus reducing the classification complexity to be linear
with respect to the number of classes (which can be considered constant in practice).

Table 2 shows the results of this approach broken down by class. The classifier’s accuracy is 98.20%,
which is quite good considering that we are using a very small neural network and only computing
distances to 10 points each time. Precision and recall scores are very high for all digits, although
classifying fives, sevens, and nines appears to be slightly more challenging.

Figure 5 shows the distribution of distances from each test image to its nearest centroid. We observe
that nearly all correct classifications occur when the distance to the centroid is below 0.1. In contrast,
incorrect classifications are more uniformly distributed across the full range of distances, which is a
somewhat surprising finding.

We can delve a bit deeper by visualizing some of the misclassified images. Figure 6 shows the



Figure 4: Embeddings of the test images projected to 2D using TSNE.

incorrectly classified images that are farthest from any of the centroids. These images correspond to
embeddings with no close neighbors, and therefore the classifier does not know how to label them. We
can observe that the images on the left correspond to poorly defined digits, and it is possible that there
are not many similar examples in the training set. More surprising are the images on the right, where
the digits are perfectly recognizable, yet the distance computed by the network suggests they are not
close to the prototypical digits. In any case, these situations are not too problematic, as the system
could choose to indicate uncertainty rather than provide an incorrect answer.

Figure 7 illustrates the opposite situation, where the neural network indicates that the images are
very similar to one of the prototypical digits, which is, however, not the correct one. Some of these
images may cause confusion, as their handwriting appears to be somewhere between multiple digits.
Nevertheless, a person would still be able to correctly recognize the digits in most cases and some of
them are in fact quite recognizable.

7. Conclusions and Future Work

Siamese networks appear to be highly effective at determining whether two images are similar (i.e.,
belong to the same class) or not (i.e., belong to different classes) in the MNIST dataset. Training through
the optimization of the discriminative loss function results in very compact embedding clusters that are
well separated from each other. This makes Siamese networks a promising approach for classification



Class Precision Recall F1-score Support

0 0.9839 0.9959 0.9899 980
1 0.9834 0.9938 0.9886 1135
2 0.9807 0.9835 0.9821 1032
3 0.9910 0.9772 0.9840 1010
4 0.9857 0.9796 0.9826 982
5 0.9680 0.9821 0.9750 892
6 0.9843 0.9791 0.9817 958
7 0.9702 0.9815 0.9758 1028
8 0.9906 0.9784 0.9845 974
9 0.9819 0.9673 0.9745 1009

Accuracy 0.9820 10000
Macro avg 0.9820 0.9819 0.9819 10000
Weighted avg 0.9821 0.9820 0.9820 10000

Table 2
Classification performance metrics per digit class on the MNIST test set using the closest centroid.

Figure 5: Distance distribution between the test images and the closest centroid.

Figure 6: Images that were classified incorrectly and the classifier was quite unsure of their class. They are far
from any centroid and ordered from left to right by decreasing distance.

problems that rely on nearest-neighbor retrieval. In fact, we can achieve fairly good results by simply
computing the distance to the cluster centroids, which significantly reduces the computational cost of
such algorithms.

However, the distance computed by the network does not seem to exhibit other desirable properties
of a similarity metric. In particular, it does not appear to effectively reflect the degree of similarity
between two instances, at least in the problem we have addressed in this work. Images from the same



Figure 7: Images that were classified incorrectly but the classifier was quite sure of their class. They are close to
some centroid and ordered from left to right by increasing distance.

class all are very similar to one another, and visually there does not seem to be a clear relationship
between handwriting style and the distance computed by the network. A similar situation occurs with
images from different classes, where the network simply indicates that they are very different, without
effectively capturing that some digits are more visually like others.

Although the distance learned by the network can be useful in tasks where it is only necessary
to determine whether two entities are similar or different, such as binary classification or identity
verification, it may not be suitable for problems that require generating a similarity-based ranking.

For instance, in CBR systems, it is common to retrieve the most similar cases and then assess their
contribution to the proposed solution based on their distance to the query. It is also standard practice
to apply a threshold beyond which retrieved cases are no longer considered relevant. Both practices
become more difficult when the learned distances are either too homogeneous (i.e., all cases are very
similar or very dissimilar) or do not follow a smooth, interpretable distribution.

Furthermore, in recommender systems, where a ranked list of relevant items is typically provided,
the ordering generated using this type of learned similarity may lack meaningful differentiation. The
same challenge arises in distance-based explainability methods, where examples and counterexamples
may not appear intuitive to users simply because the distance learned by the network does not reflect
the types of features or relationships users expect to define similarity.

How could we encourage the network to generate better embeddings, where the relative distance
captures more than just class membership? One possible approach is to incorporate into the loss function
a component that does not rely on labels, but rather on the intrinsic characteristics of the images. In
this regard, a decoder module could be added to attempt to reconstruct the original image, thereby
forcing the network to encode the most significant visual patterns into the generated embeddings.

On the other hand, the network seems to make classification errors fairly uniformly across the entire
range of distances, which is somewhat surprising. This could be due to the test set containing images
that are very different from those in the training set, or it may suggest that the network is not able
to adequately capture the patterns that distinguish different digits. By selecting training pairs more
carefully, we might overrepresent the harder-to-classify images, thus encouraging the network to better
learn their differences from other classes.

As part of future work, we plan to address these issues and analyze the behavior of these networks
across different datasets. The ability to automatically learn a similarity measure between images is very
promising, but we must develop mechanisms that align the learned similarity with our human notion
of similarity.
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