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Abstract
Social robots, equipped with advanced communication abilities, can now serve as versatile classroom assistants.
These robots understand and respond to speech, visual cues, and nonverbal signals, creating dynamic learning
environments. Drawing on communication theory, they adapt to various learning styles and work alongside
teachers to enhance education. We explore personalized instruction and improved student engagement through
multimodal interactions with robot teaching assistants. Our research examines potential benefits, including
individualized learning, increased motivation, and support for multilingual and special needs education. We
address challenges in visual processing, communication, and cognitive load management. This work advances AI
in Education by showing how AI-enhanced robots can create more effective and inclusive learning experiences.
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1. Introduction

The field of Artificial Intelligence in Education (AIED) has evolved significantly with the emergence
of Generative AI and advanced robotics, moving beyond basic service applications to focus on social
and human-centric educational settings. The commercial AIED market is projected to reach 4.5 billion
pounds in 2024, attracting substantial investments from major tech companies [1].

The integration of Large Language Models (LLMs) with humanoid robots presents promising oppor-
tunities for education. Studies demonstrate that advanced Natural Language Processing technologies
enhance student engagement and learning [2, 3]. Humanoid robots offer unique advantages over
virtual assistants due to their physical embodiment, which leverages the psychological benefits of face-
to-face communication [4]. Recent research has extensively explored these educational applications
[5, 6, 7, 8, 9].

While LLMs enable more natural, adaptive social interactions in classroom settings, current lim-
itations exist, particularly in processing visual context [10]. This raises critical questions about the
minimum capabilities required for effective educational robots. This paper examines how humanoid
robot attributes map to goal-directed communication and robot behavior during student interactions,
advancing both AIED and potential applications in other social domains like healthcare.

2. Background

Early social interaction research utilized humanoid avatars before physical robot platforms became
widely available [11, 12]. Buller and Burgoon [13] characterized communication as a dynamic process
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of mutual influence requiring information management, behavioral control, and image maintenance.
Effective communication demands managing cognitive load while coordinating verbal and nonverbal
behaviors [14], adapting to feedback, and responding to expectation violations [15]. These commu-
nication principles must inform humanoid robot design for educational settings. Robots can support
teachers by managing classroom interactions and providing individualized tutoring, enabling educators
to focus on higher-level instructional objectives while addressing cognitive load and knowledge transfer
challenges in the learning environment.

2.1. Classroom Support

Cognitive load occurs when mental resources are consumed by multiple simultaneous tasks [14]. In
social interactions, this load can impair an individual’s ability to process contextual information and
adjust their initial trait attributions based on situational factors. This is particularly relevant as people
must process various social cues while regulating their own thoughts and behaviors during interactions.

The concept of cognitive load has important implications for Human-Robot Interaction (HRI) in
education. Robots must adapt to diverse learning styles and preferences, which vary dynamically
throughout the learning process. The Kolb Experiential Learning Cycle provides a framework for
adapting robot communication strategies to student needs [16, 17], consisting of four stages:

1. Concrete Experience (“Why?”): Having a specific experience and understanding its relevance
2. Reflective Observation (“What?”): Reflecting on observations
3. Abstract Conceptualization (“How?”): Theorizing about observations
4. Active Experimentation (“What if?”): Applying understanding to new situations

Teachers face significant cognitive load when accommodating multiple learning styles simultane-
ously, which can impair their ability to adapt teaching methods and maintain effectiveness. Social
humanoid robots, enhanced by AI technologies including computer vision, speech recognition, and
emotion recognition, can provide cognitive support in the classroom [18]. These robots can assist
with personalized learning while teachers focus on classroom management and complex instruction.
Through continuous monitoring of student engagement and performance, robots provide actionable
insights for teaching adaptation [19], creating an effective feedback loop in robot-student interactions.

2.1.1. Robot-Student Interaction

An important metric the robot must be able to accurately measure and provide feedback to the teacher
is the actual success of knowledge transfer from the teacher to the student. Such a metric in itself is
multi-faceted. The robot must have a robust and adaptive content delivery system that includes an
inference mechanism to detect effective and ineffective knowledge transfer. To develop such a system,
we analyzed Buller and Burgoon’s schematic model (p.211) of face to face communication to develop
what the stages of effective Robot-Student interaction might look like in an educational context.

Figure 1, which was inspired by the schematic model, illustrates a schema of such an interaction. We
must state that our derived model is simplified as it cannot encompass all areas contained within this rel-
atively recent phenomenon of humanoid robot-human communication in an educational context. Both
the robot and student begin with a pre-interaction mental state shaped by their previous interactions.
In this case a previous interaction might encompass: [1] not just a past relations to the current robot,
but any other robots which the student might have interacted with, and [2] any priming the student
may have undergone to view the robot as an objective authority on knowledge. This will of course
affect the students expectations (positive or negative) of the interaction. It has been studied that people
find interlocutors of information such as robots or humanoid avatars to be more objective and unbiased,
which leads people to open up to them [11]. Such factors affect the students initial receptiveness to
receiving knowledge from the robot. The more common factors are of course their preferred learning
style and familiarity with the class/course material.



Figure 1: Schema of Robot-Student Communication in a Classroom.

