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Abstract 
Our study introduces an automated system leveraging large language models (LLMs) to assess the 
effectiveness of five key tutoring strategies: 1. giving effective praise, 2. reacting to errors, 3. determining 
what students know, 4. helping students manage inequity, and 5. responding to negative self-talk. Using a 
public dataset from the Teacher-Student Chatroom Corpus, our system classifies each tutoring strategy as 
either being employed as desired or undesired. Our study utilizes GPT-3.5 with few-shot prompting to 
assess the use of these strategies and analyze tutoring dialogues. The results show that for the five tutoring 
strategies, True Negative Rates (TNR) range from 0.655 to 0.738, and Recall ranges from 0.327 to 0.432, 
indicating that the model is effective at excluding incorrect classifications but struggles to consistently 
identify the correct strategy. The strategy helping students manage inequity showed the highest 
performance with a TNR of 0.738 and Recall of 0.432. The study highlights the potential of LLMs in tutoring 
strategy analysis and outlines directions for future improvements, including incorporating more advanced 
models for more nuanced feedback. 
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1. Background 

Tutoring is widely recognized as one of the most effective forms of personalized learning support [1, 
2]. Within tutoring sessions, strategies such as praising student effort and providing feedback play a 
critical role in enhancing student learning outcomes [3, 4]. When effectively employed, these 
strategies can support students’ cognitive development, meet their emotional needs, and foster a 
positive learning environment. For example, a well-placed praise such as “You are making great 
progress on this problem” (rather than generic praise like “Good job”) can emphasize the importance 
of the learning process, building student resilience and motivation [3]. Understanding how these 
tutoring strategies are employed during sessions is crucial, as it highlights whether they align with 
desired practices and are delivered in a manner that promotes student growth [2]. However, the 
ability to automate this analysis has been constrained by the limitations of earlier natural language 
processing (NLP) tools, leaving room for significant improvements. Recent advancements in large 
language models (LLMs) offer a promising opportunity to develop automated systems for analyzing 
tutoring dialogues. These models (e.g., ChatGPT and Llama), with their ability to process and 
understand complex language patterns, provide a promising avenue for evaluating tutoring 
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strategies in a nuanced and context-aware manner. To analyze the dialogue transcripts, our study 
leverages LLMs to develop an automated system (Figure 1), accessible via https://tutor-
dialogue.vercel.app/dashboard/transcripts.  

The system is designed to detect the use of tutoring strategies and assess whether they are 
employed in their desired form. It allows users to upload a spreadsheet containing dialogue 
transcripts, with each line of dialogue and its corresponding speaker specified. As shown in Figure 
1, for each strategy detected, the system determines whether it was used effectively (good) or 
ineffectively (bad), and this information is presented in a color-coded format for easy interpretation: 
blue indicates effective use ( good example), while red indicates ineffective use (bad example). 

  

Figure 1: The Tutor Dialogue Classification system interface. On the left is (1) the navigation panel, 
which includes options for (a) accessing dialogue records for each transcription file, (b) viewing a 
comprehensive table of classification results for all available dialogue data, (c) evaluating 
classification patterns, and (d) explaining response categories. On the right is (2) the dialogue table, 
which features: (a) classification results displayed within the conversation between a tutor and a 
student, (b) filtering options for classification analysis, and (c) export functionalities for data analysis. 

2. Method 

2.1. Data 

Our study used the dataset provided from the Teacher-Student Chatroom Corpus [5]. The dataset 
contains one-on-one English lessons in an online chatroom. It was released in 2022, and contains a 
total of 262 transcriptions. Then, we hired 4 annotators to annotate a total of 9 transcriptions for 
usage of 5 different tutoring strategies. In our annotation scheme, we assigned the following labels 
to each instance: <-1> when the tutoring strategy was not applicable, <0> when the tutoring strategy 
was used undesirably, and <1> when the tutoring strategy was used by the tutor in a desired manner. 

2.2. Prompt Engineering  

We used few-shot chain-of-thought prompting for each of the five tutoring strategies: (1) Giving 
Effective Praise, (2) Reacting to Errors, (3) Determining what students know, (4) Helping Students 
Manage Inequity, and (5) Responding to Negative Self-Talk. These tutoring strategies generally 



encourage students to persevere and increase their engagement, which are drawn from the PLUS 
Tutors Platform, https://www.tutors.plus/en/solution/training. 

Table 1 
The performance of prompting GPT-3.5 model on identifying desired or undesired tutoring strategies  
 
 
 
 

 
 
 
 
 

3. Results 

Our study used the GPT-3.5 model to detect and classify tutoring strategies through few-shot 
prompting. Table 1 presents the accuracy of GPT-3.5 in identifying and classifying five tutoring 
strategies, measured by True Negative Rate (TNR) and Recall. GPT-3.5 achieves moderate TNR 
(0.655-0.738) but lower Recall (0.327-0.432). This suggests that the model performs somewhat 
effectively at excluding incorrect classification, but still struggles with identifying the correct one 
from the remaining two options. “Helping Students Manage Inequity” strategy achieves the highest 
performance with TNR of 0.738 and Recall of 0.432, though overall performance remains limited.  

Further enhancements to our transcription analysis system will focus on incorporating more 
advanced LLMs, providing detailed statistics and feedback based on the classification results, 
reporting the frequency with which each strategy was used effectively or ineffectively and 
generating overall feedback from the model. This feedback will evaluate the tutor’s effectiveness in 
employing each strategy and offer suggestions for improvement. 
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