Another factor we take some special interest in are the goals the student may have for the interaction,
which we will discuss in our conclusions (see section 4). The robots pre-interaction cognition can be
partly categorized as the directives given to the robot - in this case to relay information and provide the
teacher accurate measurements of on the effective or ineffectiveness of the relay. Another category
can be nominally identified as the robots knowledge. This would include the knowledge stored in any
pre-trained and/or fine-tuned models. For example, the knowledge stored in pre-trained LLMs. The
knowledge accessible to LLMs via extensions such as Retrieval Augmented Generation or Knowledge
graphs (both discussed in section 3), which might include prior interactions with the student, specialized
course specific information (such as curriculum), and information about the students learning style.

These pre-interaction cognition states affect the initial behaviors displayed by both parties. The
initial receptiveness of the student may manifest itself in body language while the directives and initial
knowledge mirror the same mechanism in the robot. It is good to note that these pre-interactional
factors may have weight across the entire interaction. The stages between the pre and post-interactional
stages can be described as iterative. Just as in Buller and Burgoon’s model, these iterative stages can
occur simultaneously and in a feedback loop. For simplicity, we describe these stages as a series of
credibility checks and behavioral adjustments. The student might voluntarily or involuntarily change
displayed behavior based on the perceived credibility of the robots ability to transfer knowledge (or
other factors such as comfort). The robot equipped to sense these changes, adjusts behavior accordingly.
This might look like an emotionally intelligent robot detecting a change in the students emotional
state, which can be inferred from any number of sources (body language, voice modularity, facial
expression, etc.) and offering encouragement and motivation. Within these iterative steps the robot
continuously measures student engagement. While student engagement has some correlation with
effective knowledge transfer, it cannot be the only basis of measurement.

We discern that the robot must be able to draw from different factors - some which are specific to
the nature of the learning material - to make some accurate estimate of effective knowledge transfer.
The post-interaction stage requires the robot to relay relevant information to the teacher. This will
include some permutation of: 1) any major switch in modality of students learning style (as in Kolb’s
model), and 2) overall engagement and some measurement of how much learning is actually taking
place (which would be level of effective knowledge transfer). Now that an overview of the entirety of
the feedback process has been defined, let us dive back into the iterative stages.

It is clear that the social robot must have real time adaptive content delivery capabilities which can
sense any change in student receptiveness, accurately infer perceived credibility and modulate content
delivery method accordingly. As we describe what the robot must be capable of, we are in essence
describing some system that provides the robot a sophisticated level of emotional intelligence. Such a
system could easily applicable not just in education, but in mental health and other dyadic scenarios.



The robot handles repetitive but dynamic tasks during these iterative stages, including basic question-
answering. As a result, teachers can devote their cognitive resources to more complex responsibilities:
learner-centered instruction and personalized interventions. In diverse classrooms, these robots can also
provide multilingual support, translating or explaining concepts in multiple languages, thus reducing
the cognitive load on teachers in diverse educational settings (e.g., multi-language or special needs).
The next section discusses our efforts towards the development of an emotionally intelligent system
with multi-modal perception, communication features, and affordances.

3. Current Developments and Challenges in AIED with Social Robots

We selected SoftBank’s Pepper and NAO humanoid robots [20] for their human-like form and scale, with
Pepper’s 1.20-meter height providing suitable presence in crowded environments. We developed APIs
to enhance their AI and language capabilities for real-time operation, as illustrated below in Figure 2.

Figure 2: System architecture

The architecture centralizes perceived information to generate robot responses. While utilizing
standard processes like voice activity detection (VAD), we enhanced the system with speaker diarization
[21] and recognition to distinguish multiple speakers and track long-term student engagement. Robot
responses combine spoken LLM output with nonverbal gestures via native APIs. Long-term interactions
are stored in vector databases and knowledge graphs, with context-relevant information retrieved
through Retrieval Augmented Generation (RAG) [22].

Unlike existing applications that provide static information [23], our system processes dynamic
student-robot relationships. Visual information is contextualized using image-to-text Vision Language
Models (VLM) to incorporate environmental context into interactions.

3.1. Challenges

Key technical challenges include hardware constraints, model intelligence for real-time processing, and
the evolution from reactive to proactive communication [24, 25]. While ongoing work addresses these
technical challenges through AI optimization [26], temporal reasoning capabilities [27], and multimodal
processing advancements [28], our current implementations demonstrate the viability of AI-enhanced
robots in educational settings.



4. Conclusion

This paper explored the potential of integrating AI technologies with humanoid robots to create
responsive and adaptive learning environments. Despite technical challenges in real-time processing
and proactive communication, our proposed system architecture, combining NLP, computer vision, audio
processing, and nonverbal behavior, offers a practical approach to enhancing educational accessibility
and support. By addressing challenges such as cognitive load management, visual context processing,
and multimodal communication, these AI-enhanced robots can serve as assistants for teachers, adapting
to diverse learning styles and individual student needs.

The Robot-Student Interaction model recognizes that each student brings their own unique spectrum
of social skills, communication styles, and interpersonal sensitivities to the interaction [29]. Students
actively participate in shaping the educational dialogue, contributing valuable information through
their distinct communication patterns. While the nature of this interaction varies across educational
levels—from primary school to university settings—each student possesses their own sophisticated set of
social and communicative competencies. This opens interesting research possibilities for understanding
how robot-student interactions might enhance or adapt to different communication styles, and how
robotic intervention could support students in developing their natural communication strengths
further.
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